next up previous contents index

[ENGN2211 Home]

Basic Definitions


  
Figure 39: Load absorbing power.
\begin{figure}
\begin{center}
\epsfig{file=images/acimg9.eps}\end{center}\end{figure}

Consider a load drawing a current i(t) with voltage v(t) across it, Figure 39. If v(t) and i(t) are periodic waveforms with period T, the instantaneous power   is

p(t) = v(t) i(t) .

It is also a periodic function.

The average power   is

\begin{displaymath}P = \frac{1}{T} \int_0^T p(t) dt
\end{displaymath}

(the average over one period).

If

\begin{displaymath}v(t) = V_m \cos( \omega t + \phi_v),
\ \
i(t) = I_m \cos( \omega t + \phi_i),
\end{displaymath}

then $T=2\pi/\omega$ and

 \begin{displaymath}\begin{array}{rl}
P & = \frac{\omega}{2\pi} \int_0^{\frac{2\p...
...\ \\
& = \frac{V_mI_m}{2} \cos( \phi_v - \phi_i) .
\end{array}\end{displaymath} (49)

Real AC power is one half the product of the voltage and current magnitudes times the cosine of the angle between the voltage and current phasors.

If

\begin{displaymath}{\mathbf V} = V_m \angle \phi_v,
\ \
{\mathbf I} = I_m \angle \phi_i ,
\end{displaymath}

and

\begin{displaymath}\theta = \phi_v - \phi_i ,
\end{displaymath}

we can write

 \begin{displaymath}P = \frac{ \vert {\mathbf V} \vert \vert {\mathbf I}\vert}{2}
\cos(\theta) .
\end{displaymath} (50)

$\theta$ is called the power factor angle, and $\cos(\theta)$ is called the power factor.  

Note that P is the real power absorbed by the load.

The power P is a maximum when the power factor is 1, or $\theta =0$, i.e. the current and voltage are in phase.


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211