next up previous contents index

[ENGN2211 Home]

Small Signal Amplifiers

 

As an example of a FET amplifier, consider the JFET amplifier of Figure 136.


  
Figure 136: n-channel JFET small signal common source amplifier.
\begin{figure}
\begin{center}
\epsfig{file=images/fetimg16.eps}\end{center}\end{figure}

The JFET has parameters IDSS=11 mA, Vp = -2 V. We will use the component values RD = 1.2 k$\Omega$, RS=680 $\Omega$, RG1=5 M$\Omega$, RG2=470 k$\Omega$, VDD=30 V.

The voltage divider bias network gives

\begin{displaymath}V_{GG} = \frac{470k}{470k + 5000k} 30 = 2.58 \ {\rm V}
\end{displaymath}

and since IG =0 we get VG = 2.58 V. Now

VS = ID RS

and so

 \begin{displaymath}V_{GS} = V_G - V_S = 2.58 - I_D \times 680
\end{displaymath} (128)

The square law (110) gives

\begin{displaymath}I_D = 11\times 10^{-3}( 1- \frac{2.58 - I_D \times 680}{-2})^2
\end{displaymath}

and solving this for ID gives two solutions 4.8 and 9.5 mA. The smaller value is the correct one since the larger one is in a region where the quadratic formula is not a valid model. Why is this? Take a look at Figure 137 (the values of VGS can be found using equation (128).


  
Figure 137: Square law and correct bias point determination.
\begin{figure}
\begin{center}
\epsfig{file=images/fetimg22a.eps}\end{center}\end{figure}

Therefore

\begin{displaymath}I_D = 4.8 \ {\rm mA}.
\end{displaymath}

Next,

VDD = ID RD + VDS + ID RS

and so

\begin{displaymath}V_{DS} = 30 - 4.8\times 10^{-3}(1200 + 680) = 20.98 \ V
\end{displaymath}

This determines the DC operating point Q.

Now let's calculate the voltage gain

\begin{displaymath}A = \frac{v_{out}}{v_{in}}
\end{displaymath}

neglecting the influence of the source and load resistance.

The source resistor RS is short-circuited to AC signals by the bypass capacitor CS, so the AC equivalent circuit is as in Figure 138.


  
Figure 138: AC equivalent circuit.
\begin{figure}
\begin{center}
\epsfig{file=images/fetimg23.eps}\end{center}\end{figure}

Now vgs=vin, and

vout = - (gm vgs)RD = - gm RD vin .

Therefore

\begin{displaymath}A = -g_m R_D = - (\frac{2 I_{DSS}}{\vert V_p \vert}(1-\frac{V_{GS}}{V_p})R_D)
\end{displaymath}

and so A = -8.7.

It is straighforward to check that the input resistance   is given by

\begin{displaymath}r_{in} = R_{G1} \parallel R_{G2} ,
\end{displaymath}

and the output resistance is  

rout = RD .

Exercise. Find the gain from vs to vout including the effects of source and load resistances.


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211