next up previous contents

[ENGN2211 Home]

Circuit

You are to design a power supply based on the circuit of Figure 59 and meeting the specifications below. The power supply consists of a transformer supplied by the 240 V mains, a bridge rectifier, a capacitor smoothing filter and a load.


  
Figure 59: Power supply circuit.
\begin{figure}
\begin{center}
\epsfig{file=images/psup.eps}\end{center}\end{figure}

AC voltages.


\begin{displaymath}v(t) = V_{peak} \sin ( \omega t)
\end{displaymath}


\begin{displaymath}\omega = 2 \pi f, \ \ \ f=\frac{1}{T}
\end{displaymath}


\begin{displaymath}V_{rms} = \frac{V_{peak}}{\sqrt{2}}
\end{displaymath}

Fuse.

The fuse is included to protect the transformer from possible damage due to high or short circuit currents.

Transformer.


\begin{displaymath}\frac{V_p}{V_s} = \frac{N_p}{N_s}
\end{displaymath}


\begin{displaymath}\frac{I_p}{I_s} = \frac{N_s}{N_p}
\end{displaymath}

(The resistance of the transformer secondary is several ohms, obviating the need for a surge resistor here.)

Rectifier.


\begin{displaymath}v_s(t) = V_m \sin (\omega t)
\end{displaymath}


\begin{displaymath}v_{s(out)}(t) = V_{m(out)} \sin (\omega t)
\end{displaymath}


\begin{displaymath}V_{m(out)} = V_m -1.4 \ {\rm V}
\end{displaymath}


\begin{displaymath}{\rm PIV} = V_{m(out)} + 0.7 \ {\rm V}
\end{displaymath}

Filter.

Ripple voltage (bridge full-wave rectifier, peak-peak):

\begin{displaymath}V_{rpp} = \frac{V_{m(out)}T}{2R_L C}
\end{displaymath}

where T is the period of the input waveform.

Ripple (peak-peak):

\begin{displaymath}r = \frac{V_{rpp}}{V_{DC}}
\end{displaymath}

DC output voltage

\begin{displaymath}V_{DC} = V_{m(out)} - \frac{V_{rpp}}{2}
\end{displaymath}

Load.

The load supplied by the power supply is modelled by a load resistor RL. The value of RL used in the design corresponds to full load current.


next up previous contents

[ENGN2211 Home]

ANU Engineering - ENGN2211