next up previous contents index

[ENGN2211 Home]

Series RLC

 

Second order circuits have two dynamic elements, e.g. the series RLC circuit of Figure 28. Let's calculate the current i(t), $t \geq 0$.


  
Figure 28: Second-order RLC circuit.
\begin{figure}
\begin{center}
\epsfig{file=images/trans2img1.eps}\end{center}\end{figure}

Suppose L=1 H, C=1/4 F, and R will be specified. The initial conditions are given as i(0-) = 0 A, and vC(0-)=2 V. The source or input voltage is vg(t) = 5 u(t) V.

In the s-domain, the circuit is as shown in Figure 29.


  
Figure 29: Second-order RLC circuit in s-domain.
\begin{figure}
\begin{center}
\epsfig{file=images/trans2img2.eps}\end{center}\end{figure}

Applying KVL around the loop we get

\begin{displaymath}\frac{5}{s} = I(s) ( R + s + 4/s) + \frac{2}{s}
\end{displaymath}

and solving for current gives

 \begin{displaymath}I(s) = \frac{3}{s^2 +R s + 4} .
\end{displaymath} (32)

The denominator polynomial gives us the characteristic equation  

 
s2 + Rs + 4 = 0 . (33)

The roots of this equation s1 and s2 determine the nature of the response, and are given by

 \begin{displaymath}s_1, s_2 = \frac{-R \pm \sqrt{R^2-16}}{2} .
\end{displaymath} (34)

There are three cases, depending on the sign of R2-16.

Case 1. R>4$\Omega$, R2-16 > 0. (Overdamped.).

Let's take R=5 $\Omega$. The two roots are

\begin{displaymath}s_1 = -4, \ \ s_2 = -1
\end{displaymath}

(two distinct real numbers). Therefore

s2 + 5s +4 = (s+4)(s+1)

and so, from (32) we get

\begin{displaymath}I(s) = \frac{3}{s^2 +5 s + 4} = \frac{-1}{s+4} + \frac{1}{s+1}
\end{displaymath}

using partial fractions. Transforming back we get

 \begin{displaymath}i(t) = -e^{-4t} u(t) + e^{-t}u(t) \ {\rm A} .
\end{displaymath} (35)

The waveform is illustrated in Figure 30.


  
Figure 30: Overdamped response.
\begin{figure}
\begin{center}
\epsfig{file=images/trans2img3.eps}\end{center}\end{figure}

Case 2. R=4$\Omega$, R2-16 = 0. (Critical damping.).

The two roots are

\begin{displaymath}s_1 = -2, \ s_2 = -2
\end{displaymath}

(two equal real numbers). From (32) we get

\begin{displaymath}I(s) = \frac{3}{(s+2)^2} .
\end{displaymath}

Transforming back, we have

 \begin{displaymath}i(t) = 3te^{-2t} u(t) \ {\rm A} .
\end{displaymath} (36)

The waveform is illustrated in Figure 31.


  
Figure 31: Critical response.
\begin{figure}
\begin{center}
\epsfig{file=images/trans2img4.eps}\end{center}\end{figure}

Case 3. R<4$\Omega$, R2-16 < 0. (Underdamped.).

Now take R=2 $\Omega$. The roots are

\begin{displaymath}s_1 = -1 -j \sqrt{3}, \ \ s_2 = -1 + j \sqrt{3}
\end{displaymath}

(complex conjugate pair). From (32) we get

\begin{displaymath}\begin{array}{rl}
I(s) & = \frac{3}{(s-(-1 -j \sqrt{3}))(s-(-...
...1 -j \sqrt{3})}
- \frac{1}{s-(-1 + j \sqrt{3})} ) .
\end{array}\end{displaymath}

Transforming into the time domain we get

 \begin{displaymath}\begin{array}{rl}
i(t) & =
\frac{\sqrt{3}j}{2}( e^{(-1 -j \s...
... =
\sqrt{3}e^{-t}\sin(\sqrt{3} t) u(t) \ {\rm A} .
\end{array}\end{displaymath} (37)

The waveform is illustrated in Figure 32.


  
Figure 32: Underdamped response.
\begin{figure}
\begin{center}
\epsfig{file=images/trans2img5.eps}\end{center}\end{figure}


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211