Darwin  1.10(beta)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
drwnMultiClassLogisticBase Class Referenceabstract

Common functionality for drwnMultiClassLogistic. More...

Inheritance diagram for drwnMultiClassLogisticBase:
drwnClassifier drwnOptimizer drwnStdObjIface drwnProperties drwnWriteable drwnCloneable drwnTypeable drwnTMultiClassLogistic< FeatureMap > drwnTMultiClassLogistic< drwnBiasJointFeatureMap >

Public Member Functions

 drwnMultiClassLogisticBase ()
 default constructor
 
 drwnMultiClassLogisticBase (unsigned n, unsigned k=2)
 construct a k-class logistic classifier for data of dimension n
 
 drwnMultiClassLogisticBase (const drwnMultiClassLogisticBase &c)
 copy constructor
 
virtual const char * type () const
 returns object type as a string (e.g., Foo::type() { return "Foo"; })
 
virtual bool save (drwnXMLNode &xml) const
 write object to XML node (see also write)
 
virtual bool load (drwnXMLNode &xml)
 read object from XML node (see also read)
 
virtual double train (const drwnClassifierDataset &dataset)
 train the parameters of the classifier from a drwnClassifierDataset object
 
virtual double train (const vector< vector< double > > &features, const vector< int > &targets)
 train the parameters of the classifier from a set of features and corresponding labels
 
virtual double train (const vector< vector< double > > &features, const vector< int > &targets, const vector< double > &weights)
 train the parameters of the classifier from a weighted set of features and corresponding labels
 
virtual void getClassScores (const vector< double > &features, vector< double > &outputScores) const =0
 compute the unnormalized log-probability for a single feature vector
 
- Public Member Functions inherited from drwnClassifier
 drwnClassifier ()
 default constructor
 
 drwnClassifier (unsigned n, unsigned k=2)
 construct a classifer with n features and k classes
 
 drwnClassifier (const drwnClassifier &c)
 copy constructor
 
int numFeatures () const
 returns the number of features expected by the classifier object
 
int numClasses () const
 returns the number of classes predicted by the classifier object
 
virtual bool valid () const
 returns true if the classifier is valid (has been initialized and trained)
 
virtual void initialize (unsigned n, unsigned k=2)
 initialize the classifier object for n features and k classes
 
virtual drwnClassifierclone () const =0
 returns a copy of the class usually implemented as virtual Foo* clone() { return new Foo(*this); }
 
virtual double train (const char *filename)
 train the parameters of the classifier from data stored in filename
 
virtual void getClassScores (const vector< vector< double > > &features, vector< vector< double > > &outputScores) const
 compute the unnormalized log-probability for a set of feature vectors
 
virtual void getClassMarginals (const vector< double > &features, vector< double > &outputMarginals) const
 compute the class marginal probabilities for a single feature vector
 
virtual void getClassMarginals (const vector< vector< double > > &features, vector< vector< double > > &outputMarginals) const
 compute the class marginal probabilities for a set of feature vectors
 
virtual int getClassification (const vector< double > &features) const
 return the most likely class label for a single feature vector
 
virtual void getClassifications (const vector< vector< double > > &features, vector< int > &outputLabels) const
 compute the most likely class labels for a set of feature vector
 
- Public Member Functions inherited from drwnWriteable
bool write (const char *filename) const
 write object to file (calls save)
 
bool read (const char *filename)
 read object from file (calls load)
 
void dump () const
 print object's current state to standard output (for debugging)
 
- Public Member Functions inherited from drwnProperties
unsigned numProperties () const
 
bool hasProperty (const string &name) const
 
bool hasProperty (const char *name) const
 
unsigned findProperty (const string &name) const
 
unsigned findProperty (const char *name) const
 
void setProperty (unsigned indx, bool value)
 
void setProperty (unsigned indx, int value)
 
void setProperty (unsigned indx, double value)
 
void setProperty (unsigned indx, const string &value)
 
void setProperty (unsigned indx, const char *value)
 
void setProperty (unsigned indx, const Eigen::VectorXd &value)
 
void setProperty (unsigned indx, const Eigen::MatrixXd &value)
 
void setProperty (const char *name, bool value)
 
void setProperty (const char *name, int value)
 
void setProperty (const char *name, double value)
 
void setProperty (const char *name, const string &value)
 
void setProperty (const char *name, const char *value)
 
void setProperty (const char *name, const Eigen::VectorXd &value)
 
void setProperty (const char *name, const Eigen::MatrixXd &value)
 
string getPropertyAsString (unsigned indx) const
 
drwnPropertyType getPropertyType (unsigned indx) const
 
bool isReadOnly (unsigned indx) const
 
const drwnPropertyInterfacegetProperty (unsigned indx) const
 
const drwnPropertyInterfacegetProperty (const char *name) const
 
bool getBoolProperty (unsigned indx) const
 
int getIntProperty (unsigned indx) const
 
double getDoubleProperty (unsigned indx) const
 
const string & getStringProperty (unsigned indx) const
 
const list< string > & getListProperty (unsigned indx) const
 
int getSelectionProperty (unsigned indx) const
 
const Eigen::VectorXd & getVectorProperty (unsigned indx) const
 
const Eigen::MatrixXd & getMatrixProperty (unsigned indx) const
 
const string & getPropertyName (unsigned indx) const
 
vector< string > getPropertyNames () const
 
void readProperties (drwnXMLNode &xml, const char *tag="property")
 
void writeProperties (drwnXMLNode &xml, const char *tag="property") const
 
void printProperties (ostream &os) const
 

Static Public Attributes

static double REG_STRENGTH = 1.0e-9
 default strength of regularizer (used during construction)
 
static int MAX_ITERATIONS = 1000
 maximum number of training iterations
 

Protected Member Functions

double objective (const double *x) const
 returns value of objective function at point x
 
void gradient (const double *x, double *df) const
 populates gradient of objective function at point x
 
virtual double objectiveAndGradient (const double *x, double *df) const =0
 returns value of objective function and populates gradient df at point x
 
- Protected Member Functions inherited from drwnProperties
void declareProperty (const string &name, drwnPropertyInterface *optif)
 
void undeclareProperty (const string &name)
 
void exposeProperties (drwnProperties *opts, const string &prefix=string(""), bool bSerializable=false)
 
virtual void propertyChanged (const string &name)
 
- Protected Member Functions inherited from drwnOptimizer
 drwnOptimizer ()
 default constructor
 
 drwnOptimizer (unsigned n)
 construct a problem with dimension n
 
 drwnOptimizer (const drwnOptimizer &o)
 copy constructor
 
void initialize (unsigned n, const double *x=NULL)
 initialize an optimization problem of size n possibly with feasible starting point x $\mathbb{R}^n$ (or zero)
 
void initialize (const double *x=NULL)
 initialize an optimization problem at feasible starting point x in $\mathbb{R}^n$ (or zero)
 
double solve (unsigned maxiter, bool bMonitor=false)
 Solve the optimization problem for up to maxiter iterations to precision set by EPSF, EPSG, and EPSX static variables. Calls monitor function after each iteration if bMonitor is true.
 
unsigned size () const
 dimension of optimization problem
 
double operator[] (unsigned i) const
 returns the i-th component of the current solution
 
double & operator[] (unsigned i)
 returns a reference to the i-th component of the current solution
 
virtual void monitor (unsigned iter, double objValue)
 callback for each iteration during optimization (if bMonitor is true)
 

Protected Attributes

VectorXd _theta
 joint feature map weights
 
int _regularizer
 regularization option
 
double _lambda
 regularization strength
 
const vector< vector< double > > * _features
 
const vector< int > * _targets
 
const vector< double > * _weights
 
- Protected Attributes inherited from drwnClassifier
int _nFeatures
 number of features
 
int _nClasses
 number of classes
 
bool _bValid
 true if the classifier has been trained or loaded
 
- Protected Attributes inherited from drwnOptimizer
unsigned _n
 dimension of optimization problem (i.e., $\mathbb{R}^n$)
 
double * _x
 current feasible solution in $\mathbb{R}^n$
 
double * _df
 gradient at _x in $\mathbb{R}^n$
 

Additional Inherited Members

- Static Protected Attributes inherited from drwnOptimizer
static double EPSF = 1.0e-6
 default tolerance on function convergence
 
static double EPSG = 1.0e-3
 deafult tolerance on gradient convergence
 
static double EPSX = 1.0e-6
 default tolerance on solution convergence
 

Detailed Description

Common functionality for drwnMultiClassLogistic.


The documentation for this class was generated from the following files: