next up previous contents index

[ENGN2211 Home]

s-domain Method

We re-draw the circuit of Figure 25 using s-domain quantities, as shown in Figure 27.


  
Figure 27: s-domain RC circuit.
\begin{figure}
\begin{center}
\epsfig{file=images/firstimg5.eps}\end{center}\end{figure}

The capacitor current and voltage are related by

\begin{displaymath}V(s) = \frac{1}{sC} I(s) + \frac{v(0^-)}{s},
\end{displaymath}

and so

I(s) = sC V(s) -C v(0-) .

Now applying KCL to equate this with the resistor current we get

\begin{displaymath}\frac{5/s-V(s)}{R} = sC V(s) -C v(0^-) .
\end{displaymath}

Solving for voltage gives

 \begin{displaymath}V(s) = \frac{5}{sRC(s+\frac{1}{RC})} + \frac{v(0^-)}{(s+\frac{1}{RC})}
\end{displaymath} (27)

Plugging in our numbers gives

 \begin{displaymath}V(s) = \frac{5}{sRC(s+\frac{1}{RC})} + \frac{2}{(s+\frac{1}{RC})}
\end{displaymath} (28)

with RC=1 $\mu$s. Notice that the voltage is a superposition of two terms, one due to the source voltage, and the other due to the initial condition.

Equation (28) gives the solution voltage V(s) in the s-domain. We now work out the time domain waveform v(t).

The second term in (28) transforms to

 \begin{displaymath}2e^{-\frac{t}{RC}} \ {\rm V},
\end{displaymath} (29)

using the LT pairs table in §3.2.2. The first term does not appear in the LT pairs table, so we need to re-express it as a sum of terms in the table. Using partial fractions, we have

\begin{displaymath}\frac{5}{sRC(s+\frac{1}{RC})} = \frac{5}{s} - \frac{5}{s+\frac{1}{RC}} ,
\end{displaymath}

which transforms back to

 \begin{displaymath}5u(t)-5e^{-\frac{t}{RC}}u(t) \ {\rm V} .
\end{displaymath} (30)

Combining (29) and (30) we get

 \begin{displaymath}v(t) = 5u(t)-3e^{-\frac{t}{RC}}u(t) \ {\rm V} ,
\end{displaymath} (31)

in agreement with (26).


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211