Learn the distance metric base class with full set of constraints (i.e., loss function over all targets and imposters).
More...
|
| drwnNNGraphLearner (const drwnNNGraph &graph, double lambda) |
|
virtual void | setTransform (const MatrixXd &Lt)=0 |
|
virtual MatrixXd | getTransform () const =0 |
|
virtual double | learn (unsigned maxCycles) |
|
const drwnNNGraph & | getSrcGraph () const |
|
const drwnNNGraph & | getPosGraph () const |
|
const drwnNNGraph & | getNegGraph () const |
|
void | clearLabelWeights () |
|
void | setLabelWeights (const vector< double > &w) |
|
const vector< double > & | getLabelWeights () const |
|
|
static double | ALPHA_ZERO = 5.0e-6 |
|
static unsigned | METRIC_ITERATIONS = 500 |
|
static unsigned | SEARCH_ITERATIONS = 20 |
|
|
virtual double | computeObjective () const |
|
virtual double | computeLossFunction () const |
|
virtual MatrixXd | computeSubGradient ()=0 |
|
virtual void | subGradientStep (const MatrixXd &G, double alpha)=0 |
|
virtual void | startMetricCycle () |
|
virtual void | endMetricCycle () |
|
void | updateGraphFeatures () |
|
void | nearestNeighbourUpdate (unsigned nCycle, unsigned maxIterations) |
|
MatrixXd | initializeTransform () const |
| initialize transform as feature whitener (diagonal Mahalanobis)
|
|
|
const drwnNNGraph & | _graph |
|
double | _lambda |
|
vector< double > | _labelWeights |
|
drwnNNGraph | _posGraph |
|
drwnNNGraph | _negGraph |
|
unsigned | _dim |
| feature vector dimensions
|
|
MatrixXd | _X |
| cached (x_u - x_v) (x_u - x_v)^T
|
|
Learn the distance metric base class with full set of constraints (i.e., loss function over all targets and imposters).
The documentation for this class was generated from the following files: