Novel Nano Materials

Two-dimensional (2D) nano-materials, such as molybdenum disulfide (MoS2) and graphene, have atomic or molecular thickness, exhibiting promising applications in nano-electro-mechanical systems. Graphene is a one-atom thick carbon sheet, with atoms arranged in a regular hexagonal pattern. Molybdenum disulfide (MoS2) belongs to transition metal dichalcogenides (TMD) semiconductor family YX2 (Y=Mo, W; X=S, Se, Te), with a layered structure. These 2D nano-materials can be integrated into nano-electro-mechanical systems, enabling ultra-sensitive mechanical mass sensors, with single molecule or even single atom sensitivities. Moreover, the mechanical resonators based on these 2D nano-materials would be a perfect platform to investigate quantum mechanics, opto-mechanics, material internal friction force, nonlinear physics, etc. 

Recommended references:
[1] J. S. Bunch et al., Electromechanical resonators from graphene sheets. Science 315, 490-493 (2007).
[2] R. A. Barton et al., Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Letters 12, 4681-4686 (2012).
[3] Radisavljevicb, Radenovica, Brivioj, Giacomettiv, Kisa, Single-layer MoS2 transistors. Nature Nanotechnology 6, 147-150 (2011).
[4] M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Advanced Materials 24, 210-228 (2012).

© 2014 Copyright NEMS Laboratory. All rights reserved.