Darwin
1.10(beta)
|
Computer vision utility functions (not dependent on OpenCV functions, but may use OpenCV data structures). More...
Go to the source code of this file.
Classes | |
class | drwnWeightedPixelEdge |
Weighted undirected arc between pixels in an image. More... | |
Functions | |
double | drwnPyramidScale (int lambda) |
Image rescaling factor for lambda levels per octave. | |
cv::Rect | drwnTransformROI (const cv::Rect &roi, const cv::Size &srcSize, const cv::Size &dstSize) |
Maps a region of interest from one image scale to another. | |
void | drwnLoadPixelLabels (cv::Mat &pixelLabels, const char *filename) |
Load an over-segmentation (superpixel image) or pixel labeling from a .png or .txt file. Checks size if pixelLabels is not empty. More... | |
void | drwnLoadPixelLabels (cv::Mat &pixelLabels, const char *filename, int numLabels) |
Load an over-segmentation (superpixel image) or pixel labeling from a .png or .txt file. Checks size if pixelLabels is not empty. Replaces any value greater than or equal to numLabels with -1. | |
void | drwnLoadPixelLabels (MatrixXi &pixelLabels, const char *filename, int numLabels=DRWN_INT_MAX) |
Load an over-segmentation (superpixel image) or pixel labeling from a .png or .txt file. Checks size if pixelLabels is not empty. Replaces any value greater than or equal to numLabels with -1. | |
int | drwnConnectedComponents (cv::Mat &segments, bool b8Connected=false) |
Finds connected components in an over-segmentation and renumbers superpixels contiguously from 0. Second argument controls whether connectivity is defined on a 4-connected or 8-connected neighborhood. Returns the number of connected components. | |
int | drwnConnectedComponents (MatrixXi &segments, bool b8Connected=false) |
See above. | |
cv::Mat | drwnFastSuperpixels (const cv::Mat &img, unsigned gridSize) |
Generates an over-segmentation (superpixels) of an image. The parameter gridSize controls the number of superpixels. A value of 10 will produce about 100 superpixels. | |
cv::Mat | drwnKMeansSegments (const cv::Mat &img, unsigned numCentroids) |
Generates an over-segmentation (superpixels) of an image as a set of disconnected regions. The parameter numCentroids controls the number of regions. A value of 10 will produce up to 10 regions. | |
cv::Mat | drwnSLICSuperpixels (const cv::Mat &img, unsigned nClusters, double spatialWeight=200.0, double threshold=1.0e-3) |
Generates an over-segmentation (superpixels) of an image based on the SLIC algorithm (Achanta et al., PAMI 2012). The parameter nClusters controls the number of superpixels, the parameter spatialWeight controls the relative weight of the spatial term, and the parameter threshold (between 0 and 1) defines a stopping criteria. The image schould be provided in CIELAB format. More... | |
void | drwnMergeSuperpixels (const cv::Mat &img, cv::Mat &seg, unsigned maxSegs) |
Merges small superpixels into neighbours until at most maxSegs remain. More... | |
std::vector< std::pair < cv::Mat, unsigned > > | drwnLoadCIFAR (const string &filename, unsigned headerBytes=1, cv::Size sz=cv::Size(32, 32), unsigned nChannels=3) |
Loads CIFAR-10, CIFAR-100 or similarly stored datasets, where images are stored in binary row-major order with prepended byte label. Data is returned as a vector of image-label pairs. Set headerBytes to 2 for CIFAR-100. | |
Computer vision utility functions (not dependent on OpenCV functions, but may use OpenCV data structures).
void drwnLoadPixelLabels | ( | cv::Mat & | pixelLabels, |
const char * | filename | ||
) |
Load an over-segmentation (superpixel image) or pixel labeling from a .png or .txt file. Checks size if pixelLabels
is not empty.
void drwnMergeSuperpixels | ( | const cv::Mat & | img, |
cv::Mat & | seg, | ||
unsigned | maxSegs | ||
) |
Merges small superpixels into neighbours until at most maxSegs
remain.
cv::Mat drwnSLICSuperpixels | ( | const cv::Mat & | img, |
unsigned | nClusters, | ||
double | spatialWeight = 200.0 , |
||
double | threshold = 1.0e-3 |
||
) |
Generates an over-segmentation (superpixels) of an image based on the SLIC algorithm (Achanta et al., PAMI 2012). The parameter nClusters
controls the number of superpixels, the parameter spatialWeight
controls the relative weight of the spatial term, and the parameter threshold
(between 0 and 1) defines a stopping criteria. The image schould be provided in CIELAB format.