next up previous contents index

[ENGN2211 Home]

Bode Diagram

The frequency response function is complex-valued, it is convenient to write it in polar form:

\begin{displaymath}H(j\omega) = \vert H(j\omega) \vert \angle H(j\omega) .
\end{displaymath}

To sketch the frequency response, we sketch as a function of frequency $\omega$. This is called a Bode diagram.  

In our RC example, the frequency response function is

\begin{displaymath}H(j\omega) = \frac{2}{2+j\omega} .
\end{displaymath}

The magnitude is

\begin{displaymath}\begin{array}{rl}
\vert H(j\omega) \vert & = \vert \frac{2}{2...
...ega} \vert
\\ \\
& = \frac{2}{\sqrt{\omega^2+2}} .
\end{array}\end{displaymath}

The phase is

\begin{displaymath}\begin{array}{rl}
\angle H(j\omega) & = \angle \frac{2}{2+j\o...
...mega +2)
\\ \\
& = - \tan^{-1}(\frac{\omega}{2}) .
\end{array}\end{displaymath}

These are sketched in Figures 48 and 49.


  
Figure 48: Magnitude Bode diagram.
\begin{figure}
\begin{center}
\epsfig{file=images/frimg4.eps}\end{center}\end{figure}


  
Figure 49: Phase Bode diagram.
\begin{figure}
\begin{center}
\epsfig{file=images/frimg5.eps}\end{center}\end{figure}

The Bode diagrams show magnitude and phase as functions of frequency, usually plotted using a logarithmic scale for the frequency axis (x-axis). Phase angle is plotted in a linear scale (y-axis), see Figure 49. However, magnitude can vary greatly, and a special logarithmic scale called the decibel scale is used.   Given a real number R, the value of R in decibels is defined by

\begin{displaymath}R \ {\rm (dB)} = 20 \log_{10} R .
\end{displaymath}

In Figure 48, the magnitude (y-axis) is shown ranging from -80 dB to 0 dB (how many orders of magnitude is this?).

From our calculations we have

 \begin{displaymath}\vert H(j\omega) \vert \ {\rm (dB)} = 20 \log_{10}( 2 )
- 20 \log_{10} ( \sqrt{\omega^2 + 4} ) \ {\rm dB}.
\end{displaymath} (62)

It is useful to note that

\begin{displaymath}20 \log_{10}( 2 ) \approx 6 \ {\rm dB},
\ \ {\rm and} \
10 \log_{10}( 2 ) \approx 3 \ {\rm dB}.
\end{displaymath}

The frequency at which the magnitude is 3 dB less than the maximum is called the 3 dB point.   We can find it as follows. Set

\begin{displaymath}\max - 3 \ {\rm dB} = \vert H(j\omega_{{\rm 3 dB}}) \vert \ {\rm (dB)}
\end{displaymath}

and solve for $\omega_{3dB}$, where in this case $\max = 0$ dB.

\begin{displaymath}0 - 3 = 6 - 20 \log_{10} ( \sqrt{\omega_{3dB}^2 + 4} ) \ {\rm dB}
\end{displaymath}

We get $\omega_{3dB} = 2$ rad/sec, or f3dB = 0.318 Hz.


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211