next up previous contents index

[ENGN2211 Home]

Appendix: Complex Numbers

 

We write

\begin{displaymath}j = \sqrt{-1} .
\end{displaymath}

Of course, the basic principle is that

j2 = -1 .

A general complex number has the form

z = x + j y ,

where

\begin{displaymath}x = {\rm Re}(z)
\end{displaymath}

is the real part of z, and

\begin{displaymath}y = {\rm Im} (z)
\end{displaymath}

is the imaginary part of z.

The complex number z can be plotted on the complex plane, with x as the x-axis (horizontal) coordinate, and y as the y-axis (vertical) coordinate.

We often use polar form,

\begin{displaymath}z = \vert z \vert e^{j {\rm arg(z)}} = R e^{j\theta} = R \angle \theta
\end{displaymath}

where

\begin{displaymath}R= \vert z \vert = \sqrt{x^2 + y^2} ,
\end{displaymath}

is the magnitude or modulus or length, and

\begin{displaymath}\theta = arg(z) = \tan^{-1} (\frac{y}{x} )
\end{displaymath}

is the argument or angle.

The conjugate $z^\ast$ of z=x+jy is defined by

\begin{displaymath}z^\ast = x - j y .
\end{displaymath}

Note that

\begin{displaymath}z z^\ast = z^\ast z = \vert z \vert^2 .
\end{displaymath}

Let

\begin{displaymath}z_1 = x_1 +j y_1, \ \ z_2 = x_2 +j y_2 .
\end{displaymath}

Addition/subtraction:

\begin{displaymath}z_1 \pm z_2 = (x_1 \pm x_2) +j(y_1 \pm y_2) .
\end{displaymath}

Multiplication:

z1 z2 = (x1 x2 - y1 y2) + j(x1 y2 + y1 x2)

or

\begin{displaymath}z_1 z_2 = (R_1 R_2) \angle( \theta_1 + \theta_2 ) .
\end{displaymath}

Division:

\begin{displaymath}\frac{z_1}{z_2}=
\frac{z_1 z_2^\ast}{\vert z_2 \vert^2} =
(\frac{R_1}{R_2}) \angle( \theta_1 - \theta_2 ).
\end{displaymath}


next up previous contents index

[ENGN2211 Home]

ANU Engineering - ENGN2211