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1. Introduction

We will not touch inference issues for Dirichlet processes. This note is based heavily on Teh (2007).

2. Preliminaries

In this section, we pile some fundamentals.

2.1 Exponential family and conjugate prior

Constituents of exponential family: X : sample space; φ: Rn 7→ Rd sufficient statistics; θ ∈ Rd:
natural parameter; g(θ) : Rd 7→ R log partition function. We will ignore the base measure for
convenience: if you are particular, we are just assuming Lebesgue measure for continuously valued
distributions and counting measure for discrete distributions.

Suppose the likelihood model is in exponential family:

p(x|θ) = exp(〈φ(x), θ〉 − g(θ)), (1)

where g(θ) :=
∫
X exp(〈φ(x), θ〉)dx takes care of normalization. Implicitly, we assume that θ are

only from Θ :=
{
θ|
∫
X exp(〈φ(x), θ〉)dx <∞

}
.

We endow a prior distribution p(θ), and are interested in the posterior distribution p(θ|x). It will
be desirable if p(θ|x) is in the same exponential family as p(θ), because this will allow us to chain
the observations X := {xi}ni=1 and to update the posterior p(θ|X) successively. In other words,
we can progressively absorb the information of the observation xi, and update our belief over the
parameter θ. This relationship between p(x|θ) and p(θ) is called conjugate which is formally defined
as follows:

Definition 1 (Conjugate prior/distribution). Given a class of likelihood functions p(x|θ), a class of
prior probability distributions p(θ) is said to be conjugate to the class of likelihood functions p(x|θ)
if the resulting posterior distributions p(θ|x) are in the same family as p(θ).

Remark 2. For a given likelihood p(x|θ), it has a trivial family of conjugate priors: the whole set
of all possible distributions. We are normally interested in the “smallest” conjugate prior, minimal
in terms of the dimension of smooth parametrization. Also note that conjugate prior is not unique:
in fact linear combinations of conjugate priors are still conjugate priors.

If p(x|θ) is in the exponential family, then there is a constructive way to formulate the conjugate
prior as follows, which is guaranteed to be minimal, as long as the original likelihood p(x|θ) is
expressed in the minimal form (features in φ(x) are linearly independent).

Theorem 3. If likelihood p(x|θ) = exp(〈φ(x), θ〉 − g(θ)), then a conjugate prior of p(x|θ) is:

p(θ) = exp(〈θ, w〉+ ρg(θ)− h(w, ρ)), (2)
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where h(w, ρ) :=
∫

Θ exp(〈θ, w〉+ ρg(θ))dθ takes care of normalization. And this conjugate prior is
a minimal one.

Generally, if p(x|θ) = exp(〈φ(x), ψ(θ)〉 − g(θ)) where ψ is Rd 7→ Rd, then the prior is changed to

p(θ) = exp(〈ψ(θ), w〉+ ρg(θ)− h(w, ρ)). (3)

The base measure of p(x|θ), if any, does not affect the choice of prior.

Proof. By simple calculation.

p(x, θ) = p(θ)p(x|θ) = exp(〈θ, φ(x) + w〉+ (ρ− 1)g(θ)− h(w, ρ)).

So
p(θ|x) = exp(〈θ, φ(x) + w〉+ (ρ− 1)g(θ)− l(x)) (4)

where l(x) :=
∫

Θ exp(〈θ, φ(x) + w〉 + (ρ − 1)g(θ))dθ. Obviously, p(θ|x) in Eq. (4) is in the same
class as p(θ) in Eq. (2). It is also easy to verify the conjugacy when θ is replaced by ψ(θ). We omit
the proof of minimality.

Remark 4. This construction is built upon the log partition function g(θ). Usually there is no
closed form of it and in general it is NP-hard to compute g(θ) numerically.

More properties of conjugate prior, especially for exponential families, can be found at wikipedia
and links therein.

2.2 Basic properties of Dirichlet Distribution

The Dirichlet distribution of order n is defined over the space of n-dimensional simplex

∆n :=
{
x ∈ Rn :

∑
i
xi = 1, xi ≥ 0

}
.

The distribution is parameterized by n positive parameters {αi}ni=1 (ai > 0).

Definition 5 (Dirichlet distribution). A random variable x ∈ ∆n is said to have Dirichlet distri-
bution if its probability density function with respect to Lebesgue measure is given by:

p(x1, . . . , xn) =
Γ (
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏
i=1

xαi−1
i (5)

and it is denoted as x ∼ Dir(α1, . . . , αn) or simply x ∼ Dir(α).
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Remark 6. It is crucial to note that the above distribution is defined on ∆n. This is in fact
not a good definition. An equivalent and better approach is to define the distribution on ∆′n−1 :={
x ∈ Rn−1 :

∑
i xi ≤ 1, xi ≥ 0

}
, and

p(x1, . . . , xn−1) =
Γ (
∑n

i=1 αi)∏n
i=1 Γ(αi)

n−1∏
i=1

xαi−1
i

(
1−

n−1∑
i=1

xi

)αn−1

. (6)

Property 7 (Mean, covariance, mode, marginal). If (x1, . . . , xn) ∼ Dir(α1, . . . , αn), then

E [(x1, . . . , xn)] =
(α1

s
, . . . ,

αn
s

)
, where s :=

∑
i

αi

Cov[xixj ] =
−αiαj
s2(s+ 1)

marginal distribution xi ∼ Dir(αi,
∑

j 6=i
αi)

mode (m1, . . . ,mn) =
(
α1 − 1
s− n

, . . . ,
αn − 1
s− n

)
.

A well-known and important property of the Dirichlet distribution is that it is a conjugate prior of
the multinomial distribution. A multinomial distribution is parametrized by a vector (θ1, . . . , θn),
where

∑
i θi = 1 and θi ≥ 0. The multinomial distribution of order m is defined over the set of

{(x1, . . . , xn) :
∑

i xi = m,xi ∈ Z, xi ≥ 0}. Then p(x) has multinomial distribution if

p(x) =
m!∏
i xi!

∏
i

θxii , (7)

and is denoted as x ∼ Multi(θ1, . . . , θn) or x ∼ Multi(θ) in brief.

Remark 8. Similar to Remark 6, here
∑

i xi must be strictly m, and an equivalent definition will

be over
{

(x1, . . . , xn−1) :
∑n−1

i=1 xi ≤ m,xi ∈ Z, xi ≥ 0
}

by

p(x1, . . . , xn−1) =
m!∏n−1

i=1 xi!(m−
∑n−1

i=1 xi)

(
1−

n−1∑
i=1

θi

)m−∑n−1
i=1 xi n−1∏

i=1

θxii . (8)

Proposition 9. Dirichlet distribution θ ∼ Dir(α) is a conjugate prior of x|θ ∼ Multi(θ).

Proof. Just by simple calculation.

p(θ) =
∏n
i=1 Γ(αi)

Γ (
∑n

i=1 αi)

n∏
i=1

θαi−1
i , p(x|θ) =

n!∏
i xi!

n∏
i=1

θxii

So

p(x, θ) ∝ 1∏
i xi!

n∏
i=1

θxi+αi−1
i ,
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which implies that

p(θ|x) ∝
n∏
i=1

θxi+αi−1
i .

i.e., θ|x ∼ Dir(x+ α).

Remark 10. It is also straightforward to carry out the proof by applying Theorem 3. First notice
that the base measure of Multi(x) (likelihood) is 1∏

i xi!
, and Theorem 3 does allow non-counting

measure. However, the real problem is that there is a constraint that
∑n

i=1 xi = m, so the expo-
nential family representation in Eq. (7) is not really the whole story. The correct starting point of
applying Theorem 3 is Eq. (8), which can be further rewritten into the canonical form of exponential
families:

p(x1, . . . , xn−1) =
m!

n−1∏
i=1

xi!
(
m−

n−1∑
i=1

xi

)
!
exp


n−1∑
i=1

xi log
θi

1−
n−1∑
i=1

θi

+m log

(
1−

n−1∑
i=1

θi

)
So the base measure is m!∏n−1

i=1 xi!(m−
∑n−1
i=1 xi)!

, sufficient statistics are xi, natural parameters are

log θi
1−
∑n−1
i=1 θi

, and the log partition function is −m log
(

1−
∑n−1

i=1 θi

)
. By Theorem 3, a conjugate

prior is:

p(θ) ∝ exp

(
n−1∑
i=1

αi log
θi

1−
∑n−1

i=1 θi
+ α0 log

(
1−

n−1∑
i=1

θi

))

∝
n−1∏
i=1

θαii

(
1−

n−1∑
i=1

θi

)α0−
∑n−1
i=1 αi

which is a Dirichlet distribution by Definition in Eq. (6).

Below we collect two less known results, which are still pretty simple. To start with, we first
introduce a very useful lemma as a construction of Dirichlet distributions.

Definition 11 (Gamma distribution). A random variable x is said to have Gamma distribution
with shape k > 0 and scale θ > 0 if its pdf satisfies:

p(x) = xk−1 e
−x/θ

θkΓ(k)

for x > 0. And it is denoted as x ∼ Gamma(k, θ).

Lemma 12 (Construction of Dirichlet distribution via Gamma distribution). If yi ∼ Gamma(αi, 1)
are independent, then

1. v :=
∑n

i=1 yi ∼ Gamma(
∑n

i=1 αi, 1)
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2. (x1, . . . , xn) := (y1/v, . . . , yn/v) ∼ Dir(α1, . . . , αn).

Proof. By simple brutal-force calculation.

Proposition 13 (Agglomeration). If (x1, x2, . . . , xn) ∼ Dir(α1, α2, . . . , αn), then

(x1 + x2, x3, . . . , xn) ∼ Dir(α1 + α2, α3, . . . , αn). (9)

And generally, if (I1, . . . , Is) is a partition of {1, . . . , n}, then∑
i∈I1

xi, . . . ,
∑
i∈Is

xi

 ∼ Dir

∑
i∈I1

αi, . . . ,
∑
i∈Is

αi

 . (10)

Proof. Suppose yi ∼ Gamma(αi, 1) and let s :=
∑n

i=1 yi, xi := yi/s. Then (x1, . . . , xn) =
(y1/s, . . . , yn/s) ∼ Dir(α1, . . . , αn). On the other hand, y1 + y2 ∼ Gamma(α1 + α2, 1), hence

(x1 + x2, x3, . . . , xn) = ((y1 + y2)/s, . . . , yn/s) ∼ Dir(α1 + α2, . . . , αn).

Eq. (10) can be easily derived by repeatedly applying Eq. (9).

Proposition 14 (Decimation). If (x1, . . . , xn) ∼ Dir(α1, . . . , αn), and (τ1, τ2) ∼ Dir(α1β1, α1β2)
where β1 + β2 = 1, then

(x1τ1, x1τ2, x2, . . . , xn) ∼ Dir(α1β1, α1β2, α2, . . . , αn). (11)

Proof. Let z1 ∼ Gamma(α1β1, 1), z2 ∼ Gamma(α1β2, 1), yi ∼ Gamma(αi, 1) for i = 2, . . . , n. Let
s = z1 + z2 +

∑n
i=2 yi. Then

(z1/s, z2/s, y2/s, . . . , yn/s) ∼ Dir(α1β1, α1β2, α2, . . . , αn). (12)

Define x1 := (z1 + z2)/s, xi := yi/s for i = 2, . . . , n, and τi := zi/(z1 + z2) for i = 1, 2. Since zi ∼
Gamma(α1βi, 1) for i = 1, 2, so (τ1, τ2) ∼ Dir(α1β1, α1β2). Besides, since z1 + z2 ∼ Gamma(α1β1 +
α1β2, 1) = Gamma(α1, 1) and s = (z1 + z2) +

∑n
i=2 yi, so (x1, . . . , xn) ∼ Dir(α1, . . . , αn). In sum,

our construction meets the preconditions.

Now notice zi
s = z1+z2

s
zi

z1+z2
= x1τi for i = 1, 2. So substituting into Eq. (12), we arrive at

Eq. (11).

Remark 15. As a simple generalization, we can prove, by using exactly the same procedure, that
if (τ1, . . . , τm) ∼ Dir(α1β1, . . . , α1βm) with

∑m
i=1 βi = 1, then

(x1τ1, . . . , x1τm, x2, . . . , xn) ∼ Dir(α1β1, . . . , α1βm, α2, . . . , αn).

Even more generally, we can split many xi’s into (different) fractions.
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3. Theoretical Definition of Dirichlet Process

Dirichlet process (DP) is a distribution over distributions. For a random distribution G to be
distributed according to a DP, its marginal distributions have to be Dirichlet distributed. This is
similar to the definition of Gaussian processes.

Definition 16 (Dirichlet Process by Ferguson (1973)). Let H be a distribution over Θ and α
be a positive real number. Then for any finite measurable partition A1, . . . , Ar of Θ, the vector
(G(A1), . . . , G(Ar)) is random since G is random. We say G is a Dirichlet process distributed with
base distribution H and concentration parameter α, written G ∼ DP (α,H), if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)) (13)

for every finite measurable partition A1, . . . , Ar of Θ.

Property 17. For any measurable set A, E[G(A)] = H(A), Var[G(A)] = H(A)(1−H(A))
α+1 .

Proof. For any measurable set A, by Eq. (13),

(G(A), G(Ac)) ∼ Dir(αH(A), αH(Ac)) = Dir(αH(A), α− αH(A))

By Property 7, we have

E [G(A)] =
αH(A)

αH(A) + α− αH(A)
= H(A)

Var [G(A)] =
αH(A) · (α− αH(A))

α2(α+ 1)
=
H(A)(1−H(A))

α+ 1
.

So the larger α is, the smaller the variance.

As α→∞, we have G(A)→ H(A) for any measurable set A, that is G→ H weakly or pointwise.
However, this is not equivalent to saying that G → H. As will be shown later, draws from a DP
will be discrete distributions with probability 1, even if H is smooth. Thus G and H need not even
be absolutely continuous with respect to each other. If smoothness is a concern, one can extend
the DP by convolving G with kernels.

3.1 Posterior distributions

Since G is a distribution randomly drawn from DP and is unobservable, we can make better and
better estimates of G by drawing samples from G. This is the idea of posterior distributions.
Suppose we have observed values θ1, . . . , θn. Let A1, . . . , Ar be a finite measurable partition of
Θ, and let nk = # {i : θi ∈ Ak} be the number of observed values in Ak. By Eq. (13), we have
(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)) as prior. The likelihood model is multinomial
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because we have partitioned the whole space Θ into a fixed set of subsets and r <∞. By conjugacy
of Dirichlet and multinomial distributions, we have

(G(A1), . . . , G(Ar))|θ1, . . . , θn ∼ Dir(αH(A1) + n1, . . . , αH(Ar) + nr) (14)

Since Eq. (14) is true for all finite measurable partitions, we can guess that the posterior over G
is also a DP. Notice the parameters has constant sum:

∑n
i=1 αH(Ar) + nr = α + n is constant

(does not depend on the partition). This reminds that if we can find a distribution H ′ and positive
real number α′ such that for all partitions, αH(Ai) + ni = α′H ′(Ai) for all i = 1, . . . , r, then
G|θ1, . . . , θn must also a Dirichlet process. Fortunately, it is easy to see that the posterior DP has
updated concentration parameter to α′ = α+ n and base distribution H ′ =

αH+
∑n
i=1 δθi

α+n , where δθi
is point mass located at θi (atom). In other words,

G|θ1, . . . , θn ∼ DP
(
α+ n,

α

α+ n
H +

n

α+ n

∑n
i=1 δθi
n

)
. (15)

Now we study the predictive distribution θn+1 after observing θ1, . . . , θn and marginalizing out G:

p(θn+1) =
∫
G
p(θn+1, G|θ1, . . . , θn).

Notice θn+1 ⊥⊥ θ1, . . . , θn|G. For all measurable set A, we have

Pr(θn+1 ∈ A|θ1, . . . , θn) = E [G(A)|θ1, . . . , θn] =
αH(A) +

∑n
i=1 δθi(A)

α+ n
, (16)

where the first equality is by definition and second equality follows from the posterior base distri-
bution of G. Since Eq. (16) holds for arbitrary A, we have

θn+1|θ1, . . . , θn ∼
αH +

∑n
i=1 δθi

α+ n
. (17)

Now we can see that the posterior base distribution given θ1, . . . , θn is also the predictive distribution
of θn+1. This is not that surprising, given the fact that the expectation of G|θ1, . . . , θn equals the
posterior base distribution as Property 17 states.

Now a fundamental question arises: is the Definition 16 reasonable, i.e., does there exist such a
stuff which satisfies the definition. There are two ways to prove the well-definedness. One is by
showing the exchangeability of the process and then resort to the de Finetti’s theorem. Another
approach, which is much more direct, is to construct a process explicitly and prove that it satisfies
the conditions in Definition 16. We start from the first approach.

4. Pólya Urn Scheme

Eq. (17) provides a convenient way to draw samples from G, though G is not observable in its own
right. This is the so-called Pólya urn scheme.
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Pólya Urn Scheme Suppose each value in Θ is a unique color, and draws θ ∼ G are balls with
the drawn value being the color of the ball. In addition we have an urn containing previously seen
balls. In the beginning there are no balls in the urn, and we pick a color drawn from H, i.e. draw
θ1 ∼ H, paint a ball with that color, and drop it into the urn. In subsequent steps, say the (n+1)st,
we will either, with probability α

α+n , pick a new color (draw θn+1 ∼ H), paint a ball with that color
and drop the ball into the urn, or, with probability n

α+n , reach into the urn to pick a random ball
out (draw θn+1 from the empirical distribution), paint a new ball with the same color and drop
both balls back into the urn.

Remark 18. One tricky part of the story is the space of color and the distribution H over it. A
crucial assumption needed in the analysis is that the probability of two independent random draws
from H having the same value be 0. So it definitely does not mean that we have only three colors
“red, green, blue” and a discrete distribution over it. Instead, one may assume that color is in
[0, 1]3 of RGB space and is uniformly distributed.

It is important to interpret the probabilistic mechanism of drawing balls. Since the values of draws
(ball colors) {θk} are repeated, let θ∗1, . . . , θ

∗
m be the unique values among θ1, . . . , θn, and nk be the

number of repeats of θ∗k. Then the predictive distribution Eq. (17) can be equivalently rewritten
as:

θn+1|θ1, . . . , θn ∼
1

α+ n

(
αH +

m∑
k=1

nkδθ∗k

)
.

Notice that value θ∗k will be repeated by θn+1 with probability proportional to nk, the number of
times it has already been observed. The larger nk is, the higher the probability that it will grow.
This is a rich-gets-richer phenomenon, where large clusters (a set of θi’s with identical values θ∗k
being considered a cluster) grow ever larger. This is both good and bad. On the good side, this
leads to the fact that draws G from DP(α,H) are discrete with probability 1. The number of
new colors can also be shown to grow logarithmically in the number of draws. However, on the
other side, it may also limit the capacity of this model. Finally, notice that the rich-gets-richer has
nothing to do with the base measure H, which is assumed to be smooth (continuous) in most cases.

Also notice that the colors define a partition of {1, . . . , n}, or more profoundly, a random permu-
tation. We don’t go into the details here.

4.1 Application of de Finetti’s Theorem

The Pólya urn scheme has been used to show the existence of DP by Blackwell and MacQueen
(1973). The basic tool is the de Finetti’s theorem, which guarantees a mixture model provided
that the observations are exchangeable, which is clearly satisfied in the Pólya urn scheme. And
this mixture model is exactly the DP, hence justifies the definition.

Definition 19 (Exchangeability of random sequences). A random process (θ1, θ2, . . .) is called
infinitely exchangeable if for any n ∈ N and any permutation σ on 1, . . . , n, the probability of gen-
erating (θ1, . . . , θn) is equal to the probability of drawing them in a different order (θσ(1), . . . , θσ(n)):

P (θ1, . . . , θn) = P (θσ(1), . . . , θσ(n)).

9



Theorem 20 (de Finetti’s Theorem). Suppose a random process (θ1, θ2, . . .) is infinitely exchange-
able, then the joint probability p(θ1, θ2, . . . , θN ) has a representation as a mixture:

p(θ1, θ2, . . . , θN ) =
∫ ( N∏

i=1

G(θi)

)
dP (G),

for some random variable G.

Starting from the definition of the Pólya urn scheme, especially Eq. (17), we can construct a
distribution over sequences θ1, θ2, . . . by iteratively drawing each θi given θ1, . . . , θn−1 by Eq. (17).
Notice that the conditional probability Eq. (17) is always well-defined regardless of whether DPs
exist. For n ≥ 1, let

p(θ1, . . . , θn) :=
n∏
i=1

p(θi|θ1, . . . , θi−1)

be the joint distribution over the first n observations where p(θi|θ1, . . . , θi−1) is given by Eq. (17).
It is straightforward to verify that this random sequence is infinitely exchangeable. In fact, if there
are C colors (i.e., the action of picking a new color θn+1 ∼ H occurred for C times), and nc balls are
drawn for each color θ∗c , then the statistics {nc}c do not change with the permutation of (θ1, . . . , θn).
Moreover, p(θ1, . . . , θn) depends only on {nc}c by:

p(θ1, . . . , θn) =
αC
∏C
c=1H(θ∗c )(nc − 1)!

(α+ n− 1)(α+ n− 2) . . . α
, where n :=

∑C

i=1
nc.

Now de Finetti’s theorem states that there exists a prior over the random distributions, P (G). And
this P (G) is exactly the Dirichlet process DP(α,H), thus establishing existence.

5. Chinese Restaurant Process

It is also well known that DP can also be represented as Chinese restaurant process (CRP). This
is evident from the Pólya Urn Scheme.

Chinese restaurant process. Suppose we have a Chinese restaurant with an infinite number
of tables, each of which can seat an infinite number of customers. The first customer enters the
restaurant and sits at the first table. The second customer enters and decides either to sit with
the first customer, or by herself at a new table. In general, the (n + 1)st customer either joins
an already occupied table k with probability proportional to the number nk of customers already
sitting there, or sits at a new table with probability proportional to α. Identifying customers with
integers 1, 2, . . . and tables as clusters, after n customers have sat down the tables define a partition
of [n] with the distribution over partitions being the same as the one above. The fact that most
Chinese restaurants have round tables is an important aspect of the CRP. This is because it does
not just define a distribution over partitions of [n], it also defines a distribution over permutations
of [n], with each table corresponding to a cycle of the permutation.
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It is easy to establish the correspondence between the Pólya urn scheme and CRP. For example,
opening a new table corresponds to drawing a new color of ball, and the relevant probabilities are
also clearly the same. The only superficial difference is that the colors in Pólya urn scheme are
drawn randomly from H, and opening a new table looks like a deterministic action. So when using
CRP as metaphor, sometimes people associate a dish θ∗k to each table k, and that dish is drawn iid
from H (well I appreciate people’s imaginativeness).

It is interesting to consider the expected number of tables (clusters) among the n customers (ob-
servations). Notice that for i ≥ 1, the probability that the k customer takes on a new table is
α/(α+ k − 1). Thus the average number of tables m is:

E[m|n] =
n∑
k=1

α

α+ k − 1
∈ O(α log n).

That is, the number of clusters grows only logarithmically in the number of observations. This slow
growth makes sense because of the rich-gets-richer phenomenon. Besides, larger α implies a larger
number of clusters a priori.

6. Stick-breaking Construction

It is already intuited that draws from a DP are composed of a weighted sum of point masses.
Sethuraman (1994) made this precise by providing a constructive definition of the DP as such,
called the stick-breaking construction. This construction is also significantly more straightforward
and general than previous proofs of the existence of DPs. It is simply given as follows:

βk ∼ Beta(1, α) θ∗k ∼ H

πk = βk
k−1∏
l=1

(1− βk) G =
∞∑
k=1

πkδθ∗k .

Table 1: Stick-breaking construction of Dirichlet process.

Then G ∼ Dir(α,H). The construction of π can be understood metaphorically as follows. Starting
with a stick of length 1, we break it at β1, assigning π1 to be the length of stick we just broke
off. Now recursively break the other portion to obtain π2, π3 and so forth. The stick-breaking
distribution over π is sometimes written π ∼ GEM(α), where the letters stand for Griffiths, Engen
and McCloskey. Because of its simplicity, the stick-breaking construction has lead to a variety of
extensions as well as novel inference techniques for the Dirichlet process.

It is definitely not trivial to bridge this stick-breaking representation to the other three definitions
of DP presented in the previous sections. We attempt to do that in one direction: deriving the
stick-breaking construction from the original Definition 16.
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6.1 From Dirichlet Process to Stick-breaking

In this section, we want to start from the original Definition 16 and motivate the stick-breaking
scheme.

Proposition 21. Suppose G is drawn from DP(α,H), i.e., for any arbitrary partition {A1, . . . , Ar}
of Θ,

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)),

then G can be equivalently drawn from the stick-breaking scheme in Table 1.

Before presenting the proof, we need a small lemma.

Lemma 22. Let (x, 1 − x) ∼ Dir(1, α), and (x, (1 − x)y1, . . . , (1 − x)yn) ∼ Dir(1, αβ1, . . . , αβn),
where

∑
i βi = 1. Then

(y1, . . . , yn) ∼ Dir(αβ1, . . . , αβn). (18)

Proof. Let independent random variables z ∼ Gamma(1, 1), wi ∼ Gamma(αβi, 1) for i = 1, . . . , n.
So
∑

iwi ∼ Gamma(
∑

i αβi, 1) = Gamma(α, 1).

Define: s := z +
∑

iwi, x := z
s , yi := wi∑

i wi
. Then we have

(x, 1− x) =
(
z

s
,

∑
iwi
s

)
∼ Dir(1, α).

Notice (1− x)yi =
∑
i wi
s · wi∑

i wi
= wi

s . So

(x, (1− x)y1, . . . , (1− x)yn) =
(z
s
,
w1

s
, . . . ,

wn
s

)
∼ Dir(1, αβ1, . . . , αβn).

So all the preconditions are met. Finally, check the conclusion:

(y1, . . . , yn) =
(

w1∑
iwi

, . . . ,
wn∑
iwi

)
∼ Dir(αβ1, . . . , αβn).

Now we prove Proposition 21.

Proof. We know that the following facts are equivalent:

G ∼ DP(α,H)
θ|G ∼ G

⇔
θ ∼ H

G|θ ∼ DP
(
α+ 1, αH+δθ

α+1

) . (19)

For notational convenience, we denote G|θ as G|θ. After drawing a sample θ from G, we consider
the partition {{θ} ,Θ \ {θ}} of Θ. By Eq. (19) and Definition 16, we have

(G|θ(θ), G|θ(Θ \ θ)) ∼ Dir
(

(α+ 1)
αH + δθ
α+ 1

(θ), (α+ 1)
αH + δθ
α+ 1

(Θ \ θ)
)

= Dir(1, α) (20)
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Hence G|θ has a point mass located at θ:

G|θ = βδθ + (1− β)G′ with β ∼ Beta(1, α) according to Eq. (20) (21)

andG′ is the (renormalized) probability measure with the point mass removed. To further derive the
expression of G′, we consider a further partition {θ,A1, . . . , Ar} of Θ. By Eq. (19) and Definition 16,
we have:

(G|θ(θ), G|θ(A1), . . . , G|θ(Ar)) ∼ Dir(1, αH(A1), . . . , αH(Ar)). (22)

On the other hand, Eq. (21) implies that

(G|θ(θ), G|θ(A1), . . . , G|θ(Ar)) = (β, (1− β)G′(A1), . . . , (1− β)G′(Ar)). (23)

Combining Eq. (22) and Eq. (23), we arrive at:

(β, (1− β)G′(A1), . . . , (1− β)G′(Ar)) ∼ Dir(1, αH(A1), . . . , αH(Ar)). (24)

Now applying Lemma 22 to Eq. (24), we have

(G′(A1), . . . , G′(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)),

which implies that
G′ ∼ DP(α,H). (25)

Eq. (25) in conjunction with Eq. (21) allows us to telescope and absorb all the observations suc-
cessively and update the posterior distribution of G. By recursively applying

G ∼ DP(α,H) and G|θ1 = β1δθ1 + (1− β1)DP(α,H),

we conclude that

G|θ1,...,θn,... =
∞∑
k=1

πkδθk ,

where

πk = βk

k−1∏
i=1

(1− βi), βk ∼ Beta(1, α), θk ∼ H.

This is exactly the stick-breaking scheme in Table 1.

6.2 From Stick-breaking to Dirichlet Process

In this section, we wish to show the opposite direction of Section 6.1. Formally, we want to show:

Proposition 23. Suppose G is constructed by the stick-breaking scheme in Table 1, then G is
actually drawn from DP(α,H), i.e., for any arbitrary partition {A1, . . . , Ar} of Θ,

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)).

Proof. This is not trivial and the proof can be found in Theorem 3.4 of Sethuraman (1994). So far,
we have not been able to find a simple proof.
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7. Infinite Mixture Model

Another interpretation of DP is the infinite mixture model, which is also the most common ap-
plication of DP. Here the nonparametric nature of the DP translates to mixture models with a
countably infinite number of components. We model the set of observations {x1, . . . , xn} using a
set of latent parameters {θ1, . . . , θn}. Each θi is drawn independently and identically from G, while
each xi has distribution F (θi) parametrized by θi:

xi|θi ∼ F (θi)
θi|G ∼ G

G|α,H ∼ DP (α,H) (26)

Because G is discrete, multiple θi’s can take on the same value simultaneously, and the above model
can be seen as a mixture model, where xi’s with the same value of θi belong to the same cluster.
The mixture perspective can be made more in agreement with the usual representation of mixture
models using the stick-breaking construction Table 1. Let zi be a cluster assignment variable,
which takes on value k with probability πk. Then Eq. (26) can be equivalently expressed as with

π|α ∼ GEM(α) θ∗k|H ∼ H
zi|π ∼ Multi(π) xi|zi, {θ∗k} ∼ F (θzi).

Table 2: Stick-breaking construction of mixture model.

G =
∑∞

k=1 πkδθk and θi = θ∗zi (now you see why we used θ∗k in Table 2). In mixture modeling
terminology, π is the mixing proportion, θ∗k are the cluster parameters, F (θ∗k) is the distribution
over the data in cluster k, and H is the prior over cluster parameters.

So DP model can be viewed as an infinite mixture model: a model with a countably infinite
number of clusters. However, because the πk’s decrease exponentially quickly, only a small number
of clusters will be used to model the data a priori (in fact, as we saw previously, the expected
number of components used a priori is logarithmic in the number of observations). This is different
than a finite mixture model, which uses a fixed number of clusters to model the data. In the
DP mixture model, the actual number of clusters used to model data is not fixed, and can be
automatically inferred from data using the usual Bayesian posterior inference framework.
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