next up previous contents index

[ENGN2211 Home]

Preamble

 

AC analysis is a special case of dynamic analysis where we are interested in the time varying steady state waveforms (sinusoids); we ignore transient components. The important point is that when a linear circuit is driven by a sinusoidal AC source, its steady state response (i.e. currents and voltages) is also a sinusoid (of the same frequency, but of different magnitudes and phases). The method of phasors you have seen in first year is a short cut method for solving AC problems, although you could use differential equations or s-domain methods. Before we look at AC analysis proper let's do some bare hands calculations to help our understanding.

Consider the circuit of Figure 33. Here, $v_g(t) = 5 \cos(2t) u(t)$ V, v(0-)=0 V, R=1 $\Omega$, and C=1 F. We are interested in the capacitor voltage v(t).


  
Figure 33: RC circuit with AC source.
\begin{figure}
\begin{center}
\epsfig{file=images/acimg1.eps}\end{center}\end{figure}

The s-domain circuit is shown in Figure 34. Now

\begin{displaymath}\cos(2t) = \frac{1}{2} (e^{j2t} + e^{-j2t}) ,
\end{displaymath}

and so

\begin{displaymath}V_g(s) = {\cal L}[5 \cos(2t)](s)
= \frac{5}{2}( \frac{1}{s-j2} + \frac{1}{s+j2} ) .
\end{displaymath}


  
Figure 34: RC circuit in s-domain.
\begin{figure}
\begin{center}
\epsfig{file=images/acimg2.eps}\end{center}\end{figure}

By KVL,

\begin{displaymath}V_g(s) = I(s)(1+\frac{1}{s}) ,
\end{displaymath}

and solving for current gives

\begin{displaymath}I(s) = \frac{s V_g(s)}{s+1} .
\end{displaymath}

By Ohm's law, since v(0-)=0 V,

 \begin{displaymath}V(s) = I(s) \frac{1}{s}
= \frac{ V_g(s)}{s+1} .
\end{displaymath} (39)

Substituting in the formula for Vg(s) we get

 \begin{displaymath}\begin{array}{rl}
V(s) & = \frac{5}{2}( \frac{1}{(s-j2)(s+1)}...
...2j)(s-2j)} + \frac{5}{2(1-2j)(s+2j)}
-\frac{1}{s+1}
\end{array}\end{displaymath} (40)

after some algebra and partial fractions. With yet more algebra we get

 \begin{displaymath}v(t) = \cos(2t) +2\sin(2t) -e^{-t} \ {\rm V}, \ t \geq 0.
\end{displaymath} (41)

Here,
$\cos(2t) +2\sin(2t)$ V is the AC steady state response to the AC source $v_g(t)=5 \cos(2t)$ V.  
-e-t V is the transient component (which decays away and we will ignore).

Exercise. Check all these calculations!

The term $\cos(2t) +2\sin(2t)$ is indeed a sinusoid of frequency 2 rad/sec, since by trigonometry

\begin{displaymath}\begin{array}{rl}
\cos(2t) +2\sin(2t) & = \sqrt{5}( \frac{1}{...
...\ \\
& =
\sqrt{5} \cos(2t -63.4^\circ) \ {\rm V}.
\end{array}\end{displaymath}

(Note that 5 = 12+22, and $\cos \theta = 1/\sqrt{5}$, $\sin \theta =2/\sqrt{5}$ implies $\theta = 63.4^\circ$.) The capacitor voltage has magnitude $\sqrt{5}$ V, and phase $-63.4^\circ$.    We write

 \begin{displaymath}v(t) = \sqrt{5} \cos(2t -63.4^\circ) \ {\rm V}
\end{displaymath} (42)

for the AC steady state response.

This type of calculation can get complicated, and it is much simpler to use complex currents and voltages. Suppose we have

\begin{displaymath}v_g(t) = 5 e^{j2t} \ {\rm V}
\end{displaymath}

and note that the real voltage is given by

\begin{displaymath}5 \cos(2t) \ {\rm V} = Re ( 5 e^{j2t}) \ {\rm V} .
\end{displaymath}

Then

\begin{displaymath}V_g(s) = \frac{5}{s-2j} ,
\end{displaymath}

and from (39) we have

 \begin{displaymath}\begin{array}{rl}
V(s) & = \frac{5}{(s-2j)(s+1)}
\\ \\
& =
\frac{5}{1+2j} ( \frac{1}{s-2j} - \frac{1}{s+1} )
\end{array}\end{displaymath} (43)

Therefore

 \begin{displaymath}\begin{array}{rl}
v(t) & = \frac{5}{1+2j} e^{j2t} - \frac{5}{...
...j(2t-63.4^\circ)}
- \frac{5}{1+2j} e^{-t} \ {\rm V}
\end{array}\end{displaymath} (44)

So the complex AC steady state response is

 \begin{displaymath}v(t) = \sqrt{5}e^{j(2t-63.4^\circ)} \ {\rm V}
\end{displaymath} (45)

with real part (42).

In equation (45) the term ej2t is the complex sinusoid, while the complex number

 \begin{displaymath}1-j2 \ {\rm V} = \sqrt{5}e^{-j63.4^\circ} \ {\rm V}
\end{displaymath} (46)

is the phasor.  


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211