next up previous contents

[ENGN2211 Home]

Preparation

1.
Choose a value of RE so that $V_C \approx 4.5$ V, using the minimum value of $\beta$. (use standard resistor values 1, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10 Ohms $\pm10\%$ and decade multiples.)
2.
Calculate the corresponding value of re.

3.
Show that the gain is given by

\begin{displaymath}A_{in,out} = - \frac{\beta R_C}{r_\pi + (\beta +1)R_{E1}}
\approx - \frac{R_C}{R_{E1}}
\end{displaymath}

provided RE1 >> re and $\beta >> 1$ (exclude effects of load resistance).

4.
Choose values of RE1, RE2 such that

RE1+RE2 = RE

and

\begin{displaymath}A_{in,out} = -12 \ \pm 20\%
\end{displaymath}

(Use standard resistor values.)

5.
Calculate the input resistance

\begin{displaymath}r_{in} = \frac{v_{in}}{i_{in}} = R_{B1} \parallel R_{B2} \parallel [(\beta+1)(r_e+R_{E1})]
\end{displaymath}

6.
Now estimate the variation in gain Ain,out, DC operating point, and input resistance as $\beta$ ranges between its extreme values. How sensitive is your design?

7.
Use PSpice to simulate your design.

8.
Summarise your design and simulation results in Table 13.

9.
Assemble your circuit.


 
Table 13: Design, simulated and measured values.
  RE re RE1 RE2 Ain,out rin
Calculated            
Simulated            
Measured            
  IC VCE VBE
Calculated      
Simulated      
Measured      
 


next up previous contents

[ENGN2211 Home]

ANU Engineering - ENGN2211