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Abstract

Over the past two decades graphical models have been widely used as powerful tools

for compactly representing distributions. On the other hand, kernel methods have been

used extensively to come up with rich representations. This thesis aims to combine

graphical models with kernels to produce compact models with rich representational

abilities.

Graphical models are a powerful underlying formalism in machine learning. Their

graph theoretic properties provide both an intuitive modular interface to model the

interacting factors, and a data structure facilitating efficient learning and inference.

The probabilistic nature ensures the global consistency of the whole framework, and

allows convenient interface of models to data.

Kernel methods, on the other hand, provide an effective means of representing rich

classes of features for general objects, and at the same time allow efficient search for

the optimal model. Recently, kernels have been used to characterize distributions by

embedding them into high dimensional feature space. Interestingly, graphical models

again decompose this characterization and lead to novel and direct ways of comparing

distributions based on samples.

Among the many uses of graphical models and kernels, this thesis is devoted to the

following four areas:

Conditional random fields for multi-agent reinforcement learning Condi-

tional random fields (CRFs) are graphical models for modeling the probability of la-

bels given the observations. They have traditionally been trained with using a set of

observation and label pairs. Underlying all CRFs is the assumption that, conditioned

on the training data, the label sequences of different training examples are independent

and identically distributed (iid). We extended the use of CRFs to a class of tempo-

ral learning algorithms, namely policy gradient reinforcement learning (RL). Now the

labels are no longer iid. They are actions that update the environment and affect the

next observation. From an RL point of view, CRFs provide a natural way to model

joint actions in a decentralized Markov decision process. They define how agents can

communicate with each other to choose the optimal joint action. We tested our frame-

work on a synthetic network alignment problem, a distributed sensor network, and a

road traffic control system. Using tree sampling by Hamze & de Freitas (2004) for

inference, the RL methods employing CRFs clearly outperform those which do not
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model the proper joint policy.

Bayesian online multi-label classification Gaussian density filtering (GDF) pro-

vides fast and effective inference for graphical models (Maybeck, 1982). Based on this

natural online learner, we propose a Bayesian online multi-label classification (BOMC)

framework which learns a probabilistic model of the linear classifier. The training la-

bels are incorporated to update the posterior of the classifiers via a graphical model

similar to TrueSkill (Herbrich et al., 2007), and inference is based on GDF with ex-

pectation propagation. Using samples from the posterior, we label the test data by

maximizing the expected F-score. Our experiments on Reuters1-v2 dataset show that

BOMC delivers significantly higher macro-averaged F-score than the state-of-the-art

online maximum margin learners such as LaSVM (Bordes et al., 2005) and passive-

aggressive online learning (Crammer et al., 2006). The online nature of BOMC also

allows us to efficiently use a large amount of training data.

Hilbert space embedment of distributions Graphical models are also an essen-

tial tool in kernel measures of independence for non-iid data. Traditional information

theory often requires density estimation, which makes it unideal for statistical esti-

mation. Motivated by the fact that distributions often appear in machine learning

via expectations, we can characterize the distance between distributions in terms of

distances between means, especially means in reproducing kernel Hilbert spaces which

are called kernel embedment. Under this framework, the undirected graphical models

further allow us to factorize the kernel embedment onto cliques, which yields efficient

measures of independence for non-iid data (Zhang et al., 2009). We show the effective-

ness of this framework for ICA and sequence segmentation, and a number of further

applications and research questions are identified.

Optimization in maximum margin models for structured data Maximum

margin estimation for structured data, e.g. (Taskar et al., 2004), is an important task in

machine learning where graphical models also play a key role. They are special cases of

regularized risk minimization, for which bundle methods (BMRM, Teo et al., 2007) and

the closely related SVMStruct (Tsochantaridis et al., 2005) are state-of-the-art general

purpose solvers. Smola et al. (2007b) proved that BMRM requires O(1/ε) iterations to

converge to an ε accurate solution, and we further show that this rate hits the lower

bound. By utilizing the structure of the objective function, we devised an algorithm

for the structured loss which converges to an ε accurate solution in O(1/
√
ε) iterations.

This algorithm originates from Nesterov’s optimal first order methods (Nesterov, 2003,

2005b).
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Chapter 1

Introduction

Exponential family distributions are one of the most versatile unifying frameworks for

statistical modeling and inference. By representing probability densities as generalized

linear models, they play a key role in graphical models and conditional random fields,

and allow us to conveniently make use of rich sufficient statistics via kernelization.

Also contributing to their popularity is the ease in parameter estimation which can be

boiled down to convex optimization, and therefore a large body of existing research

results can be immediately applied.

At the very high level, this thesis is composed of the following four chapters under

the framework of exponential families. Chapter 2 studies how to use conditional expo-

nential families to learn optimal joint policies for multi-agent reinforcement learning.

Chapter 3 shows how graphical models can be used for multi-label data, and how to

learn Bayesian models from large datasets via online density filtering, based on which

multi-variate performance measures can be optimized. Chapter 4 extends the kernel

embeddings of distributions to non-iid data, and uses graphical models to factorize

the kernel measure of independence for efficient estimation. Finally, Chapter 5 ex-

plores maximum margin estimation for exponential families, including lower bounds

for optimization and a new optimal first-order method based on Nesterov’s algorithms

(Nesterov, 2003, 2005b).

One of the key advantages of exponential families is their natural connection with

graphical models, partly thanks to the Hammersley-Clifford theorem (Hammersley &

Clifford, 1971). Over the past two decades graphical models have been widely used as

powerful tools for compactly representing distributions, and have become a powerful

underlying formalism in machine learning. Their graph theoretic properties provide

both an intuitive modular interface to model the interacting factors, and a data struc-

ture facilitating efficient learning and inference. The probabilistic nature ensures the

global consistency of the whole framework, and allows convenient interface of models

to data. Extensions to conditional models are also straightforward, e.g. conditional

random fields (Lafferty et al., 2001) which, among other applications, can be used to

coordinate multiple agents in reinforcement learning, as we will show in Chapter 3.
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In addition, exponential families also benefit from describing densities as linear

models, which paves way to kernelization and easy utilization of rich feature spaces. In

machine learning, kernel methods have been used extensively to represent rich classes

of features for general objects, and at the same time allow efficient search for the

optimal model. Interestingly, the new family of kernelized distributions can again be

factorized using graphical models. In the same spirit, kernels are recently extended to

characterizing distributions by embedding them into high dimensional feature spaces,

which leads to novel and direct ways of comparing distributions based on samples.

Chapter 4 will study its application to independence measures for non-iid data.

Besides flexibility in modeling, exponential family distributions also admit conve-

nient parameter estimation, e.g. maximum likelihood for regression. In the case of

graphical model distributions, this usually requires various operations of inference. As

exact inference is proved to be NP-hard in general, efficient approximate inference

algorithms have been extensively studied and applied with satisfactory empirical per-

formance. Chapter 3 shows an online inference algorithm for optimizing multi-label

and multi-variate performance measures. On the other hand, classification problems

usually call for a different estimator because here the probability of the true label is

only required to be the highest among all labels. This principle has led to a number of

non-logistic losses in the framework of regularized risk minimization, for which many

convex non-smooth optimizers are available. Of particular interest to the research

community is the convergence rate, which will be studied in Chapter 5.

The structure of this chapter is illustrated in Figure 1.1. We first introduce the

exponential family of distributions in Section 1.1, which will serve as a unifying frame-

work for the rest of the thesis. Then three extensions are given in the subsequent three

sections: Section 1.2 discusses graphical model decomposition using Markov random

fields, Section 1.3 describes conditional random fields, and Section 1.4 shows how to use

features from reproducing kernel Hilbert spaces for exponential families, and how the

kernelized distributions can be again factorized by graphical models. Then we move on

to parameter estimation for exponential families, and Section 1.5 shows the maximum

likelihood estimation for which various approximate inference algorithms are discussed.

Finally, we introduce regularized risk minimization framework in Section 1.6 where a

brief overview of optimization techniques is given, especially the bundle method for

machine learning.

Convex analysis will be extensively used in all parts of the thesis, and we include a

brief summary of the relevant results in Appendix A.
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Figure 1.1: Structure of introduction.

1.1 Exponential families

Exponential families of distributions (henceforth abbreviated as exponential family)

play a key role in machine learning, and have been widely used as a general formalism

for graphical models and kernel methods. Suppose we have a random variable X

whose sample space is X . Using any arbitrary function h : X 7→ R+ := [0,+∞), one

can endow X with a measure ν: dν = h(x)dx, where dx is a counting measure if X is

a discrete space, or the Lebesgue measure if X is a continuous.

An exponential family is a parametric class of probability densities with respect to

measure ν. Let φi : X 7→ R (i ∈ [d] := {1, . . . , d}) be real valued Borel measurable

functions, and assemble φ(x) := (φ1(x), . . . , φd(x))>. φ is also known as sufficient

statistics or features. Using any vector θ ∈ Rd which is called natural parameter , we

can define a probability density function (pdf 1)with respect to dν:

p(x;θ) := exp (〈φ(x),θ〉 − g(θ)) , (1.1)

where 〈·, ·〉 denotes the inner product, and

g(θ) := log

∫
exp (〈φ(x),θ〉) ν(dx)

1Strictly speaking, when the sample space is discrete, e.g. the measure dν is a counting measure,
the p(x) is called probability mass function. Here and from now on, we will always simply use the term
pdf with slight sacrifice of mathematical rigor.
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ensures
∫
p(x;θ)ν(dx) = 1, and is called log-partition function. Of course, this def-

inition is valid only if g(θ) < ∞, and we denote the set of all such θ as Θ :=

{θ : g(θ) <∞}. Now we define the exponential family generated by φ as the set of pdf

induced by θ ∈ Θ:

Pφ := {p(x;θ) := exp (〈φ(x),θ〉 − g(θ)) : θ ∈ Θ} .

With a fixed φ(x), each θ indexes a particular distribution of the family Pφ. Many

classes of distribution are exponential families, e.g., Gaussian, Poisson, multinomial,

χ2, and Dirichlet. The statement “a class of distributions belongs to the exponential

family” is implicitly with respect to (wrt) a particular parametrization or choice of

natural parameter. For example, the 1-d Laplace distribution p(x) = 1
2b exp

(
− |x−µ|b

)
(b > 0) is an exponential family with respect to 1

b for any fixed µ, and the sufficient

statistics are |x− µ|:

p(x; θ) = exp

(
〈− |x− µ| , θ〉 − log

2

θ

)
, where θ :=

1

b
,

and Θ = R+. But p(x) is clearly not an exponential family wrt µ or (µ, b) jointly. By

the same token, Cauchy, uniform, and t-distribution are not exponential families.

Exponential families have a number of desirable properties. We just list a few and

the proof can be found in any related textbook, e.g. (Brown, 1986; Dobson & Barnett,

2008). Many properties are related to convex analysis, a brief introduction to which is

provided in Appendix A.

First of all, the exponential family is closed under multiplication and division, i.e.

pq and p/q are in Pφ up to a normalization constant if p, q ∈ Pφ, and they correspond

to addition and subtraction of natural parameters respectively2. This lends a lot of

convenience to some inference algorithms such as expectation propagation. However,

Pφ is not closed under addition or subtraction, and is not a convex set in general.

The log partition function g(θ) is very important to exponential families. It is a

lower semi-continuous convex function (see Proposition 71 in Appendix A), hence its

domain Θ must also be convex. Θ may not necessarily be open, but we only deal with

open Θ. Then g(θ) is C∞ on Θ (see Proposition 74 in Appendix A), and g(θ) is a

2As long as the resulting natural parameter is still in Θ.
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cumulant generating function, i.e. for any θ ∈ Θ we have

∇θg(θ) =
∇θ

∫
exp(〈φ(x),θ〉)ν(dx)∫

exp(〈φ(x),θ〉)ν(dx)

∗
=

∫
∇θ exp(〈φ(x),θ〉)ν(dx)∫

exp(〈φ(x),θ〉)ν(dx)

=

∫
φ(x) exp(〈φ(x),θ〉)ν(dx)∫

exp(〈φ(x),θ〉)ν(dx)
(∗∗)

= E
x∼p(x;θ)

[φ(x)]

∂2

∂θi∂θj
g(θ)

by ∗∗
= e−2g(θ)

(
eg(θ)

∫
φi(x)φj(x) exp(〈φ(x),θ〉)ν(dx)

−
∫
φi(x) exp(〈φ(x),θ〉)ν(dx)

∫
φj(x) exp(〈φ(x),θ〉)ν(dx)

)
= E

x∼p(x;θ)
[φi(x)φj(x)]− E

x∼p(x;θ)
[φi(x)] E

x∼p(x;θ)
[φj(x)]

= Covx∼p(x;θ)[φi(x)φj(x)].

The step (*) where differentiation is interchanged with integral can be proven using

the dominated convergence theorem, and the detailed proof is available in Appendix

A Proposition 73.

As the covariance matrix of the random vector φ(x) must be positive semi-definite,

the Hessian of g(θ) must be positive semi-definite on the open set Θ, and hence g(θ) is

convex (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 4.3.1). To further ensure strong

convexity, we need the minimality of sufficient statistics.

Definition 1 (Minimality of sufficient statistics) The sufficient statistics φ(x) ∈
Rd is called minimal if there does not exist a nonzero vector θ ∈ Rd, such that 〈φ(x),θ〉
is a constant ν-almost everywhere3.

Notice that the θ in this definition is not required to be in Θ.

Proposition 2 (Wainwright & Jordan, 2008, Proposition 3.1) g(θ) is convex in θ,

and strongly convex if, and only if, φ is minimal.

Proof is available in Proposition 70 in Appendix A.

In the next three sections, we will introduce three specializations and generalizations

of exponential families, namely structural factorization according to graphical models,

conditioning, and using sufficient statistics from Hilbert spaces.

3This means that the set {θ : 〈φ(x),θ〉 is not constant} has measure 0 under ν.
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1.2 Graphical models and factorization

The random variable in the previous section can be multi-variate in general, and in

such cases, two new challenges arise:

1. How to characterize the relationship between individual random variables. For

example, one key relationship is the conditional independence.

2. In the case of discrete random variables, the joint state space grows exponentially

fast with the number of variables. This poses considerable difficulty for the

computations such as marginalization and log partition function.

It turns out that conditional independence can be compactly modeled by graphical

models (Lauritzen, 1996), which also lend significant savings to the computational

tasks via factorizing the joint distribution. In this section, we will introduce one such

tool called Markov random fields.

Given a joint pdf p of multi-variate random variable (mrv) (X, Y , Z), X is said to be

independent of Y conditioned on Z (denoted as X ⊥⊥ Y |Z) if p(x, y|z) = p(x|z)p(y|z).
Here the lowercase letters stand for the instantiations of the corresponding random

variable. For convenience, we will collect all the random variables in question into a

mrv X, and identify individual random variables by Xi. For a subset of indices A, we

denote as XA the mrv consisting of all the corresponding random variables, and its

instantiation as xA (xA is a vector if A has more than one element, but we prefer not

to write xA).

1.2.1 Markov random fields

This section formally introduces Markov random fields as a tool for modeling condi-

tional independence.

Definition 3 (Graph separation) Given an undirected graph G = (V,E) where V

and E are the set of nodes and edges respectively, let A, B, C be disjoint subsets of

nodes. If every path from A to B includes at least one node from C, then C is said to

separate A from B in G.

Definition 4 (Markov random field) Given an undirected graph G, a Markov ran-

dom field (MRF) is defined as a set of probability distributions MRFG := {p(x) : p(x) >

0, ∀p,x} such that for all p ∈ MRFG and for any three disjoint subsets A, B, C of G,

if C separates A from B then p satisfies XA ⊥⊥ XB|XC . If p ∈ MRFG, we often say p

respects G.
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Like exponential families, MRFs are also a class of distributions. With this definition,

naturally we ask two questions: a) given a pdf, how to determine whether it is in MRFG,

i.e. how to efficiently check all the conditional independence relationships encoded in

G; b) for all distributions in MRFG, how their pdf should look like. It turns out

that strong results are available, and a formal description calls for the following graph

theoretic definition.

Definition 5 (Cliques and maximal cliques) A clique of a graph is a subgraph of

it where each pair of nodes is connected by an edge. The maximal clique of a graph is

a clique which is not a proper subset of another clique.

We usually denote the set of maximal cliques by C.

Definition 6 (Factorization wrt an undirected graph) A pdf p(x) is said to fac-

torize wrt a given undirected graph G if it can be written as:

p(x) =
1

Z

∏
c∈C

ψc(xc), (1.2)

where ψc is an arbitrary non-negative real valued function called potential functions,

and the constant Z ensures
∫
p(x)dx = 1.

This definition gives a clear form of pdf based on the maximal cliques, which seems

to have nothing to do with the conditional independence relationships in G. However,

they are almost equivalent as stated by the next two theorems.

Theorem 7 (Factorization implies conditional independence) If a pdf p fac-

torizes according to an undirected graph G, then p ∈ MRFG, i.e., if A, B, and C

are disjoint subsets of nodes such that C separates A from B in G, then p satisfies

XA ⊥⊥ XB|XC .

This theorem is actually not hard to prove, but the converse result is more involved

and is well known as the Hammersley-Clifford theorem.

Theorem 8 (Hammersley-Clifford theorem) (Hammersley & Clifford, 1971) If

a pdf p(x) ∈ MRFG, then p(x) must also factorize according to G, i.e., there exist

functions ϕc(x) on c ∈ C, such that

p(x) =
1

Z
exp

(∑
c∈C

ϕc(xc)

)
. (1.3)

In addition to undirected graphs, the directed graphs are also widely used, but in

a different class of probabilistic models called Bayesian networks. In this thesis, most

of our attention is restricted to MRFs.
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Decomposed exponential families

Theorem 7 shows that if the sufficient statistics φ and natural parameters θ of an

exponential family factorize onto the cliques by {φc}c∈C and {θc}c∈C respectively:

p(x;θ) := exp

(∑
c∈C
〈φc(xc), θc〉 − g(θ)

)
,

then all the distributions in Pφ must respect G. We will write θ = vecc∈C {θc} and

φ(x) = vecc∈C {φc(xc)} where the operator vec concatenates vectors. The converse

does not immediately hold because the sufficient statistics φ are fixed, while Eq. (1.3)

allows very general log-potential functions ϕc. However, there is a nontrivial result.

Theorem 9 (Lauritzen, 1996) If all distributions in Pφ respect graph G, then φ and

θ must factorize onto the cliques by {φc}c∈C and {θc}c∈C respectively.

In machine learning, we often need to use the data to find a distribution respecting

a known graph G. If we restrict ourselves to the exponential family with some pre-

specified sufficient statistics that factorize along the maximal cliques of G, then the

distribution is guaranteed to respect G and we only need to estimate the clique-wise

natural parameters. This gives a parametric model since φc are fixed.

1.3 Conditional random fields

Conditional probability plays an important role in probability and statistics. In this

section, we will show that it can also be effectively modeled by exponential families,

where factorization by graphical models is again applicable. In particular, we introduce

one such tool called conditional random fields (CRFs).

CRFs are a probabilistic framework proposed by Lafferty et al. (2001) for labeling

and segmenting data. It can be interpreted as a conditional MRF, which consists of two

types of nodes: observations X and latent states Y . MRFs model the joint distribution

p(x, y). However, in many applications, we only need a conditional model p(y|x), and

p(x) is not important. For example, in the sequence tagging problem, we are only

interested in the probability of the tags given the tokens, and we do not care about

how the tokens are generated. In other words, CRFs are a discriminative model.

By this token, CRFs can be equivalently viewed as an MRF on Y , deleting all

the nodes of X and their associated edges. As a result, the parameter estimation and

inference algorithms in the normal MRFs directly carry over without change. The

clique-wise potential functions φc(yc; x) are parameterized by x, allowing φc to be

influenced by the whole observations instead of merely local observations.



§1.3 Conditional random fields 9

This interpretation further allows us to study CRFs in the framework of exponential

family, and we begin with y being a univariate random variable. Given observation

x ∈ X , we define a conditional distribution over label y ∈ Y parameterized by θ ∈ Rd

and it can be written in its canonical form as

p(y|x;θ) := exp(〈φ(x, y),θ〉 − g(θ|x)). (1.4)

Here, vector φ(x, y) is the sufficient statistics and θ is the natural parameter. g(θ|x)

is the log-partition function for normalization:

g(θ|x) := log

∫
y

exp(〈φ(x, y),θ〉)dy (1.5)

To make the definition Eq. (1.4) valid, we require that g(θ|x) < ∞, and hence define

the admissible region Θ(x) := {θ : g(θ|x) <∞}. So now with a given x, we can define

a conditional exponential family (CEF) as

Pφ|x := {exp(〈φ(x, y),θ〉 − g(θ|x)) : θ ∈ Θ(x)} . (1.6)

The sufficient statistics φ(x, y) are problem specific and represent salient features of the

input observations. Of fundamental importance is that θ does not depend on x, which

gives a discriminative model (otherwise the model is essentially the same as MRFs).

In Pφ|x, it is known that the log-partition function is also the cumulant generating

function of the CEF, e.g.:

∂

∂θ
g(θ|x) = Ey∼p(y|x;θ)[φ(x, y)]. (1.7)

1.3.1 Factorization of conditional distributions

More generally, we consider the case of structured output where y ∈ Ym (m nodes).

Then we get a counter-part of Theorem 9 for CEF, which states that for any fixed

x if the conditional density p(y|x;θ) factorizes according to a graph G on y, then

the sufficient statistics φ(x,y) decompose into terms over the maximal cliques C of G

(Altun et al., 2004b):

φ(x,y) = vec{φc(x,yc)|c ∈ C} (1.8)

p(y|x;θ) = exp

(∑
c∈C
〈φc(x,yc),θc〉 − g(θ|x)

)
, (1.9)

where yc is the configuration for nodes in clique c.

CRFs are examples of CEFs with special graphs. For 1-D CRFs, the graph is a

chain, so the edge features are φi,i+1(x, yi, yi+1). For 2-D grid CRFs shown in Fig-
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Figure 1.2: 2-D Grid CRF. Xij are observations and Yij are latent states.

ure 1.2, the edge features are φ(ij)(i′j′)(x, yij , yi′j′) where nodes are indexed by double

coordinates and |i− i′| + |j − j′| = 1. In this case, all maximal cliques have size two,

i.e., an edge between nodes has a feature associated with it. We can also associate

potentials φij to single nodes Yij . Node features represent the observation of state

available at each node, while the edge features encode the communication or consis-

tency between nodes about their features and states.

Historically, CRFs were motivated from the so-called label bias problem that was

first observed by Bottou (1991). This problem occurs when the graphical model em-

ploys local (or per state) normalization like in hidden Markov models, where at each

state the transition only compete among the possibilities from that state, without tak-

ing into account the transition probabilities in other parts of the model. Therefore,

paths whose states have fewer outgoing transitions receive improper preference. CRFs

circumvent this problem by introducing a global normalization to incorporate global

interactions, and replacing the local (normalized) transition probability with local (un-

normalized) potentials for proper scaling.

1.4 Reproducing kernel Hilbert spaces for exponential fam-

ilies

So far, we have restricted the sufficient statistics φ(x) and the natural parameters θ

of the exponential families to be from the Euclidean space. As the pdf just requires

the inner product between φ(x) and θ, they only need to be from an inner product

space. To facilitate convenient learning and inference (see Section 1.5), this space

needs to be endowed with richer structure, and in this section we introduce a practical

extension: complete inner product spaces where point-wise evaluation is a continuous

linear functional, i.e. reproducing kernel Hilbert space (RKHSs).

RKHSs have been used extensively in machine learning, with the following key
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advantages: a) this space of functions can be very rich which provides considerable

modeling flexibility, b) only inner product between objects needs to be defined, and

this allows us to deal with much more general objects than real vectors, such as strings,

graphs, images, and gene sequences, c) searching in this function space to optimize some

objective functionals can be conveniently reduced to optimization in Euclidean space.

The objective of this section is to show how RKHSs can be used to define expressive

distributions on generic object spaces via exponential families, and how they can be

decomposed wrt graphical models. Most results will be given in Section 1.4.3. To

this end, we first introduce the necessary building blocks such as positive semi-definite

kernels in Section 1.4.1, based on which we rigorously define the RKHS in Section 1.4.2.

1.4.1 Positive semi-definite kernels

Widely used in machine learning, kernel methods first gained their popularity in maxi-

mum margin based supervised learning, especially support vector machines. Then they

were extended to unsupervised learning such as kernel principal component analysis

(Schölkopf et al., 1996), and statistical inferences on probabilities (Smola et al., 2007c).

Intuitively, a kernel is simply a similarity measure between two objects from any

arbitrary space. Boser et al. (1992) observed that many supervised learning algorithms

depend on training examples only via the inner product of their features, which es-

sentially characterizes their similarity. Based on this insight, they proposed using the

kernels directly as a similarity measure, i.e. kernels implicitly induce a feature map.

The resulting feature space may be extremely rich for some kernels, and surprisingly

search in this space is tractable thanks to the representer theorem. This rich feature

space has recently been used by Smola et al. (2007c) to embed distributions, with the

advantage that statistical properties can be estimated by directly evaluating kernels

on samples. We will show in Chapter 4 that the feature space can be factorized wrt

graphical models, which leads to novel statistical inference tools for complex domains.

Given a nonempty space of objects X , suppose we have a map φ from X to a

feature space H which is Hilbert but not necessarily Euclidean. The inner product

〈φ(x1),φ(x2)〉 describes somehow the similarity between x1 and x2. Now our moti-

vation is to work the other way round: directly define a similarity measure k(x1, x2)

which is the inner product of some unknown and implicit feature map φ:

k(x1, x2) = 〈φ(x1),φ(x2)〉H . (1.10)

The benefit of doing so is to directly measure the similarities on complex domains (e.g.,

genes, images), which is considerably more convenient than indirectly through a feature

map φ. The question then is what property is needed from k in order to guarantee the
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Table 1.1: Example kernels on Rn

Name Form of k(x, x′)

linear kernel 〈x, x′〉
polynomial kernel (〈x, x′〉+ c)d, c > 0, d ∈ N
Gaussian kernel exp

(
−σ2 ‖x− x′‖2

)
Laplace kernel exp

(
−σ2 ‖x− x′‖

)
Delta kernel δ(x = x′) (δ(·) = 1 if · is true, and 0 otherwise)

existence of such a φ. Clearly, the following conditions are necessary for k:

1. Finite valued, i.e., k(x1, x2) <∞ for all x1, x2 ∈ X .

2. Symmetric. k(x1, x2) = k(x2, x1).

3. Positive semi-definite. For any x1, . . . , xn ∈ X , letting M := (φ(x1), . . . ,φ(xn))

and K := M>M = (k(xi, xj))i,j=1,...,n, K must be positive semi-definite (PSD).

This motivates the definition of PSD kernel.

Definition 10 (Positive semi-definite kernel) A function k : X × X → R is a

positive semi-definite kernel if it is finite valued and symmetric, and for any finite set

x1, . . . , xn ∈ X , the Gram matrix K := (k(xi, xj))i,j=1,...,n is positive semi-definite.

Table 1.1 gives some examples of kernel on Rn. More examples on graphs, trees, and

strings can be found in (Vishwanathan et al., 2009; Collins & Duffy, 2001; Moschitti,

2006; Haussler, 1999; Teo & Vishwanathan, 2006).

It is surprising that these necessary conditions are indeed sufficient as well. Given

a PSD kernel k, we can explicitly construct a feature map φ together with an inner

product in the image space, such that Eq. (1.10) is satisfied. Below we give two

examples of construction: the first example maps to a possibly infinite dimensional

Euclidean space with the normal inner product (sum of element-wise product); the

second example maps to a space of functions where the inner product is more involved.

The second example will be detailed in Section 1.4.2, and the first construction is

formally stated by Mercer’s theorem.

Theorem 11 (Simplified Mercer’s theorem) (Mercer, 1909) Let X be a compact

Hausdorff space, and let k be a continuous symmetric PSD kernel on X . Then there

must exist a sequence of functions {ei}∞i=1 with ei : X → R, and a sequence of nonneg-

ative real numbers {λi}∞i=1, such that k can be represented as:

k(x1, x2) =

∞∑
i=1

λiei(x1)ei(x2), for all x1, x2 ∈ X , (1.11)
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where the convergence is absolute and uniform.

Remark 12 1. Eq. (1.11) implies that to satisfy Eq. (1.10) we can construct the

feature map as

φ(x) = (
√
λ1e1(x),

√
λ2e2(x), . . .),

with the inner product defined as sum of element-wise product.

2. In fact, φ does map to H = `2 since k(x, x) = 〈φ(x),φ(x)〉`2 <∞.

3. The full version of Mercer’s theorem also gives the construction of ei and λi.

4. The theorem does not cover the uniqueness and surjectivity of these maps.

In general, we can also drop the PSD condition and have indefinite kernels (Ong

et al., 2004). This thesis is restricted to PSD kernels.

1.4.2 Reproducing kernel Hilbert spaces

Associated with a PSD kernel k is a reproducing kernel Hilbert space H. It is a set of

functions which is constructed in the following three steps. First include the span of

k(x, ·)4 for all x ∈ X :

H 1
2

=

{
n∑
i=1

aik(xi, ·) : n <∞, ai ∈ R, xi ∈ X
}
. (1.12)

Second, define an inner product between f =
∑n

i=1 αik(xi, ·) and g =
∑m

j=1 βjk(x′j , ·):

〈f, g〉 :=

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j) =

m∑
j=1

βjf(x′j) =

n∑
i=1

αig(xi). (1.13)

Note that although the definition depends on the specific expansion of f and g

which may not be unique, it is still well defined because the last two equalities show

that the value is independent of the coefficients αi, xi, βj , x
′
j given f and g. The

other properties required by inner product are clearly satisfied, including symmetry,

bilinearity, and positive-definiteness (〈f, f〉 ≥ 0). Since 〈f, k(x, ·)〉 = f(x) for all f , k

is called reproducing kernel by Aronszajn (1950).

This inner product and its induced metric further allow us to complete the space

H 1
2
. We define the completed space as the RKHS induced by k:

H = H 1
2

= span {k(xi, ·) : xi ∈ X}. (1.14)

4This is a function in · parameterized by x.
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and the inner product defined on H 1
2

is also extended to H. So H is a Hilbert space.

In the sequel, we will write fn
H→ f if fn converges to f in the RKHS norm. One

key consequence of converging in RKHS norm is the point-wise convergence of function

sequence, and even uniform convergence “⇒” if the kernel is bounded.

Proposition 13 If fn
H→ f , then fn converges to f point-wise. If in addition supx∈X k(x, x)

< +∞, then fn converges to f uniformly: fn ⇒ f .

Proof The point-wise convergence is straightforward due to the continuity of inner

product in Hilbert space:

lim
n→∞

fn(x) = lim
n→∞

〈fn, k(x, ·)〉 =
〈

lim
n→∞

fn, k(x, ·)
〉

= 〈f, k(x, ·)〉 = f(x).

If we further have B := supx∈X k(x, x) < +∞, then

sup
x
|fn(x)− f(x)| = sup

x
|〈fn − f, k(x, ·)〉| ≤ sup

x
‖fn − f‖ ‖k(x, ·)‖

= ‖fn − f‖ sup
x

√
k(x, x) ≤

√
B ‖fn − f‖ .

So limn→∞ ‖fn − f‖ = 0 implies supx |fn(x)− f(x)| → 0 as n→∞, i.e., fn ⇒ f .

Proposition 13 provides a useful way to evaluation the limit function.

There are other ways to define the RKHS associated with kernel k, see e.g., (Aron-

szajn, 1950) which motivates from operators and invoke Rietz representor theorem5

(Moore-Aronszajn theorem). Also note that H can be an infinite dimensional Hilbert

space where some “obvious” operations in finite dimensional spaces may not carry over.

Henceforth, we will use φ(x) and k(x, ·) interchangeably with the inner product

defined by Eq. 1.13 (and its extension to the closure in Eq. (1.14)). When it is clear

from context, we will also abbreviate 〈·, ·〉H and ‖·‖H as 〈·, ·〉 and ‖·‖ respectively.

Properties of RKHS

Theorem 14 (Continuous kernels) (Steinwart, 2001) Let k be a kernel on a metric

space X , and φ : X → H be the feature map to the RKHS of k, i.e., φ(x) = k(x, ·).
Then k is called a continuous kernel if φ is continuous.

Definition 15 (Universal kernels) (Steinwart, 2001) Let C(X ) be a space of con-

tinuous bounded functions on a compact domain X . A continuous kernel k on X is

called universal if the RKHS H induced by k is dense in C(X ) in L∞ sense, i.e., for

5In fact, this style of construction will be used in Section 4.1 later.
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every function f ∈ C(X ) and every ε > 0, there exists a function g ∈ H such that

‖f − g‖∞ < ε.

Gaussian and Laplace kernels are universal, while linear and polynomial kernels

are not. Delta kernel is not continuous, so not universal. Some characterizations of

universality are available in (Steinwart, 2001) which are useful for checking whether

a kernel is universal. Many kernel based algorithms demonstrate desirable properties

when using a universal kernel.

As RKHS is an infinite dimensional space of functions, it appears hard to optimize

a functional over an RKHS. Fortunately, the representer theorem converts this search

to Euclidean space, which offers substantial convenience for machine learning.

Theorem 16 (Representer theorem) (Kimeldorf & Wahba, 1971), (Schölkopf &

Smola, 2002, Section 4.2) Denote by Ω : [0,∞) → R a strictly monotonic increasing

function, by X a set, and by c : X n → R ∪ {+∞} an arbitrary function. Then each

minimizer of f ∈ H of the functional:

c(f(x1), . . . , f(xn)) + Ω(‖f‖2H)

admits a representation of the form

f(x) =
n∑
i=1

αik(xi, x).

1.4.3 Kernel exponential families and decomposition

Combining kernels and graphical models in the framework of exponential families re-

sults in very powerful probabilistic models. On the one hand, kernels induce a very

rich feature space, which can be used to generate expressive exponential families. On

the other, the factorization of distributions by graphical models has strong connections

with the factorization of kernels (Altun et al., 2004b). This section will review their

results.

Section 1.2.1 demonstrated the connection between conditional independence and

the factorization of the density formula. Now we can extend the Hammersley-Clifford

theorem to the exponential families generated by kernels.

Definition 17 (Exponential family generated by a kernel) Let k be a kernel on

a domain X which is measurable with respect to the Lebesgue measure. Let its associated

RKHS be H. The kernelized exponential family generated by k is then defined as the
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following set of distributions:

Pk :=

{
p(x) = exp(f(x)− g(f)) : f ∈ H, g(f) := log

∫
exp(f(x))dx <∞

}
. (1.15)

Since f(x) = 〈φ(x), f〉, we can view φ(x) as the sufficient statistics, and f as the

natural parameter. k is called the generator of Pk.

The benefit of kernel exponential family lies in its rich feature space. Indeed, when

the kernel k is universal, Pk must be dense in the space of “smooth bounded densities”:

Theorem 18 (Dense distribution) (Altun et al., 2004b, Proposition 3) If the kernel

k is universal, then Pk is dense in the space of distributions on X whose density is con-

tinuous and whose infinity norm is finite, i.e., P(C0) := {p ∈ C(X ) : maxx∈X p(x) <∞}.
Moreover, for any p ∈ P(C0) with |log p| ≤ C and ε < 1, we have ‖log p− f‖∞ ≤ im-

plies D(p||pf ) ≤ 2ε and ‖p− pf‖∞ ≤ 4εeC .

This theorem essentially says that the exponential family with universal kernels is

rich and can approximate a large class of distributions arbitrarily well in both L∞ and

KL divergence sense. So restricting our attention to the kernel exponential families

will not sacrifice much generality.

Now suppose the multi-variate random variable X is endowed with a graphical

model G, then for this family of distributions, we also have a result similar to the

Hammersley-Clifford theorem. Before stating the result, we define the notion of fac-

torization for kernels:

Definition 19 (Factorization of kernels) Suppose a kernel k is defined on a do-

main X , and an undirected graph G is also associated with it. Let C be the maximal

clique set of G. Then k is said to factorize wrt G if for any clique c ∈ C there is a

kernel kc on Xc, such that

k(x,x′) =
∑
c∈C

kc(xc, x
′
c). (1.16)

It is important to contrast the meaning of “factorization” for densities and for kernels.

The former means expressing the pdf as the product of potential functions on the

cliques (see Eq. (1.2) in Definition 6). In contrast, the notion of “factorization” for

kernels is defined by the additive decomposition of kernels onto cliques. Now we can

state the key result on the equivalence between kernel factorization and conditional

independence.
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Theorem 20 (Hammersley-Clifford Theorem for kernelized exponential families)

(Altun et al., 2004b, Lemma 5) Suppose a graph G has a maximum clique set C. If the

kernel k defined on X factorizes according to G in the sense of Definition 19, then any

density p ∈ Pk must respect G, i.e., for any three disjoint subsets of node A, B, C such

that C separates A from B in G, p must satisfy XA ⊥⊥ XB|XC .

Conversely, if all distributions in Pk respect G, then the kernel k must factorize.

Both the Hammersley-Clifford Theorem 7, 8 and the kernelized version Theorem

20 discuss the equivalence between factorization of kernels/densities and conditional

independence on a graph. However, they differ in two important ways:

1. The Hammersley-Clifford Theorem is concerned with the conditional indepen-

dence of a given distribution with respect to graph G, while Theorem 20 dis-

cusses the conditional independence for a family of distributions Pk. Both the

assumption and the conclusion are stronger in Theorem 20 than in Theorem 7, 8.

This stronger property is useful, because we usually need to search for a function

in H (i.e., the natural parameter) in order to optimize some functional. This is

also the case for vanilla exponential families in Euclidean spaces without using

kernels.

2. It is clear that kernel factorization Eq. (1.16) implies density factorization Eq. (1.3).

However, the opposite is not trivial: although each all densities in Pk must as-

sume the form of Eq. (1.3), the potentials ϕc can depend on the particular den-

sity. Hence, it is not obvious that there must exist a common set of clique-wise

sufficient statistics and natural parameters shared by all densities in Pk.

Altun et al. (2004b) proved Theorem 20 based on the key observation that H, as a

Hilbert space, must have a set of basis (Banach spaces may not have a basis in general

(Enflo, 1973)). Note the second part of Theorem 20 only gives the existence of {kc}c∈C ,
while the uniqueness may not hold.

1.5 Learning and inference

The previous three sections focused on modeling in the framework of exponential fami-

lies, and treated the natural parameters θ as given. However, in practice, θ is unknown

and we are only given some observations x1, . . . ,xn which are “related” to the underly-

ing distribution. For the time being, we assume these observations are independent and

identically-distributed (iid) according to the underlying distribution, and extension to

non-iid observations will be discussed in Chapter 4.
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Our objective in this section is to estimate/infer from the observations a single θ

or a distribution of θ which best “explains” the data. The former is point estima-

tion and the latter is Bayesian estimation. Similarly for CEFs, we are given a set of

observations/label pairs
{

(xi,yi)
}
i

and the task of point estimation is to find a sin-

gle conditional distribution from Pφ|x that best explains how y depends on x. The

most straightforward schemes of point estimation are maximum likelihood or maximal

aposterior if some prior of θ is considered. Below, we use CRF learning as an example.

A commonly used point estimator is maximum likelihood, which finds the max-

imizer of the likelihood. For exponential families with iid observations, it enjoys

asymptotic unbiasedness and normality, and is asymptotically efficient in the sense of

Cramér-Rao bound (Rao, 1973). Technically, it requires evaluating the log-likelihood:

log p
({

yi
}n
i=1

∣∣∣{xi}ni=1
;θ
)

=
n∑
i=1

log p(yi|xi;θ) =
n∑
i=1

{∑
c∈C

〈
φc(x

i
c, y

i
c), θc

〉
− g(θ|xi)

}
(1.17)

=
∑
c∈C

〈
n∑
i=1

φc(x
i
c, y

i
c), θc

〉
−

n∑
i=1

g(θ|xi).

This formula necessitates the computation of the log-partition function:

g(θ|x) = log

∫
Ym

∏
c∈C

exp(〈φc(x, yc), θc〉)dy. (1.18)

Second, to maximize the log-likelihood, many optimization algorithms require the

gradient of log-likelihood, which in our case is

∂

∂θ
log p

({
yi
}n
i=1

∣∣∣{xi}ni=1
;θ
)

=
n∑
i=1

φ(xi,yi)−
n∑
i=1

E
y∼p(y|xi;θ)

[φ(xi,y)]

=
n∑
i=1

vec
c∈C

{
φc(x

i, yic)− E
yc∼p(yc|xi;θ)

[φc(x
i, yc)]

}
(1.19)

where the first step utilized Eq. (1.7) and the second step utilized Eq. (1.8). Therefore

we need to compute the mean of the sufficient statistics.

Finally, once a point estimate θ∗ is obtained and a new instance x is given, a

natural way of labeling is via argmaxy p(x,y;θ∗). This is called decoding, or maximum

aposterior inference (MAP).

Now we summarize what operations are need from the graphical models in order to

perform parameter estimation and decoding. Given the clique-wise natural parameters
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θc and potential functions φc(xc) for all c ∈ C, which implicitly determine the joint

joint pdf p(y|x), inference in CRF refers to the following four tasks:

1. Marginalization and expectations. Given a particular x, query the marginal

distribution of p(yc|x;θ) for all c ∈ C. Or more generally, query the marginal

distribution of p(yS |x;θ) for any index subset S. Closely related is the moments

on the cliques, i.e. the expectation of features φc: Eyc∼p(yc|x;θ)[φc(x, yc)].

2. Maximum aposterior (MAP). Query the mode argmaxy p(y|x;θ).

3. Partition function. Compute Z :=
∫
Ym exp (

∑
c 〈φc(x, yc), θc〉) ν(dy).

4. Sampling. Draw samples from p(y|x;θ).

Similar operations for unconditioned MRFs can be defined correspondingly.

Cooper (1990) proved that the problem of exact inference is NP-hard in general,

unless some assumptions on the topology are made. Roth (1996) further showed that it

is NP-hard even to approximate it in the sense that for any algorithm, there exists an

example structure for which approximate inference has to take super-polynomial time

in the scale of the topology. The complexity of exact inference often grows exponentially

with how much the graph is more densely connected than a tree (more details later),

therefore approximate inference algorithms are essential for many practical problems.

Roughly speaking, approximate inference fall into three categories: message passing,

sampling and variational inference. This section will briefly overview these methods.

1.5.1 Exact methods

Exact methods are usually based on dynamic programming and the distributive law:∑n
i=1

∑m
j=1 aibj = (

∑n
i=1 ai)

(∑m
j=1 bj

)
, where the left hand side incurs mn multiplica-

tions and mn−1 additions, while the right hand side takes only one multiplication and

n + m − 2 additions. Instead of showing the exact formula, we draw some intuitions

from computing the feature expectation in Eq. 1.19.

Letting Z be the constant normalization term exp(g(θ|x)), the expected sufficient

statistics for a fixed clique c is6

Ep(y|x;θ) [φc(x, yc)] =

∫
Ym

φc(x, yc)p(y|x;θ)dy

= Z−1

∫
Ym

φc(x, yc′) exp
∑
c̄∈C
〈φc̄(x, yc̄),θc̄〉 dy

= Z−1

∫
Ym

∏
c̄∈C

φ̃cc̄(x, yc̄) exp 〈φc̄(x, yc̄),θc̄〉dy, (1.20)

6For notational convenience we assume componentwise multiplication of vectors in the last step of
Eq. (1.20).
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x1 x2 x3 x4 x5

fA fB fC fD fE

Figure 1.3: Example factor graph

where φ̃cc̄(x, yc̄) := φc(x, yc) if c = c̄, and a vector of ones otherwise. Note that both

(1.18) and (1.20) are in the sum-product form, which can be computed exactly by

belief propagation (BP) (e.g., MacKay, 2003, Chapter 26). Important data structures

such as junction trees (Lauritzen, 1996) and factor graphs (Kschischang et al., 2001)

have been proposed to formalize the dynamic programming based on the sum-product

form, and to apply the generalized distributive law (Kschischang et al., 2001). These

algorithms usually have time complexity O(m |Y|w+1), where m is the number of nodes

and w is the tree width of the graph, i.e., the size of its largest clique minus 1 after

the graph is optimally triangulated. For trees and 1-D CRFs (chains), w = 1, so that

calculating (1.20) directly is feasible. However, for more general cases like 2-D grid

CRFs, the tree width w is prohibitively high, and one has to resort to approximate

approaches.

1.5.2 Message passing

Message passing schemes essentially propagate local factor information to the other

factors and try to achieve global consistency via enforcing local consistency. These

algorithms can be most conveniently described by using factor graphs.

Definition 21 (Factor graph) (Kschischang et al., 2001) Given a pdf which fac-

torizes onto groups of nodes: p(x) = 1
Z

∏
c∈C ϕc(xc), its factor graph is defined as a

bipartite graph, where one side consists the original nodes and the other side consists

of the factors given by the prescribed factorization of p. A node i is linked with a factor

c if, and only if, i is involved in the factor c (i ∈ c).

For example, given a joint distribution:

p(x1, . . . , x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5),

the corresponding factor graph is Figure 1.3. It is clear that all graphical models can

be represented by a factor graph, whose factors are subsets of the maximal cliques.

Interpreting c as the set of nodes associated with factor c, one can define the scheme

called belief propagation (BP) which consists of two types of message passing on the
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factor graph:

variable i ∈ c to factor c: mi→c(xi) =
∏

c′:i∈c′,c′ 6=c
mc′→i(xi),

factor c to variable i ∈ c: mc→i(xi) =
∑

xc\{i}

(
f(xi, xc\{i})

∏
j∈c\{i}

mj→c(xj)

)
,

and the final marginal distribution can be obtained by p(xc) :=
∏
i∈cmi→c(xi) up to

a normalization constant. By replacing the above sum-product with max-product, the

same scheme can be used for MAP inference. This is the idea of generalized distributive

law with different semi-rings (Kschischang et al., 2001).

BP is guaranteed to converge on graphs with at most one loop (Weiss, 2000) or when

the joint distribution is Gaussian with arbitrary topology (Weiss, 2001). Unfortunately,

when there is more than one loop, no guarantee can be made on convergence, or

convergence to the true marginal. Ihler et al. (2005) provided some convergence analysis

and conditions using contraction of dynamic range. In general, it is still an open issue

although loopy BP often performs well in practice.

A major progress in message passing inference was made by Minka (2001), called

expectation propagation (EP). In a nutshell, it approximates all the factors fc(xc) with

some restricted (simple) forms f̃c(xc) such as product of independent Gaussians, so that

the inference on the joint approximation {f̃c(xc)}c is tractable. The approximation

criteria is to optimize the KL divergence between the given pdf q ∝∏c fc(xc) and the

approximant p ∝ ∏c f̃c(xc). If the approximant is restricted to exponential families,

this is equivalent to moment matching. For computational tractability, a cavity update

scheme is employed, i.e., cycle through all the factors and each time optimize the

factor’s approximation in the context of other factors’ current approximation. Here we

sketch some technical details because EP will be used extensively in Chapter 3, and

the full details can be found in (Minka, 2001).

Suppose we have a pre-specified exponential family Pφ for which efficient inference

is available. Now we are given an arbitrary pdf q and inference is intractable on it. A

natural idea is to approximate q by some distribution p(x;θ) ∈ Pφ, and then simply

use the marginals and partition functions etc of p(x;θ) as the surrogate of those of q.

The above approximation can be in the sense of projecting q to Pφ in KL divergence:

min
θ∈Θ

KL(q||p(x;θ)) ⇔ min
θ∈Θ

KL(q|| exp(〈φ(x),θ〉 − g(θ))).

Taking gradient wrt θ and equating to 0 yield the optimality condition:

Ex∼q[φ(x)] = Ex∼p(x;θ)[φ(x)],
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which means matching the expectation of features.

Now suppose the distributions have graphical model structures, and q factorizes as

q(x) =
1

Z

∏
c∈C

fc(xc),

and now we naturally wish to project into Pφ where φ factorizes into vecc∈C {φc(xc)}:

min
θ∈Θ

KL(q||p(x;θ)) ⇔ min
θ∈Θ

KL

(
1

Z

∏
c∈C

fc(xc)
∣∣∣∣∣∣ exp

(∑
c∈C
〈φc(xc), θc〉 − g(θ)

))
.

(1.21)

Although the result of moment matching still holds, it is now intractable to compute

the moment in general and in fact this is the problem we want to tackle in the first

place. This obstacle also precludes clique-wise block coordinate descent. Despite the

computational feasibility of matching the moment clique by clique independently, it

does not give good approximations unless all the cliques are disjoint.

Let us first ignore the normalizer and write f̃c(xc; θc) := exp(〈φc(xc), θc〉. EP takes

a cavity approach (Opper & Winther, 2000): cycle through all the cliques, and for each

clique c, find the best approximant f̃c of fc keeping the other current approximants f̃c′

(c′ 6= c) fixed, i.e.

min
θc

KL

fc(xc) ∏
c′ 6=c

f̃c′(xc′ ; θc′)

∣∣∣∣∣
∣∣∣∣∣f̃c(xc; θc) ∏

c′ 6=c
f̃c′(xc′ ; θc′)

 .

Since only one factor from q, fc, is involved, this optimization over θc is feasible via

moment matching. Different algorithms can be derived by further assuming different

forms of the exponential family. For example, loopy belief propagation can be recovered

when each φc completely decomposes onto individual nodes: φc(xc) = veci∈c φc,i(xi).

The normalization factor can be obtained by matching the zero-th order moment, and

is usually done after the above cyclic procedure terminates.

Unfortunately, EP still has no convergence guarantee and even when it converges,

there is no guarantee that it will give the correct inference results. Again it works

pretty well in practice, and a theoretical analysis is available in (Minka, 2005) which

also provides unified comparisons with some other inference algorithms.

A simplified version of EP takes only one pass through the factors in q. This is

known as assumed density filtering (ADF) (Maybeck, 1982; Opper, 1998), and is useful

for online learning where factors are revealed in a sequence and must be discarded before

the next factor arrives (for privacy or storage constraint). In general, the accuracy of

ADF is inferior to EP and is susceptible to the order in which the factors are revealed.
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1.5.3 Sampling

In many applications, the probability p is used to compute the expectation of some

function f . Sampling tries to obtain a set of samples
{
xi
}

(typically iid from p) to

approximate Ep[f ] :=
∫
f(x)p(x)dx by 1

N

∑N
i=1 f(xi). In many cases, iid samples

are hard or expensive to draw, hence Markov chain Monte Carlo (MCMC) methods

were introduced which asymptotically approach iid samples, e.g., Metropolis-Hastings

and Gibbs sampling. There is a large volume of literature on sampling methods for

machine learning such as (Doucet et al., 2001) and (Andrieu et al., 2003) and the

references therein.

Sampling from an undirected graphical model is not easy except for tree structured

graphs, and one general purpose inference engine is Gibbs sampling. After randomly

initializing the state of all the nodes to X
(0)
1 , . . . , X

(0)
n , one randomly picks a node

Xi and sample its next state conditioned on the current state of all the other nodes

X
(1)
i ∼ p(Xi|{X(0)

j ; j 6= i}). Keep the state X
(1)
j = X

(0)
j for all j 6= i. Next we randomly

pick a node again and sample its next state conditioned on the rest nodes’ current state.

This procedure can be run for ever and will give asymptotically independent samples

of the joint distribution. Gibbs sampling has been implemented in the the BUGS

(Bayesian inference Using Gibbs Sampling) package, which provides MCMC inference

engines for complex statistical models with significant flexibility.

1.5.4 Variational inference

Variational methods refer to the technique of posing some quantities hard to compute

as the minimal value of some functions, and then apply optimization algorithms to

it. For example, the solution of the linear system Ax = b is exactly the minimizer of
1
2x>Ax−〈b,x〉 if A is positive definite. For unconstrained quadratics, algorithms such

as conjugate gradient (Hestenes & Stiefel, 1952) can optimize it very efficiently.

In the same spirit, Wainwright (2002) formulated the log partition function as the

minimum of a certain function with some constraints, and its minimizer is exactly

the feature mean. This new framework allows direct application of a large body of

optimization techniques, which can be further accelerated by utilizing the structure of

the graph (e.g., Wainwright et al., 2003, 2005; Sontag & Jaakkola, 2007). Intuitively,

the key idea is the Fenchel-Young equality

g(θ) = sup
µ
〈θ,µ〉 − g?(µ)

where g? is the Fenchel dual of g. Now three questions arise: a) what is the domain of

g?, b) how to compute g?, c) how to carry out the optimization. We will answer the

first two questions in the next part, and then survey some approximate algorithms for
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optimization.

Marginal polytope and g?

Wainwright & Jordan (2008, Theorem 3.4) showed that the domain of g? is related to

the range of the expectation of φ(x) wrt all distributions that are absolutely continuous

wrt ν.

Definition 22 (Marginal polytope) Define the marginal polytope of φ as

Mφ :=

{
µ ∈ Rd : ∃ p(·), s.t.

∫
φ(x)p(x)ν(dx) = µ

}
.

Note that the pdf p in the definition is not required to be in the exponential family

Pφ, however, adding this restriction is straightforward. Given θ ∈ Θ, we are interested

in the expectation of φ(x) under p(x;θ), and formally we define a mapping Λφ : Θ 7→
M as

Λφ(θ) := Eθ[φ(x)] =

∫
φ(x)p(x;θ)ν(dx).

And then we have the range of Λφ mapping from Θ, i.e. the space of mean parameters

wrt Pφ:

Λφ(Θ) :=

{∫
φ(x)p(x)ν(dx) : p ∈ Pφ

}
.

Mφ is obviously convex, while Λφ(Θ) is not necessarily convex. Hence we callMφ

marginal polytope. Also, neitherM nor Λφ(Θ) is guaranteed to be closed. When φ is

clear from context, we omit the subscript φ in Mφ, Λφ(θ), and Λφ(Θ). Λ(Θ) and M
are related as follows.

Proposition 23 (Wainwright & Jordan, 2003, Theorem 1) The mean parameter map-

ping Λ is onto the relative interior of M, i.e., Λ(Θ) = riM.

The mean parameter µ = Ex∼p[φ(x)] can be roughly considered as a signature of

the density p. The following is an important theorem which provides an explicit form

of the Fenchel dual of log partition function, in terms of the entropy of the distribution.

Theorem 24 (Fenchel dual of g(θ) and entropy) (Wainwright & Jordan, 2003,

Theorem 2) For any µ ∈ riM, let θ(µ) denote an element in Λ−1(µ). Denote as

H(p) the entropy of pdf p. The Fenchel-Legendre dual of g(θ) has the form

g?(µ) =

 −H(p(x;θ(µ)) if µ ∈ riM
+∞ if µ /∈ clM

.
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θ1

P
θ2

μ[P]

Figure 1.4: Simple break of injectivity

θ1 P

θ2

μ[P] = μ[Q]

Q

Figure 1.5: Imaginary break of injectivity

For any boundary point µ ∈ bdM := clM\riM, we have g?(µ) = limn→∞−H(p(x; θ(µn))

taken over a sequence {µn} ⊆ riM converging to µ.

This theorem also implies that given the mean parameter µ, the entropy of the

distribution is independent of which natural parameter is used from Λ−1(µ). Consid-

ering that both θ and µ can serve as a signature of the distribution, it is natural to

investigate their relationship which turns out to hinge on the minimality of sufficient

statistics.

Theorem 25 (Injectivity of mean mapping) (Wainwright & Jordan, 2008, Propo-

sition 3.2) The mean map Λ is one-to-one if, and only if, φ(x) is minimal.

Since θ is mapped to the marginal polytope M via the pdf p(x;θ), injectivity

can break in two different ways: a) two different natural parameters giving the same

distribution, see Figure 1.4; and b) different distributions in the exponential family

giving the same mean, see Figure 1.5. The minimality assumption seems to preclude

only the first case. Fortunately, it turns out that this second map Pφ 7→ M is injective

irrespective of whether the sufficient statistics are minimal.

Theorem 26 Using the same notation as in Theorem 25, the mapping from distribu-

tion p ∈ Pφ to the mean Ex∼p[φ(x)] is injective regardless of whether φ(x) is minimal.

Proof The proof is based on the maximum entropy interpretation of exponential

families. Suppose two pdf s p, q ∈ Pφ have the same mean µ. Let the pdf p∗ (not

necessarily in Pφ) be the optimal solution of the following optimization problem:

maximize
p

H(p), s.t. Ex∼p[φ(x)] = µ. (1.22)

Note the optimization is not restricted to Pφ, and the feasible region must be nonempty

since p and q satisfy the constraint. Since entropy is a strictly convex functional and

the linear constraints form a convex set, the optimal solution p∗ is unique and is well

known to be in Pφ. As the entropy of exponential family distributions can be fully

determined by its mean (Theorem 24), p and q must have the same entropy as p∗.

Hence they are also the optimal solutions to the problem 1.22. Then the uniqueness of
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solution implies p = q = p∗.

The significance of this theorem is that the mean of sufficient statistics uniquely

identifies the distribution in the exponential family, and furthermore if the sufficient

statistics are minimal, the natural parameter can also be uniquely identified.

Optimization techniques for variational inference

By Theorem 24, g?(µ) is just the negative entropy of the distribution corresponding to

µ. However, the hardness of the optimization problem g(θ) = supµ∈M 〈θ,µ〉 − g?(µ)

is exhibited in two folds: a) the constraint set M is extremely difficult to characterize

explicitly; b) the negative entropy g? is defined indirectly, hence it lacks explicit form

in µ. Therefore, one resorts to outer or inner bounds ofM and upper or lower bounds

of g?. This leads to various algorithms (Wainwright & Jordan, 2008), such as

• Naive mean field. It only considers a subset (inner approximation) of M where

the mean parameter of the edges is fixed to be the product of the mean of the

two end points. This essentially assumes that all the nodes are independent, and

yields a lower bound on g(θ). In this case, the entropy factorizes and becomes

easy to compute.

• Tree-reweighted sum-product. By noticing that the entropy of trees can be com-

puted efficiently, Wainwright et al. (2005) studied the restriction of any mean

parameter µ to a spanning tree T : µ(T ). Since this restriction removes those

constrains corresponding to ignored edges, the entropy of µ(T ) is higher than

that of µ, hence the restriction leads to a concave upper bound of 〈θ,µ〉− g?(µ).

Moreover, as convex combination of upper bounds is still an upper bound, it

can be tightened by further optimizing over the convex combination, e.g., the

distribution over spanning trees called spanning tree polytope.

• Log-determinant relaxation. Observing that M can be characterized by con-

straining the moments to be positive semi-definite to any order, Wainwright &

Jordan (2006) proposed a relaxation based on Gaussian approximation.

• Cutting plane. Sontag & Jaakkola (2007) proposed a new class of outer bounds on

the marginal polytope, by drawing its equivalence with the cut polytope (Bara-

hona & Mahjoub, 1986). Different from most previous methods which fix the

outer bound a priori, Sontag & Jaakkola (2007) progressively tightens the outer

bound according to the current infeasible solution. This is done by efficiently

finding a violated constraint via a series of projections onto the cut polytope.
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1.6 Regularized risk estimation and optimizations

Parameter estimation is a key task in machine learning. Eq. (1.17) shows the max-

imum likelihood estimation for CRFs. Suppose we have a set of feature/label pairs

{(xi, yi)}ni=1 drawn iid from some underlying joint distribution. If we endow a Gaus-

sian prior on the parameter θ ∼ N (0, λ−1Σ), then we get a maximum aposterior

estimation:

argmax
θ

log p ({yi}ni=1 | {xi}ni=1 ;θ) p(θ)

⇐⇒ argmin
θ
− log p ({yi}ni=1 | {xi}ni=1 ;θ) +

λ

2
θ>Σ−1θ

iid⇐⇒ argmin
θ

n∑
i=1

− log p(yi|xi;θ) +
λ

2
θ>Σ−1θ (1.23)

where − log p(yi|xi;θ) = −〈φ(xi, yi),θ〉+ log
∑
ȳi

exp (〈φ(xi, ȳi),θ〉) . (1.24)

Although p(yi|xi;θ) is a reasonable likelihood for regression problems, reconsid-

eration is needed for classification tasks. The objective in Eq. (1.23) is essentially a

trade-off between the prior and the likelihood. However for classification, the label is

determined by argmax p(y|xi;θ). Therefore, it is no longer the case that the higher

the likelihood p(yi|xi;θ) the better: we only need p(yi|xi;θ) to exceed the probability

of all other labelings, and the effort saved from increasing p(yi|xi;θ) can be used for

optimizing the prior. Technically, we only need to redefine the negative log likelihood

into:

−δ(yi = argmax
y

p(y|xi;θ)) = −δ(p(yi|xi;θ) > p(y|xi;θ) ∀y 6= yi) (1.25)

and the maximum a posterior estimator becomes:

argmin
θ

n∑
i=1

−δ (p(yi|xi;θ) > p(y|xi;θ) ∀y 6= yi) +
λ

2
θ>Σ−1θ. (1.26)

Unfortunately, this objective function is not continuous which makes the optimization

hard. One common bypass is to replace the negative log likelihood by a convex upper

bound, e.g.

max

{
0, 1−min

y 6=yi

p(yi|xi;θ)

p(y|xi;θ)

}
= max

{
0, 1−min

y 6=yi
〈φ(xi, yi)− φ(xi, y),θ〉

}
(1.27)

which, intuitively speaking, encourages that the odd ratio between the true label and
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all other labels be greater than 1. Otherwise a penalty is incurred. Now the estimator

argmin
θ

n∑
i=1

max

{
0, 1−min

y 6=yi
〈φ(xi, yi)− φ(xi, y),θ〉

}
+
λ

2
θ>Σ−1θ (1.28)

becomes a continuous and convex optimization problem in θ.

In summary, different from regression, classification problems need redefinitions of

likelihood. From Eq. (1.23), (1.26) and (1.28), we can see that the estimation becomes

an optimization problem whose objective takes the form of:

Remp(θ) + λΩ(θ) =
n∑
i=1

l(xi, yi;θ) + λΩ(θ),

where Ω(θ) = 1
2θ
>Σ−1θ, and l(xi, yi;θ) can have different forms such as Eq. (1.24),

(1.25), and (1.27). Theoretically, this formulation can be as well interpreted from

the statistical learning perspective (Vapnik, 1995), where Ω(θ) is the regularizer and

Remp(θ) =
∑n

i=1 l(xi, yi;θ) is the empirical risk . Intuitively, the empirical risk quan-

tifies the discrepancy between the true label yi and the prediction for example xi

using the model parameter θ. The regularizer, on the other hand, measures how

complex the model is, and simple models are preferred. This intuition was known

as Occam’s razor (among other names), and has been solidly justified in theory, e.g.

Tikhonov regularization (Tikhonov, 1943, 1963), Vapnik-Chervonenkis dimension and

structural/regularized risk minimization (Vapnik, 1995), entropy or covering numbers

(Guo et al., 1999), and minimum description length (Grünwald, 2007).

This decomposition of empirical risk and regularization will motivate the general

framework of regularized risk minimization in Section 1.6.1, and we will demonstrate

how it encompasses many important machine learning algorithms. Section 1.6.2 will

survey various algorithms which optimize this functional. A specific general purpose

solver, cutting plane method, will be introduced in Section 1.6.3, and some major im-

provements will be detailed in Section 1.6.4, especially the bundle method for machine

learning (BMRM). To comply with the common notations in statistical learning theory,

we will change θ to w, meaning weight vector which also makes sense for exponential

families because the natural parameter does specify a weight on the sufficient statistics.

1.6.1 Regularized risk minimization

Besides the quadratic regularizer in Eq. (1.23), many other measures of model complex-

ity exist. For example the L1 norm ‖w‖1 :=
∑

i |wi| encourages sparse solution where

many wi are zero meaning the corresponding features are unimportant (Tibshirani,

1996; Candes & Tao, 2005). Entropy or relative entropy is also commonly used when
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Table 1.2: Loss for multi-class classification

Name Definition

“0-1” loss δ(argmaxy∈Y 〈φ(xi, y),w〉) 6= yi)

hinge loss
max {0, 1−miny 6=yi 〈φ(xi, yi)− φ(xi, y),w〉}

= maxy∈Y {〈φ(xi, y)− φ(xi, yi),w〉+ δ(y = yi)}
logistic loss −〈φ(xi, yi),w〉+ log

∑
ȳi

exp (〈φ(xi, ȳi),w〉)

Table 1.3: Loss for binary classification

Name Definition

“0-1” loss δ(sign(〈φ(xi),w〉) 6= yi)

hinge loss max {0, 1− yi 〈φ(xi),w〉}
logistic loss log(1 + exp(−yi 〈φ(xi),w〉))
exponential loss exp(−yi 〈φ(xi),w〉)

w corresponds to a distribution on the features, and this prior encourages a uniform

distribution. It is noteworthy that the L2 norm and entropy are strongly convex and

smooth while L1 norm is just convex but not strongly convex or differentiable.

On the other hand, empirical risk also admits a wide range of choice. In the simplest

case of the statistical query model (Kearns, 1998), it can be decomposed additively to

the loss on individual training examples l(xi, yi; w). Examples include

• Logistic loss as in Eq. (1.24) named in analogy to logistic regression,

• 0-1 loss as in Eq. (1.25) which simply checks whether the output label is correct,

• Hinge loss as in Eq. (1.27) which looks at all the incorrect labels and encourages

their discriminant values to be less than the correct label’s value by at least 1

(margin).

We summarize these losses in Table 1.2.

When specialized to binary classification with y ∈ {−1, 1}, the above definitions

can be simplified by letting φ(xi, y) := yφ(xi)/2, and are summarized in Table 1.3.

All the four losses in Table 1.3 for binary classification are plotted in Figure 1.6.

Exponential loss is used in boosting (Hastie et al., 2009, Section 10.4). Hinge loss leads

to maximum margin models, and the commonly used support vector machine (SVM) for

binary classification is simply a combination of hinge loss and L2 regularization. Notice

that “0-1” loss is neither convex nor continuous. Hinge loss is convex and continuous

but not differentiable at one point. Logistic loss and exponential loss are both smooth,
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Figure 1.6: 0-1 loss, hinge loss, logistic loss and exponential loss for binary classification.

strongly convex, and have Lipschitz continuous gradient on any compact subset of R.

Historically, although 0-1 loss was the real objective that one wants to minimize, its

discontinuity and nonconvexity prompted people to use other convex upper bounds as

surrogates for easier optimization. The statistical consequences of these surrogates are

under research, e.g. (Bartlett et al., 2006).

More general loss functions can be defined for regression, ranking, novelty detection,

etc.. In the case of multi-class classification, the hinge loss defined above can be

generalized in two ways which can be summarized by

max
y∈Y
{ρ(y, yi) [〈φ(xi, y)− φ(xi, yi),w〉+ ∆(y, yi)]} .

Here ∆(y, yi) gives a more refined comparison between the proposed label y and the

correct label yi, characterizing to what extent the proposed label is wrong. This is much

more informative than δ(y = yi) which merely checks whether the labeling is correct.

For instance, when the output space is a sequence, ∆(y, yi) can be the Hamming

distance. Path distances (Dekel et al., 2004) or H-loss (Cesa-Bianchi et al., 2006) can

also be used when the output space has hierarchies or ontology. ρ(y, yi) yields a similar

effect of penalizing different mistakes differently, but in a different way from ∆(y, yi).

This can be best illustrated by using two concrete examples: a) margin rescaling where

ρ(y, yi) = 1 and ∆(y, yi) = 2, and b) slack rescaling where ρ(y, yi) = 2 and ∆(y, yi) = 1:
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Figure 1.7: Slack rescaling and margin rescaling.

Name Example Proposed by

margin rescaling max {0, 2− 〈φ(xi, yi)− φ(xi, y),w〉} (Taskar et al., 2004)

slack rescaling 2 max {0, 1− 〈φ(xi, yi)− φ(xi, y),w〉} (Tsochantaridis et al., 2005)

Plotting these two rescalings in Figure 1.7, we can see that the margin rescaling

starts to penalize early but mildly: once 〈φ(xi, yi)− φ(xi, y),w〉 falls below 2, it starts

to incur a unit loss for each unit gap. In contrast, slack rescaling starts to penalize only

after 〈φ(xi, yi)− φ(xi, y),w〉 falls below 1, but once it kicks in, the penalty is severe:

two units for each unit gap.

When the output space Y is equipped with a graphical model, the sufficient statistics

φ decomposes, and furthermore Taskar et al. (2004) assumed the same factorization of

∆(y, y′):

∆(y,y′) =
∑
c∈C

∆c(yc, y
′
c).

This factorization is crucial for efficient maximum margin estimation for structured

data with margin rescaling. We will revisit it in Section 5.4.1.

Finally, non-decomposable loss functions are also common, especially in applica-

tions like information retrieval. For example, the F-score and area under ROC curve

(Joachims, 2005). Optimization for these multivariate performance measures is noncon-

vex and harder, and we will introduce an approximate method for optimizing F-score

in Chapter 3.

To summarize, from the examples above we can abstract out the regularized risk
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estimation framework (RRM):

min
w

J(w) := λΩ(w) +Remp(w), where Remp(w) :=
1

n

n∑
i=1

l(xi, yi; w).

Here Ω(w) is the regularizer and Remp(w) is the empirical risk. l is a loss function

measuring the discrepancy between the true label yi and the output of model w. We will

consider the optimization for this framework of problems, with special focus on strongly

convex Ω(w) and convex (nonsmooth) Remp. This makes optimization relatively simple

(Boyd & Vandenberghe, 2004), and allows one to focus on modeling without being

entangled with numerical stability or suboptimal solutions due to local minima. In

addition, this assumption is not too restrictive as we have shown above that a large

number of machine learning models do fit in this framework.

1.6.2 Survey of existing optimization algorithms

With the RRM model well established, the next challenge is to find the optimizer

w∗ := argminw J(w). Most existing solvers are iterative: generate a trace of weights

w1,w2, . . . which approaches the solution w∗.

In general, a solver is evaluated against the following criteria:

1. Rate of convergence. Each wk incurs a gap in function value εk := J(wk) −
J(w∗). For any given precision/tolerance ε > 0, we are interested in how many

steps/iterations are needed before εk can be reduced to less than ε:

εk := J(wk)− J(w∗) < ε.

Typical rates include k = O
(

1
εp

)
(p > 0) and k = O

(
log 1

ε

)
(called linear conver-

gence7), and k = O
(
log log 1

ε

)
(called quadratic convergence). Different variants

of linear convergence also exist such as Q-linear and R-linear (Nocedal & Wright,

2006, pp. 619–620).

2. Cost per iteration. This cost includes all types of computing and storage

resources, such as CPU time, memory, bus or hard drive IO, etc.. Comparison in

this aspect is very case specific because different computing environments may

have different resource bottlenecks, which may also vary with time.

3. Generality. Ideally a general solver is useful which can be applied to a wide

range of problems, without being restricted to the form of the objective function

or constraints. Granted that special purpose solvers can often perform better

7Not to be confused with O
(
1
ε

)
rate.
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by exploiting the structure of the problem, generic solvers provide a reasonable

off-the-shelf baseline which allows fast prototyping.

4. Parallelization. This could be subsumed in the above point 2. However we

highlight it because the recent revolutionary development in parallel computing

has ushered in a new era of multi-core. As the scale of machine learning applica-

tions is also growing rapidly, it will be crucial and interesting to develop learning

algorithms which make full use of parallel facilities.

Using traditional optimizers

In theory, any general solver can be used for RRM. For example, linear programming

(Vanderbei, 2008) can be used to solve L1 regularized hinge loss. Interior point (IP)

has been used by Koh et al. (2006) to solve L1-Regularized logistic regression and by

Ferris & Munson (2000) to train large scale SVMs. Andrew & Gao (2007) applied

quasi-Newton methods for L1 regularized log-linear models. Coordinate descent can

also be used to train SVMs with linear convergence (Tseng & Yun, 2008). The main

challenge in these methods is scalability: high dimension, highly nonsmooth objective,

and a large number of constraints, resulting from the large number of data points and

features. Therefore, they must be customized somehow to utilize the structures in the

problem.

Using mild composite structure of machine learning objectives

Instead of directly applying general optimization methods which treat the objective

function as a black box, one can slightly assume some general structure such as RRM.

The bundle method for machine learning (BMRM) by Teo et al. (2007) is one effec-

tive algorithm that progressively builds a piecewise linear lower bound of the empirical

risk, and solve the regularized model at each iteration. SVMPerf by Joachims (2005);

Joachims et al. (2009) employs a similar cutting plane scheme, and can optimize mul-

tivariate performance measures which may not be decomposable. Tsochantaridis et al.

(2005) finds the most violating constraints in each iteration for structured output data,

and this greedy update also guarantees convergence at reasonable rate.

Solvers tailored for decomposable risk

If we further specialize to decomposable risk, then a lot of decomposition methods have

been proposed in the past decade, most of which work for a specific loss/regularizer.

Sequential minimal optimization (SMO) for binary nonlinear SVM optimizes two dual

variables analytically in each iteration, and common ways of choosing the two vari-

ables implicitly require visiting the whole dataset (Platt, 1998; Keerthi & Gilbert,
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2002). When training structured output data with decomposable loss, exponentiated

gradient (Kivinen & Warmuth, 1995) is efficient and allows implicit clique-wise updates

(Collins et al., 2008). Primal methods are also popular, often in the form of projected

subgradient descent (Shor, 1985; Nedic, 2002; Bertsekas, 1976; Duchi & Singer, 2009).

(Stochastic) online learning. A direct consequence of decomposed risk is the possi-

bility of learning sample by sample, called online learning as opposed to the traditional

batch learning which visits the whole dataset in each iteration. When the dataset is

large and the computing facility is relatively limited, a simple idea is to sample a subset

of the dataset to train, and as a result all theoretical guarantees must be probabilis-

tic. One extreme is that each update of the model uses only one training example.

This scheme is also the only choice when the data points come in stream, and must

be discarded before the next data point becomes available (due to privacy or storage

constraints). Not surprisingly, as proved by Shalev-Shwartz et al. (2007) and Bottou

& Bousquet (2007), stochastic online learning can reduce the regularized risk of binary

SVM to any precision with reasonable confidence at a cost independent of the training

set size. Shalev-Schwartz & Srebro (2008) further proved that in order to achieve any

fixed generalization error, the runtime can be inversely proportional to the number of

data points.

Online learning for binary SVM is a particularly fruitful research area. Online

dual optimizers rely on the natural duality relationship between data points and dual

variables, hence the well known convergence analyses of coordinate descent can be

immediately applied (Luo & Tseng, 1992; Tseng & Yun, 2008, 2009). Hsieh et al.

(2008a) proposed liblinear which performs dual coordinate Newton descent and enjoys

linear convergence (Luo & Tseng, 1992). In fact, this method is closely related to

Hildreth’s QP algorithm (Hildreth, 1957; Iusem & Pierro, 1990), passive-aggressive

method (Crammer et al., 2003), and implicit updates (Cheng et al., 2006). Primal

methods such as SGD (Bottou & LeCun, 2004; Bordes et al., 2009) typically perform

projected subgradient descent using approximate (stochastic) subgradients calculated

from a random subset of the dataset. Its convergence (in probability) usually originates

from the standard stochastic approximation theory (Tsypkin, 1971; Robbins & Monro,

1951). Another efficient primal stochastic gradient solver is pegasos proposed by Shalev-

Shwartz et al. (2007), which guarantees that by drawing a constant number (can be 1) of

random samples at each iteration, with probability 1−δ, f(wk)−minw f(w) ≤ O
(

ln k
kδ

)
,

i.e. O(1/ε) rate.

Online learning is often susceptible to the order of the samples, and rely heavily

on randomization. Despite its popularity and effectiveness when data overwhelms

computing power, the latest development of parallel computing is making it possible
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to efficiently visit the whole dataset. With the change of bottleneck, batch methods

are projected to regain popularity, and now the key challenge in algorithm design

becomes minimizing the sequential part of computation according to the Amdahl’s law

(Amdahl, 1967). Most existing parallel machine learning algorithms require additive

decomposition of empirical risk, i.e. data parallelization. Examples include (Teo et al.,

2007; Chu et al., 2007; Catanzaro et al., 2008; Graf et al., 2004).

Outlook

In Chapter 5, we will consider a new middle ground lying between RRM and decom-

posable loss:

J(w) = λΩ(w) + g?(Aw), where A := (x1, . . . ,xn)>.

We assume Ω is strongly convex and g is convex with Lipschitz continuous gradient.

Intuitively, we are assuming a linear predictor, i.e. the prediction for each example xi

is 〈xi,w〉 and in such a case data parallelization is again straightforward. However,

the overall empirical risk is now allowed to depend on the prediction of the examples

via a general convex function g?. In terms of optimization, this class of objectives

admit direct application of Nesterov’s first-order methods which yield optimal rate of

convergence (Nesterov, 1983, 2003, 2005a,b, 2007). Most closely related optimizers are

the cutting plane methods and bundle methods, which we will detail in the next two

sections. Lower bounds for these methods will be a central topic of Chapter 5.

1.6.3 Cutting plane

Cutting plane algorithms are based on the key property of convex functions: any closed

convex function f can be written as the upper envelope of infinitely many minorizing

affine functions:

f(w) = sup
a,b

{〈
a,w′

〉
+ b :

〈
a,w′

〉
+ b ≤ f(w′) for all w′ ∈ domf

}
.

Suppose somehow we have t points in dom f : {wi}t−1
i=0, and subgradients ai+1 ∈ ∂f(wi)

(t ≥ 0). Let bi+1 = f(wi) − 〈ai+1,wi〉 such that the hyperplane (w, 〈ai+1,w〉 + bi+1)

is tangent to f at wi. Then we obtain a piecewise linear lower bound approximation

of f which is exact at {wi}t−1
i=0:

f cp
t (w) := max

i∈[t]
f(wi−1) + 〈ai,w −wi−1〉 = max

i∈[t]
〈ai,w〉+ bi.

Then we optimize this piecewise linear approximant f cp
t as a surrogate of f . Intu-
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itively when one gets more and more wi as t increases, f cp
t will approximate f better

and better, and minw f
cp
t (w) will also approach minw f(w). Obviously the key chal-

lenge is how to pick wi so that with as few {wi}ti=0 as possible, f cp
t captures the nadir

of f as well as possible.

Kelley (1960) and Cheney & Goldstein (1959) proposed a greedy scheme to pro-

gressively pick the landmark points wt:

wt := argmin
w∈domf

f cp
t (w) = argmin

w
max
i∈[t]
〈ai,w〉+ bi. (1.29)

And f cp
t is then updated by:

f cp
t+1(w) := max {f cp

t (w), 〈at+1,w〉+ bt+1} .

The advantage of this algorithm is two folds. First, the optimization problem in

Eq. (1.29) is simply a linear programming (as long as domf is affine):

wt = argmin
w∈domf

min
ξ∈R

ξ (1.30)

s.t. 〈ai,w〉+ bi ≤ ξ ∀ i ∈ [t].

Second, the whole scheme is guaranteed to converge in finite time. In particular, define

the gap

ε̄t := min
i∈[t]

f(wi)− f cp
t (wt),

then for any pre-specified tolerance ε > 0, there must be a finite T such that ε̄t < ε for

all t > T . ε̄t is observable (not requiring the knowledge of f∗ or w∗), and it is easy to

see that ε̄t upper bounds the real gap because f cp
t (w) ≤ f(w) for all w:

ε̄t = min
i∈[t]

f(wi)−min
w

f cp
t (w) ≥ min

i∈[t]
f(wi)−min

w
f(w) =: εt.

However, cutting plane is also plagued with two major disadvantages. First, the

complexity of the inner problem Eq. (1.30) grows with iterations as the linear program-

ming gets more constraints. Second, and even worse, albeit the finite time convergence,

the rate of convergence can be extremely slow. Given any arbitrary tolerance ε, (Hiriart-

Urruty & Lemaréchal, 1993a, Example 1.1.2 of Chapter XV) shows an example, due

to Nemirovski, where the cutting plane algorithm takes t = O
(
ε−n/2

)
steps to reduce

εt to less than ε. The cause of this phenomenon is the instable zigzagging trace of wt:

the solution of the linear programming Eq. (1.30) is not unique, and wt can drift far

away from the previous w1, . . . ,wt−1. Therefore stabilization techniques are desired,
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Algorithm 1: BMRM

Input: Tolerance ε > 0, initial guess w0.
1 Initialize: t← 0.
2 repeat
3 t← t+ 1
4 Compute at ∈ ∂wRemp(wt−1), bt ← Remp(wt−1)− 〈wt−1,at〉.
5 Update model Rcp

t (w) := maxi∈[t] 〈ai,w〉+ bi.

6 Define regularized model Jt(w) := λΩ(w) +Rcp
t (w).

7 Update wt ← argminw Jt(w) using some inner solver like Algorithm 2 and 3.
8 Check εt ← min0≤i≤t J(wi)− Jt(wt).

9 until εt ≤ ε
10 return wt

and the next section will introduce two different remedies.

1.6.4 Bundle methods for regularized risk minimization

A natural heuristic for stabilization is to penalize the displacement of wt from wt−1:

wt := argmin
w

λ ‖w −wt−1‖2 + f cp
t (w).

This idea is called proximal bundle method (Kiwiel, 1990) as the cutting planes {ai, bi}
are deemed as bundles, and wt is attracted to the proximity of wt−1. A large volume

of work has been done in this area for decades, e.g., (Kiwiel, 1985) and (Hiriart-Urruty

& Lemaréchal, 1993a, Chapter XIII to XV). The underlying idea is Moreau-Yosida

regularization (Moreau, 1965; Yosida, 1964), and it guarantees to find a ε approximate

solution in O(1/ε3) steps (Kiwiel, 2000). When the objective function is strongly

convex, the convergence rate can be linear under some assumptions (Robinson, 1999).

Variants of this idea are also widely used, e.g., trust region bundle method (Schramm

& Zowe, 1992) which upper bounds the displacement instead of penalizing it; and level

set bundle method (Lemaréchal et al., 1995) which minimizes the displacement subject

to a level of f cp
t (w).

It is noteworthy that the above methods treat the objective function as a black box

which provides function and gradient evaluation at any given location. However, RRM

problems are not black boxes, but explicitly composed of two parts: empirical risk

Remp and regularizer Ω. The free availability of the regularizer motivated Teo et al.

(2007); Smola et al. (2007b) to perform cutting plane on Remp only, and use Ω as the

stabilizer. This is called bundle method for machine learning (BMRM). Different from

Moreau-Yosida regularization where wt is stabilized about wt−1, Ω(w) usually attracts

w towards its fixed center, e.g. origin for Lp regularizer and uniform distribution for
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Algorithm 2: Exact inner solver for BMRM (qp-bmrm)

Input: Previous subgradients {ai}ti=1 and intercepts {bi}ti=1.
1 Assemble At := (a1, . . . ,at) and bt := (b1, . . . , bt)

>.
2 Solve αt := argmaxα∈∆t

−λΩ∗(−λ−1Atα) + 〈α,bt〉.
3 return wt := ∂Ω∗(−λ−1Atαt)

Algorithm 3: Inexact line search inner solver for BMRM (ls-bmrm)

Input: Previous subgradients {ai}ti=1 and intercepts {bi}ti=1.
1 Assemble At := (a1, . . . ,at) and bt := (b1, . . . , bt)

>.
2 Solve ηt := argmaxη∈[0,1]−λΩ∗(−λ−1Atαt(η)) + 〈αt(η),bt〉 ,where αt(η) :=

((1− η)α>t−1, η)>.
3 αt ← ((1− ηt)α>t−1, ηt)

>.
4 return wt := ∂Ω∗(−λ−1Atαt)

entropy regularizer. Technically, BMRM modifies the cutting plane algorithm just by

replacing Eq. (1.29) with:

wt := argmin
w∈domf

λΩ(w) +Rcp
emp,t(w) = argmin

w
λΩ(w) + maxi∈[t] {〈ai,w〉+ bi}︸ ︷︷ ︸

:=Jt(w)

. (1.31)

We summarize the BMRM algorithm in Algorithm 1.

The most expensive steps in BMRM are step 4 and 7 in Algorithm 1. In step 4, the

computation of subgradient needs to go through the whole dataset, and this admits

straightforward data parallelization. In particular, ifRemp sums the loss from individual

data points like in the statistical query model (Kearns, 1998), then one can divide the

whole dataset into subsets residing on distributed computing devices, compute their

contribution to the gradient in parallel, and finally sum them up. This makes BMRM

very promising for the coming era when parallel computing is the mainstream.

The other expensive step is to solve the optimization problem Eq. (1.31), i.e. step

7 of Algorithm 1. Teo et al. (2007) resorted to the dual problem:

αt := argmax
α∈∆t

−λΩ∗(−λ−1Atα) + 〈α,bt〉 , (1.32)

where ∆t is the t-dimensional simplex
{

(α1, . . . , αt)
> ∈ Rt : αi ≥ 0,

∑
i αi = 1

}
, At :=

(a1, . . . ,at) and bt := (b1, . . . , bt)
>. The dual connection is wt = ∂Ω∗(−λ−1Atαt). See

Algorithm 2. Since the Ω∗ in this dual problem is assumed to be twice differentiable

and the constraint is a simple simplex, one can solve Eq. (1.32) with relatively more

ease, e.g., (Dai & Fletcher, 2006) which is specialized to L2 regularizer 1
2 ‖w‖

2, and

penalty/barrier methods (Nocedal & Wright, 1999) in general.
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To circumvent the growing cost of solving Eq. (1.31) or Eq. (1.32), Teo et al. (2007)

proposed the following approximation. Instead of searching for αt in ∆t, we restrict

the search domain to a line segment
{

((1− η)α>t−1, η)> : η ∈ [0, 1]
}

. See Algorithm

3. If Ω(w) = 1
2 ‖w‖

2, then we are essentially restricting the search for wt to the line

segment between wt−1 and −λ−1at. In this case, we call Algorithm 3 ls-bmrm, and

Algorithm 2 qp-bmrm as it solves a full quadratic program. As the feasible region of

ls-bmrm in Eq. (1.32) is a proper subset of that of qp-bmrm, ls-bmrm makes less progress

than qp-bmrm in each iteration, and hence converges more slowly.

The key result on the convergence rate of BMRM is (Teo et al., 2010, Theorem 5):

Theorem 27 (Convergence rate for BMRM) Assume that J(w) > 0 for all w.

Assume ‖∂wRemp(w)‖ ≤ G for all w ∈ domJ . Also assume that Ω∗ has bounded

curvature, i.e.
∥∥∂2

µΩ∗(µ)
∥∥ ≤ H∗ for all µ ∈

{
−λ−1

∑t+1
i=1 αiai : α ∈ ∆t+1

}
. For any

ε < 4G2H∗/λ, the algorithm BMRM converges to the desired precision ε after

k ≤ log2

λJ(0)

G2H∗
+

8G2H∗

λε
− 1

steps. Furthermore, if the Hessian of J(w) is bounded as
∥∥∂2

wJ(w)
∥∥ ≤ H, convergence

to any ε ≤ H/2 takes at most the following number of steps:

k ≤ log2

λJ(0)

4G2H∗
+

4H∗

λ
max

{
0, H − 8G2H∗

λ

}
+

4HH∗

λ
log2

H

2ε
.

Teo et al. (2010, Theorem 5) proved this rate for ls-bmrm where each iteration only

solves a simple one-dimensional optimization. In contrast, qp-bmrm performs a much

more expensive optimization at every iteration, therefore it was conjectured that the

rates of convergence of qp-bmrm could be improved. This was also supported by the

empirical convergence behavior of qp-bmrm, which is much better than the theoretically

predicted rates on a number of real life problems (Teo et al., 2010, Section 5). In Section

5.2, we answer this question in the negative by explicitly constructing a regularized risk

minimization problem for which qp-bmrm takes at least O(1/ε) iterations.

1.7 Outline

The rest of the thesis is organized as follows:

Chapter 2: Conditional random fields for multi-agent reinforcement

learning. We first applied graphical models to learn with distributed intelligent agents

such as traffic light control, for which conditional random fields (CRFs, Lafferty et al.,

2001) emerge as a natural way to model joint actions, and to efficiently search for

an optimal joint policy through local communications. Policy gradient RL algorithms

(Williams, 1992; Baxter & Bartlett, 2001) require inference in CRFs, and many existing
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algorithms can be utilized straightfowardly. Viewing our model from a CRF perspec-

tive, it extends the usual iid training scenario to temporal learning where the labels

(actions) are no longer iid, but update the environment and affect the next observa-

tion. We tested our framework on a synthetic network alignment problem, a distributed

sensor network, and a road traffic control system. The RL methods employing CRFs

clearly outperform those which do not model the proper joint policy.

Chapter 3: Bayesian online multi-label classification. Data in many real

world problems are available only as streams and cannot be stored. Many maximum

margin online learners tend to overfit the noise, while Bayesian methods appear more

promising because they maintain a distribution over the classifiers and are less sus-

ceptible to outliers. We applied a form of Bayesian online learning, Gaussian density

filtering (GDF, Maybeck, 1982), to multi-label classification. The training labels are

incorporated to update the posterior of the linear classifier via a graphical model sim-

ilar to TrueSkillTM (Herbrich et al., 2007) tailored for the multi-label scenario, and

inference is based on GDF with expectation propagation. Using samples from the pos-

terior, we optimize the expected F-score on the test data. Our experiments on Reuters

dataset show that our Bayesian approach delivers significantly higher macro-averaged

F-score than the state-of-the-art online maximum margin learners.

Chapter 4: Kernel measure of independence for non-iid data. Although

the rich feature space induced by kernels have been extensively utilized in supervised

learning, it was observed recently that mapping probability distributions to their mean

in an RKHS constitutes a natural characterization or embedding of distributions. This

embedding induces new distances between distributions and in addition new measures

of independence, which circumvent density estimation required by most information

theoretic approaches. Interestingly, the undirected graphical models further allow us

to factorize this kernel embedding onto cliques, which yields efficient measures of inde-

pendence for non-iid or structured data. In Chapter 4, we applied our framework to

ICA, independence test, and sequence segmentation. Methods taking into account the

inter-dependence of observations significantly outperform those treating them as iid.

Chapter 5: Lower bounds for BMRM and faster rates for training SVMs.

The optimization problems arising from maximum margin estimation are often nons-

mooth, and can be effectively solved by BMRM and SVMStruct (Tsochantaridis et al.,

2005). Smola et al. (2007b) proved that BMRM requires O(1/ε) iterations to converge

to an ε accurate solution, and we further show in Chapter 5 that this rate is tight, i.e.

there exists a function for which BMRM costs O(1/ε) steps. Motivated by Nesterov’s

optimal first-order methods (Nesterov, 2003, 2005b), we further devised an algorithm

for the structured loss which finds an ε accurate solution in O(
√

1/ε) iterations.

Extensions and proposed future work are detailed in the individual chapters.



Chapter 2

Conditional Random Fields for

Multi-agent Reinforcement

Learning

Conditional random fields (CRFs) have been studied in batch settings, where param-

eters are optimized over a training set; and online settings, where parameters are

updated after each iid sample is observed. However, there is little work on CRFs for

modeling temporal problems such as control or time-series prediction. The reinforce-

ment learning (RL) community, on the other hand, has done work on decentralized

(multi-agent) control. RL algorithms optimize a long-term measure of temporally de-

layed rewards in controlled systems. This chapter seeks to improve decentralized RL

methods by using CRF models to exploit the structure between agents exhibited in

many decentralized RL domains. Examples include sensor networks, traffic routing for

roads or networks, pursuer-evader problems, and job-shop scheduling.

Bernstein et al. (2000) proved that the complexity of learning optimal coordination

in decentralized RL is generally NEXP-hard in the number of agents. The simplest

algorithms assume all agents are independent, learning to cooperate implicitly via an

appropriate reward function (Bagnell & Ng, 2006). More advanced algorithms explicitly

share information about states, values, or proposed actions (Boutilier, 1999), but still

avoid modeling the optimal joint policy. Our work is similar to Guestrin et al. (2002),

which does model the optimal joint policy, using the underlying structure to factorize

Q-values and choose joint actions. In contrast, our approach focuses on directly opti-

mizing a joint probability distribution over preferred actions. Furthermore, we draw on

the wealth of approximate inference methods for graphical models, and CRFs in par-

ticular, to evaluate and optimize policies that would otherwise be intractable despite

the structured representation.

Traditionally, CRFs use batch training algorithms to learn model p(y|x;θ), the

probability of a label y, conditioned on observable variables x with the CRF parameters

41
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θ (Lafferty et al., 2001). During training we iterate through a set of training instances

{xi}ni=1 with labels {yi}ni=1, finding θ∗ := arg maxθ p(θ| {(xi, yi)}ni=1). To predict the

label for a novel observation x′ we select y′ := arg maxy p(y|x′;θ∗). In this work, we

show that the same inference methods used for CRFs can be used to sample node

actions from a joint stochastic RL policy. We also show how to optimize this joint

policy by estimating the gradients of the long-term reward with respect to the policy

parameters. Similar methods could be used for RL policies based on arbitrary graphical

models. From the CRF point of view, we propose a method of using CRFs for modeling

temporal processes.

Despite the commonality of using graphical models, our approach is different from

the “control as inference” model by Toussaint (2009) and the graphical game by Kearns

et al. (2001). Toussaint (2009) used graphical models to reformulate the temporal

evolution in the control problem, which serves as a unifying framework for many control

algorithms. However, the multiple agents are still treated as a black box, without being

factorized by graphical models. Kearns et al. (2001), on the contrary, does factorize

the players by a graphical model, but it is only used for computing the Nash equilibria

which is a completely different setting from reinforcement learning.

Section 2.1 and Section 2.2 are devoted to describing graphical models and rein-

forcement learning respectively, with particular emphasis on CRFs and policy-gradient

methods for RL. We then elaborate on the combination of CRF and RL in Section 2.3.

Section 2.4 describes our experiments before concluding.

2.1 Conditional random fields and inference

CRFs are a probabilistic framework for labeling and segmenting data. Unlike hidden

Markov models (HMMs) and Markov random fields (MRFs), which model the joint

density p(x, y) over inputs x and labels y, CRFs directly model p(y|x) for a given

input observation x. Furthermore, instead of maintaining a per-state normalization,

which leads to the so-called label bias problem, CRFs use a global normalization that

allows them to take global interactions into account (Lafferty et al., 2001).

In Section 1.3, we rigorously formulated CRFs in the framework of conditional ex-

ponential family. Learning algorithms leveraging efficient inference were also surveyed

in Section 1.5. Now we just briefly recapitulate the concepts and furthermore introduce

an efficient inference algorithm called tree sampling, which fits into our RL framework

and delivers satisfactory empirical performance.
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2.1.1 Conditional exponential families

Given an observation x ∈ X and a finite discrete label set Y, a conditional distribution

over labels y ∈ Y parameterized by the natural parameter θ ∈ Rd can be defined as

p(y|x;θ) = exp(〈φ(x, y),θ〉 − g(θ|x)). (2.1)

Here, g(·) is the log-partition function for normalization and the vector φ(x, y) is the

sufficient statistics (also called features) which represent salient features of the input

observations, and typically depend on the applications and CRF design. Let Θx be

the set of all valid θ: Θx := {θ : g(θ|x) <∞}. Finally we obtain the conditional

exponential family (CEF): Pφ|x := {p(y|x;θ) : θ ∈ Θx}.
Consider the more general case of structured output y ∈ Ym (m nodes). The

clique decomposition theorem essentially states that if all the conditional densities in

Pφ|x satisfy the conditional independence relations represented by a graph G = (V,E)

on y, then the sufficient statistics φ(x,y) decompose along the maximal cliques C =

{c1, . . . , cn} of G (Altun et al., 2004b):

φ(x,y) = vec
c∈C
{φc(x, yc)} , (2.2)

p(y|x;θ) = exp

(∑
c∈C
〈φc(x, yc),θc〉 − g(θ|x)

)
, (2.3)

where the vec operator concatenates vectors, c indexes the set of maximal cliques C,
and yc is the label configuration for nodes in clique c. For convenience, we will assume

that all maximal cliques have size two, i.e. an edge between nodes i and j has a feature

φij associated with it. We will also associate potentials φi to single nodes i. Node

features represent the observation of state available at each node. The edge features

encode the communication between nodes about their features and potential actions.

CRFs are examples of conditional exponential families with special graphs. For 1-D

CRFs, the graph is a chain, so the edge features are φi,i+1(x, yi, yi+1). For 2-D grid

CRFs, the edge features are φ(ij)(i′j′)(x, yij , yi′j′) where nodes are indexed by double

coordinates and |i− i′|+ |j − j′| = 1.

2.1.2 Inference and gradient computations

CRF training procedures usually minimize the negative log-posterior of the parameters

given the observation/label training set. As we will see in Section 2.2.1, policy-gradient

algorithms instead draw samples from (2.3) given the parameters θ and the most recent

observation x. CRF training procedures usually minimize the negative log-posterior of

the parameters given the observation/label training set. This involves computing the
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(a) Left (b) Up (c) Right (d) Down

Figure 2.1: Four different partitions of a 5-by-6 CRF. Nodes in shaded and white
regions are the two trees and the small black circles represent observations.

log-partition function g(θ|x). Policy-gradient algorithms also require the gradient of

the log probability of sampled labels/actions ỹ:

∂

∂θ
ln p(ỹ|x;θ) = vec

c∈C

{
φc(x, ỹc)− Ep(yc|x;θ) [φc(x, yc)]

}
, (2.4)

which exploits (2.2) and (2.3). Efficient (approximate) algorithms for sampling and

computing the feature expectations have been surveyed in Section 1.5. Below we de-

scribe in detail one such method used in our experiments.

2.1.3 Tree MCMC sampler for CRFs

The tree Markov chain Monte Carlo (MCMC) sampler of Hamze & de Freitas (2004)

is a state-of-the-art algorithm for sampling from posterior distributions and computing

expectations of sufficient statistics in undirected graphical models with regular struc-

ture and high tree width. Its basic form works on pairwise MRFs or CRFs whose

cliques are either nodes or edges.

The algorithm exploits the property that MRFs can be split into several disjoint

trees (see Figure 2.1 for four different choices of partitions). Although belief propaga-

tion (BP) on the whole MRF is prohibitively expensive, it is cheap to run BP on each

of the two trees (their tree width w = 1). So a natural idea is to combine analytical and

sampling steps: conditioned on a sample of one of the trees, use BP to compute the

exact joint conditional distribution of the other tree and draw a sample from it; then

alternate between the two trees. Moreover, knowing the exact conditional distribution

over the trees makes it possible to Rao-Blackwellize the sampler to reduce the variance

(Casella & Robert, 1996). Each partition of the tree has to exclude some edges. In

order to reduce the variance in the expectation estimates of these edges, and to cover

all edges in the graph, we need to partition the graph in several different ways. This

leads to the four partitions in Figure 2.1.

We provide the details of the tree sampler in Algorithm 4, which is specialized to
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Algorithm 4: Tree MCMC Sampling, tailored from (Hamze & de Freitas, 2004)

Input:

• A graphical model G = (V, E) of labels with node set V and edge set E .

• A set of features defined on nodes φi(·), i ∈ V, and on edges φii′(·, ·),
(i, i′) ∈ E ′ ⊆ E .

1 Initialize:

• Set scores Sai = 0 for all nodes i ∈ V and its possible assignments a;

• Set scores Saa
′

ii′ = 0 for all edges (i, i′) ∈ E ′ and all its possible assignments a, a’.

• Find a set of partitions of node indices I so that E ′ is covered by edges of these
trees:{

∆p
r

∣∣∣p = 1 . . . P, r = 1 . . . Rp,∆
p
r ∩∆p

r′ = ∅ for r 6= r′,∪Rpr=1∆p
r = I,∪r,pE∆p

r
⊇ E ′

}
,

where E∆p
r
, {(i, i′) ∈ E : i, i′ ∈ ∆p

r}, and similar notations will be used below.

2

3 for p = 1 to P /*for all partitions*/ do
4 Randomly initialize label nodes on all trees in partition p conditioned on

observations x.
5 for t = 1 to T /*loop till convergence or exit criteria are met*/ do
6 for r = 1 to Rp /*all trees in partition p*/ do
7 Apply BP to compute the following smoothing densities:

• p
(
yi

∣∣∣∣yt∆p
1
, . . . , yt

∆p
r−1
, yt−1

∆p
r+1
, . . . , yt−1

∆p
Rp

,x

)
, for all i ∈ ∆p

r ;

• p
(
yii′

∣∣∣∣yt∆p
1
, . . . , yt

∆p
r−1
, yt−1

∆p
r+1
, . . . , yt−1

∆p
Rp

,x

)
, for all (i, i′) ∈ E ′

∆p
r
.

8

9 Increment score

• Sai ← Sai + p

(
yi = a

∣∣∣∣yt∆p
1
, . . . , yt

∆p
r−1
, yt−1

∆p
r+1
, . . . , yt−1

∆p
Rp

,x

)
, ∀i ∈ ∆p

r , a;

• Saa′ii′ ← Saa
′

ii′ + p

(
yii′ = aa′

∣∣∣∣yt∆p
1
, . . . , yt

∆p
r−1
, yt−1

∆p
r+1
, . . . , yt−1

∆p
Rp

,x

)
,

∀(i, i′) ∈ E ′
∆p
r
, a, a′.

10

11 Sample yt
∆p
r
∼ p

(
y∆p

r

∣∣∣∣yt∆p
1
, . . . , yt

∆p
r−1
, yt−1

∆p
r+1
, . . . , yt−1

∆p
Rp

,x

)
using forward

filtering / backward sampling.

12 Normalize Sai ← Sai /
∑

a S
a
i , i ∈ V, and Saa

′
ii′ ← Saa

′
ii′

/∑
a,a′ S

aa′
ii′ , (i, i′) ∈ E ′.

13 return Rao-Blackwellised estimators

E(φi) =
∑

a
φi(a)Sai , E(φii′) =

∑
a,a′

φii′(a, a
′)Saa

′
ii′ .
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the pairwise maximal cliques. Empirically tree sampling is considerably more efficient

than other partition based sampling schemes and the näıve Gibbs sampler, and with

provable faster geometric convergence rate and lower variance (Hamze & de Freitas,

2004).

2.2 Reinforcement learning

A Markov decision process (MDP) consists of a finite set of states s ∈ S of the world,

actions y ∈ Y available to the agent in each state, and a reward function r(s) for

each state s. In a partially observable MDP (POMDP), the controller sees only an

observation x ∈ X of the current state, sampled stochastically from an unknown dis-

tribution p(x|s). Each action y determines a stochastic matrix P(y) = [p(s′|s, y)] of

transition probabilities from state s to state s′ given action y. The methods discussed

in this paper do not assume explicit knowledge of P(y) or of the observation process.

All policies are stochastic, with a probability of choosing action y given state s, and

parameters θ ∈ Rn of p(y|x;θ). The evolution of the state s is Markovian, governed

by an |S| × |S| transition probability matrix P(θ) = [p(s′|s;θ)] with entries

p
(
s′|s;θ

)
=
∑

y∈Y
p (y|s;θ) p

(
s′|s, y

)
. (2.5)

We assume an average reward setting where the task is to find a policy, or equivalently

the parameter θ, which maximizes

R(θ) := lim
T→∞

1

T
Eθ

[
T−1∑
t=0

r(st)

]
, (2.6)

The expectation Eθ is over the distribution of state trajectories {s0, s1, . . . } induced

by P(θ).

The core idea of this paper is to treat CRF distributions over labels, p(y|x;θ),

exactly as joint distributions over multi-agent RL actions, i.e. a stochastic policy. Each

node in the CRF will represent a single RL agent. The joint stochastic policy will

give the probability of a vector of actions p(y|x;θ). The observations available to

agent/node i are represented by the sufficient statistics φi(x,yi). However, we also

need the edge “observations” φij(x,yi,yj) to represent the information that can be

communicated between neighboring agents i and j. Thus all we need for a CRF-RL

model is a family of RL algorithms that directly optimizes stochastic policies.
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2.2.1 Policy-gradient algorithms

Policy-gradient (PG) algorithms optimize polices by performing gradient ascent on a

parameterized policy (Williams, 1992; Sutton et al., 2000; Baxter & Bartlett, 2001).

These algorithms require only a parameterized and differentiable policy model p(y|x;θ),

and a way to compute the gradient of the long-term reward R(θ).

A number of algorithms (Williams, 1992; Baxter & Bartlett, 2001; Peters et al.,

2005) compute a Monte Carlo approximation of the reward gradient: the agent interacts

with the environment, producing an observation, action, reward sequence

{x1, y1, r1,x2, . . . ,xT , yT , rT }.1

For example, under mild technical assumptions, including ergodicity and bounding all

the terms involved, Baxter & Bartlett (2001) obtain

∂̂R

∂θ
=

1

T

T−1∑
t=0

∂

∂θ
ln p(yt|xt;θ)

T∑
τ=t+1

βτ−t−1rτ , (2.7)

where an eligibility discount β ∈ [0, 1) implicitly assumes that rewards are exponentially

more likely to be due to recent actions. Without it, rewards would be assigned over a

potentially infinite horizon, resulting in gradient estimates with infinite variance. As β

decreases, so does the variance, but the bias of the gradient estimate increases (Baxter

& Bartlett, 2001). In practice, (2.7) and all other policy-gradient algorithms share the

same core estimator that make use of an eligibility trace

et = βet−1 +
∂

∂θ

∣∣∣∣
θ=θt

ln p (yt|xt;θ) (2.8)

Now δt = rtet is the gradient of R(θ) arising from assigning the instantaneous

reward to all log probability gradients, where β ∈ [0, 1) gives exponentially more credit

to recent actions. Additionally, β may be 1.0 for finite-horizon problems (Williams,

1992). The different policy-gradient algorithms vary in how they use instant gradient

estimates δt.

For the experiments in this paper we adopt an online variation of the natural actor-

critic (NAC) algorithm (Peters et al., 2005; Richter et al., 2007). While the NAC algo-

rithm uses the estimator (2.8), it improves performance over (2.7) by: a) using a critic

that approximates a projection of value function, with discount factor γ ∈ [0, 1), to re-

duce variance of the gradient estimates; b) using a clever choice of critic parametrization

to naturalize gradients (Amari, 1998); and c) using a least squares approach to solve

1We use rt as shorthand for r(st), making it clear that only the reward value is known, not the
underlying state.
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Algorithm 5: Online Natural Actor-Critic.

1 t = 1, A−1
1 = I, θ1 = [0], e1 = [0].

2 α=step size, γ=critic discount, β=actor discount.
3 Get observation x1.
4 while not converged do
5 Sample action ỹt ∼ p(·|xt,θt).
6 et = βet−1 + [ ∂

∂θ

∣∣
θ=θt

ln p (ỹt|xt;θ)ᵀ ,xᵀt ]
ᵀ.

7 Do actions ỹt.
8 Get reward rt.
9 δt = rtet.

10 Get observation xt+1.

11 wt = [ ∂
∂θ

∣∣
θ=θt

ln p(ỹt|xt,θ)ᵀ,xᵀt ]
ᵀ−γ[0ᵀ,xᵀt+1]ᵀ.

12 εt = 1− t−1.

13 ut = (ε−1
t − 1)A−1

t−1et.

14 qᵀt = ε−1
t wᵀtA

−1
t−1.

15 A−1
t = ε−1

t A−1
t−1 −

utq
ᵀ
t

1+qᵀ
t et

.

16 [dᵀt ,v
ᵀ
t ]
ᵀ = A−1

t δt (just to extract dt, vt is never used).
17 θt+1 = θt + αdt.
18 t← t+ 1.

for the naturalized gradients, making full use of simulated trajectories. Algorithm 5 is

used in our experiments (Richter et al., 2007).

2.2.2 Decentralized multi-agent RL

Decentralized (PO)MDPs assume a number of agents, each with a local observation of

the state space. Here the action y becomes a vector giving the action for each agent.

In the general case, optimal decision making in Decentralized MDPs is NEXP-hard

in the number of agents (Bernstein et al., 2000), due to the combinatorial degree of

communication required between the agents to coordinate actions. Many approximate

approaches exist including no communication (Peshkin et al., 2000); explicit actions

to communicate state information (Boutilier, 1999); local sharing of value functions

(Schneider et al., 1999); and others with varying degrees of formalism. Under a common

global reward, and some forms of local reward (Bagnell & Ng, 2006), agents that do

not communicate can learn to cooperate implicitly to maximize the global reward

(Boutilier, 1999). However, unless each agent has access to the full state description,

they will generally not be able to act optimally. Our contribution is to introduce

a mechanism for agents to efficiently — due to the graph structure of the CRF —

communicate in order to converge to a joint policy. Our choice of policy-gradient

algorithms is motivated by their ease of integration with CRFs, but they have the
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additional benefit of being guaranteed to converge (possibly to a poor local maximum)

despite the use of function approximation and partial observability. Our model of

multi-agent learning is similar to Guestrin et al. (2002), which uses an exact form of

BP for factorizing Q-values and choosing jointly optimal actions, and hence may still

be intractable for high tree width graphs.

2.3 Conditional random fields for RL

Applying CRFs for distributed RL is relatively straightforward: simply assume that the

policy, p(y|x;θ), of the POMDP factorizes according to a CRF. The agents correspond

to the label nodes, and the edges encode the spatial or temporal collaboration between

agents. In order to apply PG methods one needs: a) the ability to draw an action from

the policy model (step 5 of Algorithm 5); and b) computation of the gradient of the log-

probability of the sampled action (step 6,11 and Eq. (2.4)). Efficient implementations

rely on approximate sampling algorithms like the tree MCMC sampler described in

Section 2.1.3. One can also easily verify that exponential families in general, and

CRFs in particular, satisfy the mild technical conditions required for PG methods to

converge, as long as all features are bounded.

Interestingly, the CEF policy representation (2.1) implements exactly the soft-max

stochastic policy with linear feature combinations commonly encountered in RL appli-

cations, e.g. (Richter et al., 2007). Only the edge features prevent the trivial factor-

ization of the distribution into independent agents that was demonstrated by Peshkin

et al. (2000).

From the perspective of multi-agent RL, CRFs make efficient decentralized RL

possible. By using conditional independence assumptions, the search space of the

policy-gradient methods factorizes, leading to faster learning. Also, even though a CRF

requires only local connections between agents, global interactions are still incorporated

by belief propagation.

From a graphical models point of view, our technique is different from the usual

online or offline training methods in two important ways. The training data is no longer

iid. The action at time step t stochastically determines the input at time step t + 1.

Furthermore, the evaluation metric is no longer a loss function but a reward function

that depends on both the current state and future states.

Superficially, our setup looks similar to dynamic Bayesian networks (DBNs). DBNs

are directed graphical models (in contrast to CRFs which are undirected graphical

models) used to represent models that evolve with time. Typically DBNs are used for

a) filtering: monitor the hidden system state s over time by computing p(st|x1 . . .xt); b)

prediction: computing p(st+1|x1 . . .xt); or c) smoothing: computing p(st−1|x1 . . .xt).
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Buffers
p(arrive)=0.5

r+=3

r+=8

Figure 2.2: Abstract grid alignment domain.

In an RL context DBNs have been used to estimate the state transition matrix P(y),

as well as the distribution p(x|s), in order to resolve partial observability in a POMDP

(Theocharous et al., 2004). In contrast, we use CRFs as a policy, rather than as a state

transition model.

We have shown how to learn reactive policies that ignore the fact that the true

MDP state is unknown. Fortunately, PG methods still converge in this case. To take

partial observability into account we could encode (long term) observation history, or

a belief state (if P(y) and p(x|s) are known), into the sufficient statistics.

2.4 Experimental results

We performed experiments on one toy domain to demonstrate why a joint policy is

important, and two benchmark decentralized RL domains.

2.4.1 Grid alignment

We constructed an abstract traffic domain, where it was known that agents would have

to coordinate their actions in order to perform well, even in the case of a common global

reward. Traffic flows along the edges of an n×n grid, always traversing to the opposite

edge of the grid without turning (see Figure 2.2). Each intersection grid lines is an agent

that controls a gate. The actions of a gate allow traffic to flow vertically or horizontally

at each time step. Traffic units arrive with probability 0.5 per time step per boundary

node (but only the top and left boundaries). Importantly, traffic cannot flow until all

the gates on the traffic’s path line up. When this happens, all waiting traffic for that



§2.4 Experimental results 51

Table 2.1: Learning algorithm parameters. Lower β and γ give lower variance but
higher bias in the gradient estimation. Too small α leads to slow learning, but too large
α causes zigzag which also slows down the learning. αnode is N/A for Traffic because
it does not use node features.

Domain αind αnode αedge β γ runs

Grid .002 .00001 .002 0.6 0.5 100

DSN .0005 .00025 .0005 0.6 0.5 100

Traffic .001 N/A .01 0.9 0.95 50
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Figure 2.3: Average reward over the last 1000 steps, and iterations to optimality.

line propagates through instantly and each unit of traffic contributes +1 to a global

reward. One or more misaligned gates blocks traffic, causing the length 10 buffer to

fill up as traffic arrives. Full buffers drop traffic. Two observations per node indicate

the normalised number of traffic units waiting for the node to align vertically, and

horizontally. Edge features are 1 if the two nodes agree on an alignment, 0 otherwise.

The optimal policy is for the all the n2 gates to align in the orientation of the most

waiting traffic, but since each node only knows how many traffic units are waiting for

it, it must “negotiate” with neighbors on which way to align.

Learning parameters: The CRF model is a 2-D grid, with nodes for each agent,

and edges for all nodes connected by a grid line. Due to the 2-D nature of the CRF,

MCMC estimation of the log partition function, and its gradient were required. MCMC

estimation needed 10 tree samples. To initialize the tree sampler, we randomly picked

a spanning tree of the whole graph and sampled from the tree. Empirically, this

allows us to obtain a good estimation of the distributions much faster than starting

with independent node randomization. Other parameters, including the number of

independent learning runs, are summarized in Table 2.1. To prevent poor local maxima

when n > 5 we needed step sizes for edge feature parameters αedge to be larger than
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Figure 2.4: Sensor network domain
with 8 sensors, 2 targets, and 3 cells.

for node feature parameters αnode, boosting the effect of edge features on the policy.

Results: The optimal reward is the grid size n. Figure 2.3 shows the CRF RL

approach compared to a näıve implementation with independent agents. The CRF

approach obtains the optimal reward all the way to grid size 10 (100 nodes), at which

point some runs fail to reach the optimal policy. The number of iterations required to

reach the optimal reward for the first time is shown on the right panel.

2.4.2 Sensor networks

The distributed sensor network (DSN) problem is a sequential decision making variant

of the distributed constraint optimization problem described in (Dutech et al., 2005).

The network consists of two parallel chains of an arbitrary, but equal, number of

sensors. The area between the sensors is divided into cells. Each cell is surrounded

by four sensors and can be occupied by a target. With equal probability targets can

(from left to right) jump to the cell to its left, to its right, or remain where it is. Jumps

that would cause a collision are not executed. The goal of the sensors to capture all

targets. With initial configuration as in Figure 2.4, there are 37 distinct states. Each

sensor can perform three actions resulting in a joint action space of 38 = 6561 actions.

The actions are: track a target in the cell to the left, cell to the right, or none. Every

track action has a reward of -1. When in one time step at least three of the four

surrounding sensors track a target, it is hit and its energy level is decreased by 1. Each

target starts with an energy level of 3. When it reaches 0 the target is captured and

removed. The three sensors involved in the capture are each provided with a reward

of +10, and the goal is to maximize the total reward of all sensors. An epoch finishes

when all targets are captured. If the DSN cannot capture all targets within 300 steps,

the epoch is terminated, and a new epoch is started. A set of 50 randomly chosen

initial states (with replacement) is cycled through for one episode. We run for 200

episodes and study the average reward of each episode. Finally, the whole process is

independently repeated for 100 runs, and we report the average optimal reward and

number of episodes.
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Figure 2.5: Results over 100 runs of the Sensor Network scenario, varying the number
of targets.
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Figure 2.6: Results over 100 runs of the Sensor Network scenario, varying the number
of cells.

Learning parameters: We experimented with two alternative CRF models, a cycle

in which neighboring sensors along the top and bottom are connected as chains, and

the cycle is completed with an edge between top and bottom sensors on the left and

right ends. The chain is a more complex arrangement. Local sensors are bunched

into groups of three (one top sensor, two bottom sensors and vice/versa). These meta-

sensors form one CRF node. All the meta-sensors are connected in a 1-D chain, so the

log-partition function and its gradient can be efficiently estimated.

Each node (or meta-node) has access to whether there is a target in its left and

right cells (two binary values with two dummy cells at the two ends always observing

no target). For the chain topology, the single edge feature is whether there are at least

three out of four sensors focusing on their common cell. For the cycle topology, a single

edge feature encodes whether connected sensors are focused on the same cell.
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Results: The problem in Figure 2.4 has an optimal long-term average reward of 42.

The best results from Dutech et al. (2005) use a distributed Q-learning approach where

neighbors’ Q-values are averaged (which implicitly assumes communication), achieving

an average reward of less than 30. Figure 2.5 shows that CRF modeling with NAC

achieves the optimal reward for this problem, and problems where the number of targets

is increased up to 10. The ease with which we outperform the distributed Q-learning

approach is not surprising, since the CRF allows sensors to agree on which target to

focus on. We obtain similarly good results when the number of targets is fixed and

more cells are added (Figure 2.6). The curious peak in the required iterations for 5 cells

corresponds to the difficult situation where there are not enough sensors, and targets

are able to jump around with few collisions. Adding more cells also adds more sensors,

so that an individual sensor is rarely required to focus left and right at the same time.

In both experiments the chain CRF does marginally better, probably due to the tighter

coupling of the sensors and exact evaluation of the log-partition function.

2.4.3 Traffic light control

Many drivers have been frustrated by driving along a main street, to be constantly

interrupted by red lights. This domain demonstrates learning an offset between neigh-

boring intersections. The domain and simulator code are from Richter et al. (2007),

which contains the full implementation details. We model one main road with n con-

trolled intersections and n + 1 road links to traverse. It takes cars 2 time units to

travel down a road to the next intersection. There are 4 actions, corresponding to

the 4 traffic signal patterns that allow traffic to move through the intersection safely

in any direction. For this experiment only the action that lets traffic drive straight

ahead along the main road is useful. At each time step (about 5 seconds of real-time)

the controller decides on the action for the next step. We do not restrict the order of

actions, but importantly, we enforce the constraint that all actions must be activated

at least once within 8 time steps so that vehicles on side streets would not wait forever.

One car enters the leftmost end of the road every 4 time steps. We use realistic local

rewards for each intersection: each intersection has an inductive loop sensor that can

sense a car waiting, producing a −1 reward. For edge (i, j) where j is downstream of

i, the edge parameters receive j’s reward. This is different from the grid and sensor

network case where a single scalar global reward is used. Our current work focuses

on the factorization of the actions of the multiple agents. The influence of the reward

factorization is left for future research.

Learning parameters: Each intersection is a CRF node that chooses from one of

the four actions. For independent learners the only feature is a constant bias bit that
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Figure 2.7: Results over 50 runs of the road traffic offset scenario. The X-axis is
intersections. The left Y-axis is the travel time.

allows learning of which phase is the most commonly used. No node features were given

to the CRF. The edge features for the CRF version are an a× a binary matrix, where

a is the number of actions. Bit i, j is on if the action of the upstream neighbor i from

2 time steps ago (the time required to drive down the road edge) matches the chosen

action of the current intersection j. The edge feature matrix has exactly 1 bit set to

true in the matrix in any step. Typically a road traffic network would be represented as

an undirected graph. But this simple scenario is one long road, thus can be represented

as a chain CRF.

Results: Figure 2.7 shows the results on the road traffic domain in the same style as

previous results. Again, the CRF model clearly outperforms the independent agents

approach. We observed, however, that early in learning both the independent agents

and CRF learn that all traffic moves left to right. Giving the maximum possible time

to this direction is a strong local minimum. After that, the independent agents fail to

improve but the CRF model asymptotically approaches the optimal 0 waiting time.

Figure 2.8 shows convergence plots for the CRF approach versus the independent

agents.

2.5 Conclusions

We have shown how to use CRFs to model control processes, or equivalently, how

decentralized RL can be performed with CRF optimisation methods. Although all our

examples have been related to controlling a process, a special case is where rewards

are given simply for predicting the next input, i.e., time series prediction. From a

reinforcement learning point of view we have presented an efficient policy-gradient
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Figure 2.8: Convergence of NAC on the independent agents (upper curve) and on
CRF model (lower curve). The number of controllable intersections is 14.

solution to the difficult problem of optimizing joint actions in a decentralised (PO)MDP.

Future work could explore RL in general graphical models, and how local rewards may

be propagated through a graphical model.



Chapter 3

Bayesian Online Learning for

Multi-label and Multi-variate

Performance Measures

Many real world applications involve a large number of classes and each example can

be associated with multiple classes. For example, a lot of web based objects such as

ads, blogs, web pages, RSS feeds are attached with tags which are essentially forms of

categorization. A news article on “Obama supported the AIG bailout of $170 billion

after some debate in Congress” can be associated with insurance, economics, and

politics. This setting is referred to as multi-label classification in machine learning.

Cases in point can be found in search engine industry. Most search engines are free

to use, and their revenue comes from users clicking on the ads embedded in the search

result. To select and place ads, tags play an important role. Advertisers provide ads

and their associated keywords, together with a bid once this ad is clicked. Upon a

search request, the ad ranker and filter are invoked to select the ads for display, with

an eye to maximizing the expected revenue which depends on a) how likely will the

user click it, and b) the price calculated from a Vickrey auction of advertisers’ bids. It

will be very helpful for ad selection if ads can be automatically attached with multiple

tags, or categorized into a hierarchy or ontology associated with odds of memberships.

Learning for multi-label data is usually faced with the following practical challenges:

1. The problem scale is huge in a) number of data points n, b) number of feature

D, and c) number of class C. Usually, O(nDC) computational complexity is the

limit we can afford. Hence efficiency becomes necessary and expensive operations

such as pairwise comparison must be avoided.

2. The performance measure is usually more complicated than accuracy, e.g. micro-

average F-score, area under ROC curve. These measures are usually called multi-

variate measure because they couple the labels of all the classes in the dataset in

57
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a nondecomposable way. This incurs two complexities: a) most existing training

algorithms simply optimize error rates per class which may lead to poor models

even on the training set under this new measure, and b) the application of the

trained model need to be calibrated over the whole testing set.

3. The labels can be highly correlated, e.g. co-occurrence. More importantly, the

labels in many applications employ a tree structured ontology hierarchy, i.e.

all ancestor classes of a relevant class must also be relevant. Examples include

the patent classification hierarchy according to the World International Patent

Organization, and the enzyme classification scheme for classifying amino acid

sequences of enzymatic proteins. Another example is the Pascal challenge on large

scale hierarchical text classification1 which is based on the ODP web directory

data (www.dmoz.org).

Several algorithms have been proposed for multi-label learning, and they can be

categorized in three dimensions: a) online v.s. batch, b) frequentist v.s. Bayesian, and

c) using structures in the label space v.s. treating the labels as independent. This

categorization helps us to analyze how much these algorithms fit for the above three

challenges, and also motivates our new algorithm.

The most primitive algorithms are in the batch fashion. A typical frequentist

method is based on SVMs (Elisseeff & Weston, 2001), which generalizes the binary

hinge loss to the maximum inconsistency on data point x:

max
c∈R

max
c′∈I
〈wc,x〉 − 〈wc′ ,x〉 ,

where R and I are the set of relevant and irrelevant labels of x, and wc is the weight

vector for class c. This approach has complexity O(|R| |I|) hence not suitable for

large number of class. Among the Bayesian methods, mixture models are the most

straightforward. They assume that each document has an unknown “topic”, and each

word is generated by the topic through a multinomial distribution. To cater for the

multi-label scenario, McCallum (1999) proposed blowing up the latent topic space to

the power set of all the topics, and EM was used to estimate the parameters with

special care paid to overfitting which results from the exponentially large latent space.

Unfortunately, all these batch methods are very expensive in parameter estimation,

hence not suitable for the first challenge. For large datasets, one effective and efficient

scheme is to visit the data points one by one, and at each step update the model

by using just a single data point. This online learning scheme keeps each iteration

cheap and incrementally learns a good model. It also allows the training examples to

1http://lshtc.iit.demokritos.gr
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be provided as a stream with no need of storing the data. The any-time property is

valuable as well: one can pause the process at any time and use the current model; once

new data arrives, learning can be resumed with no need of re-training from scratch.

Although online learning has been widely used for binary classification, it is less

studied for the multi-label scenario. Crammer & Singer (2003) proposed an additive

online algorithm for category ranking. Given a data point, it compares the output of

the model for each pair of relevant and irrelevant classes, and the difference is used to

update the weight vector of these two classes. To avoid the quadratic complexity as in

(Elisseeff & Weston, 2001), it devised a pre-computation such that the time complexity

is reduced to linear in the number of classes, and the space cost to sub-quadratic.

Bayesian online learning is also popular, e.g. (Opper, 1998). They essentially perform

assumed density filtering, where at each step the posterior of the model is updated

based on a single data point. We are unaware of any published Bayesian online learner

for multi-class or multi-label classification.

In a nutshell, Bayesian methods learn a distribution over a family of models, while

frequentist methods find the most probable model. They are both useful and commonly

used. Intuitively speaking, although learning and using a distribution of the models

are generally more expensive in computation, they provide more flexibility in decision

making and allow the model to be used in a completely different way from how it was

learned (decoupling). A case in point is the multi-variate performance measure. In

(Joachims, 2005), the training of SVM is customized for the multi-variate measure,

however the testing data are still labeled by applying the learned model independently.

In contrast, with a distribution of models available, the Bayesian method can a) provide

a principled framework of labeling the testing data to optimize multi-variate measures

in a batch fashion, and b) allow the distribution of the model to be estimated with

a different and decomposable measure (such as square loss), which is especially useful

when the large dataset size necessitates online learning.

Finally, to make use of the structure in the label space as desired from the last chal-

lenge, frequentist methods such as (Rousu et al., 2006) use the framework of maximum

margin Markov network, where the class hierarchy is represented by a Markov tree.

This tree plays a key role in the definition of the discrepancy between labels, and of the

joint kernels (kernels on the pair of feature and label). On the Bayesian side, the most

straightforward way to incorporate label interdependency is the conditional random

fields (CRFs), based on which Ghamrawi & McCallum (2005) directly incorporated

label co-occurrences into the features. Interestingly, this CRF model can also induce

the structure of labels from the data, instead of relying on a given structure that is

assumed by Rousu et al. (2006). However, they trained the CRF in a batch fashion

and it is not clear whether the model can also be learned efficiently in the stochastic
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online setting.

Summarizing the above discussion, we propose in this chapter a Bayesian online

multi-label classification (BOMC) framework which learns a probabilistic model of the

linear classifier (Section 3.1). As an initial work, the labels are only loosely coupled

in our model for the multi-label scenario, while extension to more general structures

is straightforward for future work. The training labels are incorporated to update the

posterior of the classifiers via a graphical model similar to TrueSkillTM (Herbrich et al.,

2007), and inference is based on assumed density filtering between training examples

and expectation propagation (Minka, 2001) within each training example (Section 3.2).

This allows us to efficiently use a large amount of training data. Using samples from

the posterior of the model, we label the test data by maximizing the expected F-

score (Section 3.3). Experimental results are presented in Section 3.4, including the

comparison of macro-average F-score and training time. The whole chapter is concluded

in Section 3.5 with several proposal for future research.

3.1 A Bayesian model for multi-label classification

Suppose we have n training examples whose feature vectors are
{
xi ∈ RD

}n
i=1

. As-

sume there are C classes2, and the label vector yi of each example uses the canonical

representation for multi-label: yi ∈ {0, 1}C and yic = 1 if, and only if, example xi is

relevant to class c, and 0 otherwise.

Our basic assumptions on the model include the following:

1. Each class is associated with a linear discriminant, i.e. weight vector w and bias

b: 〈w,x〉 − b.

2. The weight and bias are independent Gaussians. Their mean and variance are

estimated from the training data.

In the following sections, we start from a special case of multi-label classification:

multi-class classification. This allows us to introduce the most important concepts of

the framework without being complicated by the multi-label ingredients. Afterwards,

we will propose and compare three models for multi-label classification.

3.1.1 Multi-class classification

In multi-class classification, there are multiple classes and each example belongs to

exactly one class. For each training example x, a factor graph to model the likelihood

2We are very reluctant to use capital letters to denote numbers. However, since the later description
of algorithms will require explicit indexing of class and feature dimensions, we find it much more
intuitive to use D as the total number of features and d as the index for it. Similarly, C classes indexed
by c.
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Figure 3.1: A factor graph for multi-class classification. Class 2 is the true label.

is built depending on its label. Figure 3.1 shows the case where example x has label 2.

Round circles represent random variables and solid rectangles represent factors which

are detailed below.

Priors. Each class c ∈ [C] has a corresponding weight vector wc ∈ RD endowed with

a prior. The simplest form of prior is a diagonal Gaussian, i.e. all the elements of wc

are independent Gaussians as represented in the top row of factors in Figure 3.1.

Linear combination. We use a simple linear discrimination model for all classes:

ac := 〈wc,xi〉, and this is encoded by the linear combination factor:

Fwa(wc, ac) := δ(ac − 〈wc,x〉),

where δ(·) is the Dirac function: δ(x) = 0 for all x 6= 0 and
∫
R δ(x)dx = 1.
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Feature noise. To model the feature noise, we define the noisy discriminant by

passing ac through a Gaussian noise factor with a pre-specified variance β2, i.e.

Faf (fc, ac) :=
1√

2πβ2
exp

(
−(fc − ac)2

2β2

)
. (3.1)

Intuitively, this noise serves as a square loss when the dataset is not linearly separable,

and β−2 corresponds to the regularization parameter.

Label comparison. The label of x is assumed to be argmaxc∈[C] fc. This assumption

is encoded by comparing the fc of the correct class (2 in this example) with that of

the rest classes, and enforcing the difference to be positive by using a δ(· > ε) factor,

where ε is a small positive margin.

Ffd(fl, fc, dc) = δ(dc − (fl − fc)), (3.2)

Fd(dc) = δ(dc > ε), (3.3)

where l = 2 is the correct label, and c ranges over all the other classes. Note that the

δ in Eq. 3.2 is again the Dirac function, while the δ in Eq. (3.3) is 0-1: δ(p) = 1 if p is

true, and 0 otherwise.3

Clearly, δ(dc > ε) is not the only way to enforce the correct label. In the similar

spirit of probit regression, one can use Φ(dc) as Fd(dc) where Φ(·) is the cumulative

distribution function of the standard normal distribution. Although Φ is smooth, exact

inference is still intractable.

A few notes on the connotation of the model in Figure 3.1 is in order. The product

of the factors below the dashed line is defined as the likelihood p(yi,a, f ,d|w) (omitting

the conditioning on xi), while product of the factors above the dashed line equals the

prior p(w). So the product of all factors in the graph equals p(yi,a, f ,d,w). So

summing out all the a, f ,d,w, we obtain p(yi) which is called evidence in the Bayesian

theory. It is crucial to understand that this is not a function of yi, but just for the

particular given yi. Our model does not specify the probability for any other possible

label of xi, and there is no node that corresponds to the label. Fortunately, this

is sufficient for our need because we will be only interested in p(w|yi), which, as a

function of w, is equal to p(w,yi) up to a normalizing constant p(yi). Now that

the product of all the factors in Figure 3.1 is exactly p(yi,a, f ,d,w), p(w,yi) (hence

p(w|yi)) as a function of w can be obtained by summing out a, f ,d. This can be

equivalently achieved by treating Figure 3.1 as a factor graph which defines a joint

3The notation of δ is standard in both cases. And this overloading does not cause any ambiguity:
when applied on a real number, δ means Dirac function; and when applied on a predicate, it means
0-1.
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Figure 3.2: A factor graph for multi-label classification via pairwise comparison. Here
class 2 and 4 are the relevant labels.

distribution over a, f ,d,w (Definition 21), and then query the marginal distribution of

w by summing out a, f ,d.

The fact that the label only affects the comparisons between fc is slightly suggestive

of the “gate notation” by Minka & Winn (2009) which conveniently represents mixture

models and context-sensitive independence in factor graphs. But in our case there is no

point introducing yi as a gate variable because yi is deterministically given. However,

when the given labels are noisy, then the true label becomes a random variable and

the gate notation becomes useful.

It is noteworthy that this diagram is very similar to the TrueSkillTM algorithm

(Herbrich et al., 2007), but they are different in the following ways: a) the factor

graph in our case corresponds to a fixed example x instead of multiple examples (play-

ers/teams), b) each class is associated with a different weight vector while TrueSkillTM

uses a common weight vector, and c) there is only one winner in our diagram, while

TrueSkillTM has several winners which entails pairwise comparison. In Section 3.2, we

will discuss how to learn the model parameters, i.e. the mean and variance of the prior.

3.1.2 Multi-label classification

In multi-label classification, each example can be associated with more than one label

or no label at all. Accordingly, we only need to modify the comparison part of the

model in Figure 3.1, keeping the linear combination and noise part intact. The new

model is shown in Figure 3.2.

The fundamental assumption in the new model is that the noisy discriminant value

fc of relevant4 classes should be higher than that of the irrelevant classes. No com-

parison is made within relevant classes or irrelevant classes. This idea is the same

4We changed “correct” to “relevant” to reflect the multi-label scenario.
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Figure 3.3: A factor graph for multi-label classification using max and min factors.

as in (Elisseeff & Weston, 2001). The biggest problem of this model is the computa-

tional cost. An example with R relevant labels and C − R irrelevant labels will cost

O(R(C −R)) complexity both in time and space.

A simple and equivalent reformulation of pairwise comparison is by introducing the

max and min factors:

min
c: c is relevant

fc − max
c: c is irrelevant

fc > ε,

and the corresponding factor graph is shown in Figure 3.3. This reduces the number

of factors back to linear. However, a new problem arises from the inference with max

and min factors, for which only approximate message formulae are available and the

error analysis is hard. We will present the details on message passing over max and

min factors in Appendix B.3.2, which is based on (Afonja, 1972).

A further simplification is by assuming that the relevance of the labels conforms

with an underlying total order. This translates to associating some score fc with each

class c, and fc > fc′ implies that c must be relevant once c′ is. Equivalently, we can

determine the relevance of all classes by thresholding all fc by a global threshold b

which needs to be estimated from the training data as well. We also call b a global

bias due to its equivalence to thresholding fc − b at 0. Figure 3.4 illustrates this idea

graphically. One can further incorporate a “local” bias for each individual class by, for

example, adding an artificial constant feature. This could also eliminate the need of

the global bias. We will compare these two models in the experiment.
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3.2 Online learning and inference

We discuss in this section how to use the training data to learn the model, i.e. the

distribution of weights and bias. Bear in mind that the graphical models in Figure 3.1,

3.2, 3.3 and 3.4 correspond to one particular training example. So we need to make

two decisions:

1. Given a training example and its corresponding graph, how to infer the posterior

of the model?

2. How is the set of training data used as a whole, i.e. how are the graphs of different

training examples connected?

Our answer is: expectation propagation (EP, Minka, 2001) for the first question

and Gaussian density filtering (Maybeck, 1982) for the second. Below are the details.

3.2.1 A Bayesian view of learning

Assume we have n feature/label pairs
{

(xi,yi)
}n
i=1

drawn iid from some underlying

distribution. Suppose we have a prior distribution p0(w) on the weight vector w, as

well as a likelihood model p(xi,yi|w). In Bayesian learning, we are interested in the

posterior distribution of w.

p(w|
{

(xi,yi)
}

) =
p0(w)

∏
i p(x

i,yi|w)∫
p0(w)

∏
i p(x

i,yi|w)dw
.

The integral in the denominator can be computationally intractable, hence various

approximation algorithms have been developed (see Section 1.5). Due to the large
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Algorithm 6: Gaussian density filtering.

Input: A set of feature/label pairs for training
{

(xi,yi)
}n
i=1

.
Output: Approximate posterior of the model.

1 Initialize: Specify a prior of the model p0(w).
2 for i = 1 to n do
3 Construct the likelihood p(xi,yi|w) using the training example (xi,yi).
4 Set the prior of the model to pi−1(w).
5 Find a Gaussian distribution pi(w) which approximates the posterior

distribution p(w|xi,yi) ∝ pi−1(w)p(xi,yi|w). Different inference algorithms
differ in the sense of approximation.

6 return pn(w)

amount of data in many real life applications, we resort to one of the cheapest approx-

imations: assumed density filtering (ADF). The idea is simple: in each iteration, visit

only one data point (xi,yi), use its likelihood to compute the posterior of the weight,

and then use this posterior as the prior for the next iteration. Since each step only

deals with one likelihood factor, the posterior inference can be performed efficiently.

Algorithm 6 sketches ADF.

In our case the prior of all weights are set to zero mean Gaussians, and the variance

will be discussed in the experiment section. The likelihood is modeled by the factor

graph in Figure 3.1. If we keep the posterior approximated by Gaussians, then ADF

can also be called Gaussian density filtering (GDF). Now the only problem is how to

compute the posterior in the step 5 of Algorithm 6.

3.2.2 Inference on the graph of a given training example with EP

Given a training example (x,y), the discussion in Section 3.1.1 has shown that the

posterior p(w|x,y) can be derived by querying the marginal distribution of w in Figure

3.1. This marginal can be computed by EP, which was introduced in Section 1.5. In

a nutshell, EP is similar to loopy belief propagation, but further approximates the

messages as well as possible. To this end, it approximates the marginals of the factors

via Gaussians which match the first and second order moments. Strictly speaking,

EP finds a Gaussian approximation of the true posterior. Since our model uses the

same set of factors as in TrueSkillTM, we refer the interested readers to the Table 1

in (Herbrich et al., 2007) for a summary of the message formulae, and we provide a

detailed derivation in Appendix B.

One important implementation consideration of EP is the message passing schedule

(Herbrich et al., 2007). There is no loop in all the graphical models from Figure 3.1 to

3.4. However, they all have a non-Gaussian factor: δ(· > ε), which necessitates passing

EP messages repeatedly on the graph. Realizing that the shortest paths between these



§3.2 Online learning and inference 67

Figure 3.5: A dynamic graphical model with factors between the model of two adjacent
examples.

non-Gaussian factors only involve factors {αc, βc} and variables {dc} and b (see Figure

3.4), we only need to run EP iteratively over b and {αc, dc, βc}c. This significantly

reduces the cost of each EP iteration from O(DC) (for all weights) to O(C)5. In

practice, since we only send messages from factors to variables, we just repeatedly do:

α1 → d1, . . . , α5 → d5; β1 → d1, . . . , β5 → d5; α1 → b, . . . , α5 → b.

The termination criterion is that the relative difference of messages between two iter-

ations fall below a given tolerance value for all messages. All messages are initialized

to zero precision and zero precision-mean.

3.2.3 Dynamic models

So far we have not taken into account the need of different models for different parts

of the dataset, i.e. temporal/spatial variations. This simplification may be unrealistic

in many applications. For example, the categorization rule of Reuters news wire may

change over the year, so our model needs to evolve through time accordingly. GDF

also depends on the random order of training examples and the model information

propagates only in the forward direction of the data stream. If the data can be stored,

then we may add dynamic factors between the models of adjacent news article to

allow smooth temporal variations. See Figure 3.5 for the dynamic graphical model

and see (Dangauthier et al., 2008) for how TrueSkillTM can be extended to a dynamic

scenarios. In this case, EP needs to be performed back and forth over the whole dataset.

Theoretically appealing, it is very expensive in both time and space, and hence we stick

5After EP converges, it still takes O(DC) complexity to record the final posterior.
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to GDF in this work.

Our model also admits straightforward active learning, where in each iteration one

picks a most informative training example, label it, and train on it. This can be useful

when labeling is expensive. In this chapter, we focus on applications where a large

number of labeled data is available, and then the bottleneck of computation shifts

to finding the most informative training example. This usually requires applying the

current model to the whole training set which is expensive, hence we would rather

spend that time taking more updates considering its low cost in our model.

From now on, we will refer to our algorithm as Bayesian online multi-label classifi-

cation (BOMC).

3.3 Generalization for multi-variate performance measure

After obtaining the posterior of weights wc,d ∼ N
(
µc,d, σ

2
c,d

)
for class c ∈ [C] and

feature d ∈ [D], together with a global threshold b ∼ N (µ0, σ
2
0), the next task is to find

a label in 2[C] for test example x. For simplification, unless explicitly highlighted we

make predictions class by class and omit the class index c. Denote w := (w1, ..., wD)>

(for class c whose index we omit) and similarly µ and σ. Suppose we are given a set

of test data Xtest :=
{
xi ∈ RD : i ∈ [n]

}
. Let yi be a Bernoulli random variable, and

yi = 1 means xi belongs to class c and 0 otherwise6. Given an instantiation of w and

b, we define the label y of a test example x depending on the sign of 〈w,x〉 − b:

y := δ(〈w,x〉 − b > 0), i.e. p(y = 1|x,w, b) := δ(〈w,x〉 − b > 0). (3.4)

Therefore using the posterior of w and b we have

p(y = 1|x) = E
(w,b)∼p(w,b|Xtrain,Ytrain)

[δ(〈w,x〉 − b > 0)] = Φ

 〈µ,x〉 − µ0√
σ2

0 +
∑

d x
2
dσ

2
d

 , (3.5)

where Φ is the cumulative distribution of a standard normal distribution. A näıve

decision criterion will then attach label c to x if p(y = 1|x) > 0.5, or equivalently

〈µ,x〉 − µ0 > 0. However, there is no justification that 0.5 is the best threshold. In

this work we will label the test data in a much more principled Bayesian fashion.

To this end, we study the joint distribution of all labels y := (y1, . . . , yn)> and

assume the testing data are labeled independently given the model, i.e.

yi ⊥⊥ yj |w, b,xi,xj , and p(y|w, b,Xtest) =
n∏
i=1

p
(
yi|xi,w, b

)
.

6Not to be confused with the ground truth. yi just represents the belief of our model and predictor.
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However, the independence is lost after w and b are integrated out:

yi 6⊥⊥ yj | xi,xj , under p(y|Xtest) := E
(w,b)∼p(w,b|Xtrain,Ytrain)

[p(y|w, b,Xtest)] (3.6)

The following sections will study how to label the testing data based on p(y|Xtest).

Incidentally, we could modify the definition Eq. (3.4) into a soft version:

p(y = 1|x,w, b) := Φ(〈w,x〉 − b), (3.7)

and hence

p(y = 1|x) = E
(w,b)∼p(w,b|Xtrain,Ytrain)

[Φ(〈w,x〉 − b)] = E
z∼N (〈µ,x〉−µ0,σ2

0+
∑
d x

2
dσ

2
d)

[Φ(z)].

In this chapter, we will stick to definition Eq. (3.4) for simplicity.

3.3.1 Formulation of expected F-score

Labeling criteria must be designed to optimize some underlying performance measure.

Let l ∈ {0, 1}n be a reference labeling for n data points, and y ∈ {0, 1}n be a predicted

labeling. Some performance measures are additively decomposable such as accuracy:

Accuracy(y, l) :=
1

n

n∑
i=1

δ(li = yi),

while there also exist many undecomposable multi-variate performance measures, e.g.

precision, recall, F-score, area under ROC curve, etc.. In such cases, the predicted

labels must be optimized as a whole. For example, the F-score7 is defined through the

following sequence of performance measures:

tp := true positive :=
n∑
i=1

liyi fn := false negative :=
n∑
i=1

(1− yi)li

fp := false positive :=
n∑
i=1

yi(1− li)

Pre := Precision :=
tp

tp + fp
Rec := Recall :=

tp

tp + fn

F-score(y, l) := 2
Pre× Rec

Pre + Rec
=

2 tp

tp + fp + fn
=

2
∑n

i=1 y
i · li∑n

i=1 y
i +
∑n

i=1 l
i
. (3.8)

7Strictly speaking, we use the F1-score.



70 Bayesian Online Learning for Multi-label and Multi-variate Measures

This measure is useful in many applications like information retrieval, where the class

distribution is skewed and high accuracy can be achieved by blindly classifying all ex-

amples to the most common class. F-score, which is the harmonic mean of precision and

recall, essentially reweights the positive and negative classes to the same importance,

and encourages both of them to be accurately labeled.

Now that the true reference label is unknown, we simply check for each possible

labeling l ∈ {0, 1}n how much the expected F-score is:

ExpFs(l) := Ey∼p(y) [F− score(y, l)] , (3.9)

where p(y) is the abbreviation of p(y|Xtest) in Eq. (3.6). Finally, we output the maxi-

mizer of the expected F-score as the deterministic labeling, i.e.

l∗ := argmax
l∈{0,1}n

ExpFs(l) = argmax
l∈{0,1}n

E
y∼p(y)

[F− score(y, l)]

= argmax
l∈{0,1}n

E
y∼p(y)

[ ∑n
i=1 y

ili∑n
i=1 y

i +
∑n

i=1 l
i

]
. (3.10)

This principle of Bayesian labeling can be easily applied to other multi-variate

performance measures. In the multi-label settings, each class has an F-score and an

“average F-score” can be defined in two different ways. Suppose we have a set of

reference labels {lc}c for all classes, and a set of proposed labels {yc}c. Then we can

average over the F-scores for all the classes, which is called “macro-average F-score”:

Macro-average F-score :=
1

C

C∑
c=1

{F-score of class c} =
2

C

C∑
c=1

∑n
i=1 y

i
c · lic∑n

i=1 y
i
c +

∑n
i=1 l

i
c

.

Another commonly used average F-score is the micro-average F-score. It first calculates

the average of true positive, true negative and false positive, and then use these averages

to compute the F-score:

Micro-average F-score :=
2tpc

tpc + fpc + fnc
=

2
∑n

i=1

∑C
c=1 y

i
c · lic∑n

i=1

∑C
c=1 y

i
c +

∑n
i=1

∑C
c=1 l

i
c

.

where

tp := average true positive :=
1

C

∑
c∈[C]

tpc; fn := average false negative :=
1

C

∑
c∈[C]

fnc;

fp := average false positive :=
1

C

∑
c∈[C]

fpc.

In general, micro-average F-score is more stable than macro-average F-score when some



§3.3 Generalization for multi-variate performance measure 71

classes have very few positive examples. In that case, small changes in the predicted

labels can make the F-score of those classes jump between 0 and 1.

The principle of Bayesian labeling can be applied here without change. Suppose

we have a joint distribution p ({yc}c). Then the optimal labeling should be:

argmax
lic∈{0,1}

E
{yc}c∼p({yc}c)

[Micro-average F-score({yc}c , {lc}c)] .

This discrete optimization problem is very hard in general because the labels of all the

classes are coupled in the numerator and denominator of micro-average F-score. In

contrast, the macro-average F-score is additively decomposed into the classes, which

allows us to find the optimal labels of all the classes independently using the marginal

distributions:

argmax
lic∈{0,1}

E
{yc}c∼p({yc}c)

∑
c∈[C]

{F-score of class c with (yc, lc)}


⇔ argmax

lic∈{0,1}

∑
c∈[C]

E
yc∼p(yc)

[F-score of class c with (yc, lc)]

⇔ argmax
lic∈{0,1}

E
yc∼p(yc)

[F-score of class c with (yc, lc)] ∀ c ∈ [C].

For a fixed class, F-score is a multi-variate measure which cannot be additively de-

composed onto the data points. However, some other measures do admit such a decom-

position:
∑n

i=1 loss(yi, li), and then the optimal labeling argmaxl Ey[
∑n

i=1 loss(yi, li)]

can be found by optimizing on each data point separately based on the marginal dis-

tributions p(yi):

max
l

E
y∼p(y)

[
n∑
i=1

loss(yi, li)

]
⇔ max

l

n∑
i=1

E
yi∼p(yi)

[
loss(yi, li)

]
⇔ max

li
E

yi∼p(yi)

[
loss(yi, li)

]
∀i.

In addition, when the loss is accuracy for binary classification, the rule of labeling

becomes exactly thresholding p(yi = 1) at 0.5:

argmin
li∈{0,1}

E
yi

[
loss(yi, li)

]
= argmin

li∈{0,1}
p(yi = 1)δ(li = 1) + p(yi = 0)δ(li = 0)

= δ(p(yi = 1) > 0.5).

In general, closed form solutions rarely exist for optimizing multi-variate perfor-

mance measures, and the expectation in Eq. (3.10) is intractable in the first place,

bearing in mind that the space of l and y are exponentially large. The rest of Section

3.3 provides some practical approximate solutions.
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Algorithm 7: A simple algorithm to maximize ExpFs(l).

1 for r = 0 to n do
2 Find lr := argmaxl:‖l‖1=r ExpFs(l)

3 return r∗ := argmaxr∈[n]∪{0} ExpFs(lr) and lr∗

3.3.2 Algorithms for maximizing expected F-score

To solve the discrete optimization problem in Eq. (3.10), it is helpful to study the most

closely related algorithm: (Jansche, 2007). It relies on the assumption that y1, . . . , yn

are independent. This assumption definitely does not hold in our case, but examining

this algorithm gives useful insights.

Based on the expression of F-score in Eq. (3.10), the intuition of (Jansche, 2007)

is to fix ‖l‖1 =
∑

i l
i to some value, and then l appears only in the numerator which

makes optimization easier. We outline the idea in Algorithm 7.

The key step is step 2: find lr := argmaxl:‖l‖1=r ExpFs(l). We now take a closer

look. Given that ‖l‖1 = r, we have

ExpFs(l) = E
y∼p(y)

[ ∑n
i=1 y

ili∑n
i=1 y

i + r

]
=

n∑
i=1

li · E
y∼p(y)

[
yi∑n

t=1 y
t + r

]
︸ ︷︷ ︸

:=zi

.

So we only need to sort zi in decreasing order, and assign the li of the top r indices

to 1. Although zi is hard to compute as well, it clearly shows that the correlation

among yi plays an important role, because

zi = E
y∼p(y)

[
yi∑n

t=1 y
t + r

]
=
∑

y:yi=1

yi∑n
t=1 y

t + r
p(y) +

∑
y:yi=0

yi∑n
t=1 y

t + r
p(y)

=
∑

y:yi=1

yi∑n
t=1 y

t + r
p(y)

=
∑
y\i

1∑n
t6=i y

t + 1 + r
p(yi = 1)p(y\i|yi = 1) (y\i := (y1, . . . , yi−1, yi+1, . . . , yn)>)

= p(yi = 1)

n−1∑
s=0

1

s+ 1 + r
p
(∥∥∥y\i∥∥∥

1
= s
∣∣yi = 1

)
. (3.11)

So the conditional distribution p
(∥∥y\n∥∥

1

∣∣yi = 1
)

plays a very important part in

the value of zi, and the marginal probability p(yi = 1) is only one factor of zi. Jansche

(2007) only sorted p(yi = 1) because he assumed the independence of
{
yi
}

(Theorem 1

therein). Incidentally, we can also derive from Eq. (3.11) that if
{
yi
}

were independent,
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Algorithm 8: One implementation of the step 2 of Algorithm 7

1 Sample w and b.

2 Obtain y = (y1, . . . , yn)> using Eq. (3.4).
3 Repeat step 1 and 2 for many times to obtain many samples of y. Compute

p
(∥∥y\i∥∥

1

∣∣yi = 1
)

by counting, for all i ∈ [n] and s = [n− 1] ∪ {0}.
4 Compute zi by applying Eq. (3.11) for all i ∈ [n].
5 maxl:‖l‖1=r ExpFs(l) is exactly the sum of the r greatest values of zn (in the

derivation of zn in Eq. (3.11), we omitted the index r).

then the order of zi would be exactly the order of p(yi = 1):

Proposition 28 If
{
yi
}

are independent, then p(yi = 1) ≥ p(yj = 1) implies zi ≥ zj.

Proof First notice that independence implies p
(∥∥y\i∥∥

1
= s
∣∣yi = 1

)
= p

(∥∥y\i∥∥
1

= s
)
.

If p(yi = 1) ≥ p(yj = 1), then zi − zj equals

p(yi = 1)

n−1∑
s=0

1

s+ 1 + r

p(yj = 1)p

∑
t6=i,j

yt = s− 1

+ p(yj = 0)p

∑
t6=i,j

yt = s


− p(yj = 1)

n−1∑
s=0

1

s+ 1 + r

p(yi = 1)p

∑
t6=i,j

yt = s− 1

+ p(yi = 0)p

∑
t6=i,j

yt = s


=
n−1∑
s=0

1

s+ 1 + r

(
p(yi = 1)p(yj = 0)− p(yi = 0)p(yj = 1)

)
p

∑
t6=i,j

yt = s


=
n−1∑
s=0

1

s+ 1 + r
(p(yi = 1)− p(yj = 1))p

∑
t6=i,j

yt = s

 ≥ 0.

Eq. (3.11) also provides a way to compute zi, based on which we can implement

the step 2 of Algorithm 7 to find the maximizer of ExpFs(l) subject to ‖l‖1 = r. The

conditional distribution p
(∥∥y\i∥∥

1

∣∣yi = 1
)

can be estimated by sampling w and b. We

formalize the whole idea in Algorithm 8.

Unfortunately, this approach is usually too expensive. The table of conditional

probability p
(∥∥y\i∥∥

1

∣∣yi = 1
)

costs O(n2) complexity in time and space. Sampling one

set of w costs O(DC) time which can be expensive in practice as well. Statistically,

some concentration argument is also needed to bound the variance of the sampling.
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Stochastic gradient descent

The objective function ExpFs(l) is in the form of expectation, which is amenable for

stochastic gradient descent methods. We draw a sample of w and b which gives a sample

y, and then take a step of gradient descent based on this single sample. Asymptotically,

convergence to the optimal may be provable, but more theoretical analysis is needed

for this discrete problem. Fortunately, ExpFs(l) is convex in l after relaxing its domain

from {0, 1}n to [0, 1]n.

A heuristic approach to maximizing expected F-score

We have emphasized that the marginal probability p(yi = 1) is insufficient to optimize

ExpFs(l), and the correlations between
{
yi
}

are important. However, correlations are

expensive for both storage and computation. We finally resort to a simplified heuristic

which respects the order of p(yi = 1) but tunes the threshold: for any arbitrary value

of θ ∈ [0, 1], we consider the class to be relevant if, and only if, p(yi = 1) > θ, where

p(yi = 1) is given in Eq. (3.5). So the label l(θ) is defined as a function of θ

l(θ) := (δ(p(y1 = 1) > θ), . . . , δ(p(yn = 1) > θ))>. (3.12)

Instead of maximizing ExpFs(l) over all l ∈ {0, 1}n, we now find the final deterministic

labeling by maximizing the expected F-score of l(θ) wrt θ ∈ [0, 1]:

θ∗ := argmax
θ∈[0,1]

ExpFs(l(θ)). (3.13)

In fact, ExpFs(l(θ)) can assume at most n different values (jumping at θ = p(yi =

1)). This reduction of search space is significant, which makes optimization much

easier. Another benefit is that we are no longer in the transductive setting, and can

easily handle out-of-sample predictions. However, there is no guarantee that l(θ∗) will

recover the true l∗ = argmaxl ExpFs(l), which may be not contained in the range of

{l(θ) : θ ∈ [0, 1]} in the first place.

Given θ, l(θ) can be computed efficiently from Eq. (3.12) and (3.5). But there is

still no closed form for ExpFs(l) defined by Eq. (3.9) due to the expectation opera-

tion. Therefore, we resort to approximate evaluation of ExpFs(l) based on samples

{ỹ1, . . . , ỹS} drawn iid from p(y):

ẼxpFs(l) :=
1

S

S∑
s=1

∑n
i=1 ỹ

i
sl
i∑n

i=1 ỹ
i
s +

∑n
i=1 l

i
. (3.14)

To draw sample ỹs from p(y), one only needs to draw sample w̃s from N (µ,σ) and
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b̃s from N (µ0, σ
2
0), and set ỹis := δ(〈xi, w̃s〉 − b̃s > 0). However, a näıve application of

Eq. (3.14) costs O(nSCD) time, which is impractical for large datasets. We will design

a more efficient algorithm in Section 3.3.4 using careful precomputation and buffering.

Before that, we first justify the labeling criteria Eq. (3.13).

3.3.3 Soundness of approximate Bayesian labeling criteria

We call our labeling criteria l∗ := argmaxl∈{0,1}n ExpFs(l) sound if l∗ is “close” to the

ground truth y∗, as long as p(w, b|Xtrain, Ytrain) is well estimated. The meaning of

“close” can be quantified in three possible forms:

1. F− score(l∗,y∗) is high.

2. ExpFs(y∗) is close to the maximum of ExpFs(l).

3. ‖y∗ − l∗‖2 is small.

However, since it is intractable to find l∗, none of these criteria can be computed in

practice, which leaves us unable to check the soundness of our exact labeling criteria.

Fortunately, it is possible to indirectly check the soundness of maximizing ExpFs(l(θ))

over θ ∈ [0, 1]. To this end, we simply enumerate θ in [0,1] with a small step size and

plot two curves:

1. Expected F-score: ExpFs(l(θ)) versus θ.

2. True F-score: F-score(l(θ),y∗) versus θ.

If these two figures are “similar”, then it suggests that optimizing ExpFs(l(θ)) over θ

is a good proxy to maximizing the real testing F-score against the ground truth. In

practice, ExpFs(l(θ)) can only be evaluated approximately via samples of w and b,

i.e. ẼxpFs(l(θ)) in Eq. (3.14), and accordingly we denote the sample based (empirical)

optimal threshold by:

θ̃∗ := argmax
θ

ẼxpFs(l(θ))

A case study of the soundness of θ∗ and θ̃∗

We present an experimental result to compare ẼxpFs(l(θ)) and F-score(l(θ),y∗) as

functions of θ. The example uses group = topics of Reuters dataset, 10,000 training

examples, 100,000 testing examples, and 5 random samples. Noise β2 = 0.012 in

Eq. (3.1), and the prior of global bias has variance 1002. Since there are 101 classes

in all, we can just show some representative plots in Figure C.5 and the full set of 101

figures can be found in Appendix C. In all these figures, the red dotted curve represents
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Figure 3.6: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.

F-score(l(θ),y∗), while the blue solid curve represents ẼxpFs(l(θ)). The horizontal axis

is θ.

In these figures, both curves follow roughly similar trend. In fact, we do not need

the maximizer of the blue and red curves to be similar, nor do we require the max of

them to be similar. We only hope that the maximizer of the blue solid curve gives

approximately the max of the red curve, i.e.

F-score(l(θ̃∗),y∗) close to max
θ

F-score(l(θ),y∗).

And this is actually pretty much the case in this example. Numerically, the left hand

term is 60.97 after summing over all the 101 classes, while the right hand term is 63.26.

3.3.4 Efficient calculation of empirical expected F-score

In the previous diagnosis, the curve F-score(l(θ),y∗) versus θ on a set of θ ∈ {θ1, . . . , θG}
can be efficiently computed. However, ẼxpFs(l(θ)) is expensive in practice. We make

a concrete analysis by using the Reuters dataset as an example, where number of class

C = 300, number of feature D = 5 × 104, number of test examples n = 105, average

number of non-zero features per example D̄ = 70, and number of θ candidate G = 20.
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1. Due to memory constraints, the testing data {x1, . . . ,xn} can only be read in an

online fashion, and cannot be stored. In some cases, privacy or other accessibility

constraints disallow us to revisit the testing examples. In some other cases,

though revisiting the data is allowed, we can only afford at most a dozen of

passes due to the computational cost of reading and parsing the data.

2. Sampling is also expensive in time and space. The w vector costs O(CD) mem-

ory. For the Reuters dataset, it costs 8CD bytes = 120 MB. With regard to

computational complexity, one sample takes O(nCD̄) time to be applied to all

the testing data, so the total cost is about 2 × 109. Therefore we can neither

compute nor store more than a dozen samples of w. So we let S = 10.

Taking into account the above constraints, we propose two efficient exact algo-

rithms: one takes a single pass over the testing data and the other uses multiple passes.

Both algorithms rely on careful buffering which can be best illustrated by writing out

the empirical expected F-score in ground terms. For class c, combining the definitions

in Eq. (3.12) and (3.14), we have

ẼxpFsc(l(θg)) =
1

S

S∑
s=1

:=αc,s,g︷ ︸︸ ︷
n∑
i=1

δ
(〈

xi, w̃s,c

〉
− b̃s > 0

)
· δ(p(yic = 1) > θg)

n∑
i=1

δ
(〈

xi, w̃s,c

〉
− b̃s > 0

)
︸ ︷︷ ︸

:=βc,s

+
n∑
i=1

δ(p(yic) = 1) > θg)︸ ︷︷ ︸
:=γc,g

.

Technically, we maintain three counters: αc,s,g, βc,s and γc,g. They are all cheap in

space, costing O(CSG) for α, O(CS) for β, and O(CG) for γ. γ does not depend on

the samples, and can be computed efficiently. So the only problem left is α and β.

Single pass If we are only allowed to visit the test dataset for a single pass, then for

each testing example, we must apply all the samples of w. Since there is not enough

memory to store all the weight samples, we have to regenerate these samples for every

testing example. To ensure good statistical performance, all the testing examples need

to “see” the same samples of w, and therefore we store the seed of the random number

generator for all the weight components. Algorithm 9 shows the whole algorithm, and

it is essentially trading computations (of resampling weights) for IO pass.

Labeling could be done class by class which allows us to store all the weight samples

of that class in memory. However, it will require reading through the testing data for

C passes, which is forbidden or too expensive.
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Algorithm 9: IO bounded computation of ẼxpFs(l(θ)) for θ ∈ {θg : g ∈ [G]}.
Input: A set of candidate thresholds θ ∈ {θg : g ∈ [G]}, bias b ∼ N (µ0, σ

2
0), and

posterior model wc,d ∼ N (µc,d, σ
2
c,d) for class c ∈ [C] and feature d ∈ [D].

Output: ẼxpFsc(l(θg)) for all c ∈ [C] and g ∈ [G].
1 Randomly generate seed sc,d for c ∈ [C] and d ∈ [D].

2 Draw iid random samples b̃1, . . . , b̃S from N (µ0, σ
2
0).

3 Clear buffer αc,s,g = βc,s = γc,g = 0 for c ∈ [C], s ∈ [S], g ∈ [G].
4 while there is still testing data do
5 Load the next test example x, which has non-zero features d1, . . . , dF .
6 for c ∈ [C] (class index) do

7 p(yc = 1)← Φ

(
〈µc,x〉−µ0√
σ2
0+

∑
x2dσ

2
c,d

)
utilizing feature sparsity.

8 for g ∈ [G] (threshold candidate index) do
9 Increment γc,g by 1 if p(yc = 1) > θg.

10 Create random number generators rd1 , . . . , rdF seeded by sc,d1 , . . . , sc,dF
resp.

11 for s ∈ [S] (sample index) do
12 for d = d1, d2, . . . , dF (index of non-zero features) do
13 Sample w̃s,d ∼ N (µc,d, σ

2
c,d) using generator rs,d.

14 if
∑

d xdw̃s,d − b̃s > 0 ( i.e., yc = 1) then
15 Increment βc,s by 1.
16 for g ∈ [G] (threshold candidate index) do
17 Increment αc,s,g by 1 if p(yc = 1) > θg.

18 for c ∈ [C] (class index) and g ∈ [G] (threshold candidate index) do

Output: ẼxpFsc(l(θg)) = 1
S

∑S
s=1

αc,s,g
βc,s+γc,g

.

Multiple passes If the testing data can be visited for multiple passes, then we no

longer need to regenerate weight samples. For each weight sample, we go through the

whole testing data and update the counters α, β and γ. Since only a dozen of samples

are drawn, visiting the testing data for a dozen of passes is affordable. This algorithm

is simpler than the single pass version, and we omit the details. Essentially, it trades

multiple IO passes for the computational cost of regenerating samples.

Finally although 10 samples seem to be a very low number, the experimental results

in Section 3.3.3 and 3.4.3 show that 5 samples already provide a pretty good, though

approximate, characterization of how ExpFs(l(θ)) and F-score(l(θ),y∗) depend on θ,

which allows us to find the optimal θ approximately. Remember for each weight sample,

the whole testing dataset is used to compute the approximation. And we only need

the mode of ExpFs(l(θ)), which could probably be roughly captured with a small set
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of weight samples.

3.4 Empirical evaluation

In this section, we compare the empirical performance of several variants of BOMC

with batch SVM and two state-of-the-art online learning classifiers. Our focus is on

macro-average F-score and training time, and the dataset used is Reuters1-v2.

3.4.1 Dataset

The Reuters1-v2 dataset was studied by Lewis et al. (2004) and we downloaded the

raw tokens from

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm.

Labels. The dataset consists of three groups of categories: topics, industries,

and regions, which contain 103, 354, and 366 categories (or called classes/labels in

machine learning terminology) respectively.

Examples. There are 804,414 documents (news wire) in the whole dataset. Every

document is associated with zero or more labels from each of the three groups. In fact,

all documents have at least one label from the topics group while many documents

are not relevant to any label in the industries and regions group.

In the experiment, the training and testing sets were both sampled uniformly ran-

dom from the whole dataset. We varied the number of training examples in {104, 2×
104, 4× 104, 8× 104}, and this allowed us to plot curves. We also used different sizes of

testing set in {105, 2× 105, 4× 105, 7× 105} which will correspond to different subfig-

ures. Note Lewis et al. (2004) used 23,149 documents for training, and the rest 781,255

documents were used for testing.

Features. The feature representation of documents is basically tf-idf. Suppose we

are given a training set D, then the weight (feature value) of a token t in a document

d is defined as follows:

wd(t) = (1 + log n(t, d))︸ ︷︷ ︸
tf

× log
|D|
n(t)︸ ︷︷ ︸
idf

.

where n(t, d) is the number of occurrences of token t in document d, n(t) is the number

of documents in D that contain token t, and |D| is the number of the training doc-

uments. Unfortunately, this definition caters for the batch learning scenario, and is

not immediately suitable for our online learning scenario. In particular, the idf vector
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Table 3.1: Number of features under different sizes of idf set.

ip (%) 3 10 30 50

Number of features 58909 105269 172423 214887
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Figure 3.7: Total number of features
in the training set versus the number
of training examples.
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Figure 3.8: Average number of non-
zero features per example versus the
number of training examples.

n(t) cannot be calculated offline because the training data (including both the feature

and label) comes online. Inspired by (Lewis et al., 2004, Section 7)8, we assume that

some statistics about the features can be computed offline, including the idf vector.

Importantly, their labels are still unknown and are revealed online. This idf vector

can be computed from the whole dataset, a subset of it, or even borrowed from other

sources of documents. We call that source as idf set I. Our underlying assumption is

that |I|n(t) in I is similar to that in D for all tokens t, and it is more realistic for common

tokens than for rare ones.

In our experiment, we computed the idf vector offline by using ip = 3%, 10%,

30%, 50% samples drawn uniformly random from the whole dataset. Note we did not

require that I contain all possible tokens, i.e., n(t) ≥ 1 for all t. So if a token did not

appear in I, then it was ignored even if it did appear later in the training set. Table

3.1 gives the number of features with respect to various values of ip under a draw of

idf set. In practice, using ip = 50% does not noticeably improve the testing F-score

compared with ip = 3%, therefore we will only present the results for ip = 3%.

For a specific random draw of training set, only the features and labels that ap-

peared in the training set were considered. Figure 3.7 shows the number of features

in the whole training set as a function of the number of training examples. The error

8Quote: “This (is) a legitimate use of additional unlabeled data. Only the document text from the
additional documents was used, not their codes.”
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bars are based on 5 random draws of the training set.

Although there is a large number of features in the whole dataset, each data point

(document) has only a small number of non-zero features, i.e., tokens that appears in

the document after pre-processing like punctuation removal, stemming, and stop word

removal. On average there are 77 non-zero features in each data point (77 tokens in

each document), and Figure 3.8 shows the average number of features per training

example.

3.4.2 Algorithms

We compared different variants of BOMC with three state-of-the-art online learners.

BOMC was trained with the following settings.

1. The order of the training examples was randomized.

2. The prior of the feature weights were Gaussians N (0, 1). No class-wise bias was

used. The single global bias had prior N (0, 104). The noise level in Eq. (3.1) is

set to β = 0.01, reflecting the fact that text data lies in a high dimensional space

which is pretty likely to be linearly separable.

3. EP was used for inference. The convergence criterion of EP was that the relative

change of all messages fell below 10−5. On average, it just took about 3 iterations

for EP to converge.

In practice, many classes only have very few positive examples and over 90% exam-

ples are negative. This skewed ratio is commonly dealt with by two heuristics. The first

approach tunes the threshold by using cross validation (CV) (Yang, 2001; Lewis et al.,

2004; Fan & Lin, 2007). Intuitively it translates the original separating hyperplane

towards the negative example region. However, CV is very expensive and relies heavily

on the batch setting. The second approach requires more prior knowledge but is much

cheaper. It uses different costs for misclassifying positive and negative examples, e.g.

the “-j” parameter in SVMlight. Intuitively it increases the influence of less common

classes. Lewis (2001) won the TREC-2001 Batch Filtering Evaluation by using this

heuristic with SVMlight. Theoretically, Musicant et al. (2003) proved that such cost

models approximately optimize F-score.

All the competing algorithm in our experiment perform very poorly when neither

heuristic is used. Therefore we assume some prior knowledge such as the relative

frequency of positive and negative examples (denoted by r). BOMC can encode this

prior in the delta factor δ(· > ε). For negative examples, the loss factor is set to

δ(d < −1), while for positive examples the loss factor is set to δ(d > ln(e+ 1/r)).
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BMOC with sampling (BOMC Sample) To label the test data, we sampled from the

posterior of the learned model as shown in Algorithm 9. 5 samples were drawn since

the experiment showed that drawing 10 or 20 samples did not improve the F-score

significantly. We call this algorithm BOMC Sample.

Special care was required when a class was never “activated” by samples, i.e. for

all test examples the inner product of feature and sampled weight being less than

the sampled bias. Not being activated by 5 samples probably should not rule out

the possibility of activating the class in the test set. Suppose the learned model is

w ∼ N (µ,σ) and b ∼ N (µ0, σ0), we set the threshold of that class to the maximum of

membership probability (given by Eq. (3.5))

p(y = 1|x) = Φ

 〈µ,x〉 − µ0√
σ2

0 +
∑

d x
2
dσ

2
d

 ,

over all testing examples x.

BOMC with Class Mass Normalization (BOMC CMN) A much simpler but non-

Bayesian heuristic for picking the threshold is by matching the zero-th order moment:

making the class ratio in the testing set identical to that in the training set. This

heuristic was proposed by Zhu et al. (2003) to solve a similar threshold tuning prob-

lem in semi-supervised learning. Technically, we sorted this membership probability

(Eq. (3.5)) of all testing examples in decreasing order, and labeled the top p percent

to be positive, where p is the fraction of positive examples in the training set. This

approach is called class mass normalization (CMN) by Zhu et al. (2003), so we call this

variant of BOMC as BOMC CMN.

BMOC: Training all classes independently (BOMC IND CMN and BOMC IND Sample)

We also tried training each class independently, i.e. each class c has its own bias bc

and the shared global bias is no longer used. Now the posterior of each class can be

computed in closed form for each training example. During testing, both CMN and

sampling are again applicable, and hence called BOMC IND CMN and BOMC IND Sample,

respectively.

All the variants of BOMC were implemented in F#9, and can downloaded from

http://www.stat.purdue.edu/~zhang305/code/bomc.tar.bz2.

Batch SVM (SVM Batch) As a baseline for benchmark, we compared with SVM

whose batch nature is an unfair advantage over BOMC as an online learner. We

9http://research.microsoft.com/en-us/um/cambridge/projects/fsharp
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trained one SVM for each class independently. Since many classes in Reuters have very

few positive examples, we applied the heuristic of using different cost for mislabeling

positive and negative examples. The cost was chosen by 5 fold CV, and the final result

was rather poor. So we tried the algorithm in (Yang, 2001) which tunes the threshold,

and it yielded very competitive performance. The final algorithm relies highly on

CV: besides using CV for picking the loss-regularization tradeoff parameter C, it also

employs a nontrivial 2-level CV strategy to tune the bias of SVM (Fan & Lin, 2007).

So in total, CV with k folds costs k3 rounds. We call this method SVM Batch.

As the 3-level CV is very expensive, our experiment used 3 folds for each level of

CV, and so the underlying trainer was called for 33 + 1 = 28 times. We tried 5 folds on

some random samples of training and testing data and it gave almost the same result.

We used the C implementation of liblinear as the batch SVM solver10, and wrote

a Matlab script to deal with the multi-label data.

LaSVM (LaSVM) LaSVM is an online optimizer for SVM objective proposed by Bordes

et al. (2005), who showed that by going through the dataset for a single pass, LaSVM

achieves almost as good generalization performance as the batch SVM. Operating in

the dual which allows nonlinear kernels, LaSVM maintains the active/support vector

set, and employs a removal heuristic to avoid overfitting especially when the data is

noisy. Strictly speaking, it is not a stream learner because it memorizes some data

points (support vectors).

For our multi-label problem, we again trained all classes separately. The experiment

showed that using different cost for positive and negative examples did not improve

the testing F-score of LaSVM on imbalanced data, hence we resorted to the CV based

strategy to tune the bias as in SVM Batch. Due to the high computational cost of

LaSVM, we only managed to use 2 folds for each level/parameter under CV. This means

calling LaSVM for 23 + 1 = 9 times.

We used the C implementation of LaSVM11, and wrote a Matlab script for the multi-

label scenario. Although only linear kernels are used here, this LaSVM implementation

was not optimized for this specialization, hence inefficient.

Passive-Aggressive (PA) This online algorithm has been repeatedly proposed (un-

der different names) for training SVMs, e.g. (Cheng et al., 2006; Crammer et al., 2006;

Hsieh et al., 2008b). The idea is simple: given a current model wt and a new training

10http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
11http://leon.bottou.org/projects/lasvm
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example (xt, yt), find a new w which minimizes

wt+1 := argmin
w

λ

2
‖w −wt‖2H + loss(xt, yt,w). (3.15)

PA does not naturally accommodate the bias in SVM. Hence we applied the same

CV strategy used in SVM Batch to find the optimal bias. Here, CV may either use PA

or batch SVM, which we call PA OnlineCV and PA BatchCV respectively.

Due to the equivalence of PA and running one pass of liblinear, we simply used

liblinear with the iteration number set to 1.

3.4.3 Performance measure

In this experiment, we compared the generalization performance in terms of macro-

average F-score. It is useful for decision making and is easier for optimization due to

the decoupling of classes.

If a class had no positive example in the training set, then it was ignored in testing.

However if positive examples did appear in the training set but not in the testing

set, special care was needed. With ground truth y, the F-score of predicting l is

defined as
∑
i l
iyi∑

i l
i+

∑
i y
i . Now that all yi are 0, the F-score becomes NaN if all li are

0. In information retrieval community, there has been some discussion on what the

proper F-score should be in such a case. As we focus on machine learning, we simply

ignored this class when computing the macro-average F-score. However, if some testing

examples are erroneously predicted to be positive, i.e. li = 1, then the definition gives

0 F-score and we did take this 0 into the macro-average.

In addition, we compared the CPU time cost for training the algorithms. All

competing algorithms of BOMC used CV for model selection and/or threshold tuning,

so we only measured the time cost for training the final model after CV. In Matlab,

CPU time can be simply obtained by the command cputime. In C/C++, getrusage

was used to query the system and user time process of the current process. In F#, we

called Process.GetCurrentProcess().TotalProcessorTime or Sys.time.

3.4.4 Results

We compared the macro-average F-score and training time for the above algorithms.

The random sampling of training and testing data was repeated for 5 times which

allowed us to plot error bars.
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(c) #test = 400,000

1 2 4 8
x 10

4

20

25

30

35

40

45

50

Number of training examples

M
ac

ro
−

av
er

ag
e 

F
−

sc
or

e 
(%

)

 

 

BOMC_CMN
BOMC_Sample
SVM_Batch
PA_BatchCV
PA_OnlineCV
LaSVM

(d) #test = 700,000

Figure 3.9: F-score for the category group industries.

Macro-average F-score

Figure 3.9 to Figure 3.11 show the macro-average F-score as a function of the number

of training examples. The following observations can be drawn:

1. Among all online learners, BOMC CMN achieves the highest macro-average F-score

most of the time. Comparing Figure 3.10a and Figure 3.10d for the group regions,

we observe that BOMC CMN significantly benefits from a large size of testing set. This is

not surprising because the class mass normalization rule assumes that the testing data

has the same class ratio as in the training data, and this assumption is more likely to

hold when the test set is large. In contrast, none of the other classifiers here label uses

this assumption.

2. The macro-average F-score of BOMC Sample is inferior to BOMC CMN, but still com-

petitive. Notice that CMN is also a method to choose the threshold, so it suggests that

the training of the model is fine, and our sample based approach to threshold finding

can be improved.
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(a) #test = 100,000
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(b) #test = 200,000
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(c) #test = 400,000
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(d) #test = 700,000

Figure 3.10: F-score for the category group regions.
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(c) #test = 400,000
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Figure 3.11: F-score for the category group topics.
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3. Not surprisingly, SVM Batch usually yields the highest F-score. However, BOMC CMN

often performs as well as or even better than SVM Batch by a single pass, especially on

the dataset industries, and on other datasets when the training set size is medium.

4. PA OnlineCV and PA BatchCV perform worse than other algorithms. One reason is

probably that the noise in the data leads to a high number of support vectors in online

learning, hence overfitting.

5. In contrast, LaSVM employs a removal step to handle noise, and provably converges

to the true SVM solution if multiple passes are run. The macro-average F-score of

LaSVM is slightly worse than BOMC CMN, but competitive.

Comparing coupled and decoupled training for BOMC

It is easy to observe from Figure 3.4 that our multi-label model only loosely couples all

the classes via the global bias. A natural question is why not introduce a “local” bias to

all the classes and learn the model of all the classes independently. In this experiment

we address this concern by comparing the macro-average F-score of BOMC trained in

two different ways:

1. BOMC IND CMN: All classes have their own local bias and no global bias is used.

Closed form inference is available for this case. We set the prior of all bc to

N (0, 104) which gave the highest macro-average F-score.

2. BOMC CMN: All classes share a global bias and no local bias is used. EP was used

for approximate inference;

Figure 3.12 to 3.14 demonstrate how much the macro-average F-score of BOMC CMN

(Fcoupled) is relatively higher than that of BOMC IND CMN (Find):

200× Fcoupled − Find

Fcoupled + Find
.

It can be seen that on industries and regions, BOMC CMN delivers significantly

higher macro-average F-score than BOMC IND CMN. As we observed in the final learned

model, the precision of the global bias in BOMC CMN is much higher than that of the

feature weights, and also higher than that of the local bias in BOMC IND CMN. This is no

surprise because for each training example, the global bias serves as a hub for all the

classes and is often updated. In contrast, due to feature sparsity, many feature weights

are updated only on a few training examples, resulting in less confidence in the final

posterior. On topics group, BOMC IND CMN slightly outperforms.

As we will discuss in Section 3.5, graphical models provide considerable flexibility in

modeling important factors such as label noise and co-occurrence of labels or hierarchies
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(d) #test = 700,000

Figure 3.12: industries
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Figure 3.13: regions
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Figure 3.14: topics

in the labels. The benefit of modeling them has been confirmed by existing algorithms

such as (Rousu et al., 2006; Ghamrawi & McCallum, 2005).
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Figure 3.15: CPU time for training.

Training Time

Figure 3.15 presents the CPU time cost for training these algorithms, under various

number of training examples.

The most important observation is that the training time of all algorithms except

LaSVM is linear in the number of training examples. This matches the theoretical

property. Training BOMC IND CMN takes slightly more time than BOMC CMN. On the one

hand, the inference step in BOMC IND CMN can be conducted in closed form without

running EP repeatedly. On the other, BOMC IND CMN uses local bias for each class while

BOMC CMN uses only one global bias, and EP converges in just 3 iterations on average.

Empirically the latter factor seems to be more influential. Passive-Aggressive and batch

SVM can be trained faster than BOMC by a factor of 2–3. This is probably because they

are implemented in pure C while BOMC was written in F#.

Although LaSVM is the online learner which achieves closest testing F-score to BOMC,

it takes a lot of time for training and is slightly super-linear in the training set size.

This is because it operates in the dual and has not been customized/optimized for the

linear kernels.
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3.5 Conclusion and future directions

In this chapter, we proposed a Bayesian learning algorithm for multi-label classification.

The model is assumed to be a probabilistic linear classifier, and training is based on

Gaussian density filtering. It is online, efficient, and allows the model to be trained in-

crementally. In contrast to ad hoc thresholding schemes used in frequentist approaches

like SVM, it labels unseen data in a much more principled manner, namely maximizing

the expected F-score by using samples from the posterior of the model. Empirically,

our method delivers state-of-the-art macro-average F-score compared with batch SVM,

LaSVM, and passive-aggressive updates. The method is also efficient in time and space.

In the future, the following three extensions are straightforward.

1. Dynamic training with EP through the dataset. It is expected to learn a better

model at a higher cost.

2. Model the label noise. We used to assume that the label is just thresholding at 0,

i.e. y = δ(f ≥ 0) in Eq. (3.4) where f is the linear discriminant. However, labels

can also be noisy, and to take this into account, the models proposed by Kim

& Ghahramani (2006) can be easily incorporated into our framework by simply

changing the factor δ(f ≥ ε) into

p(y|f) :=


1

1+exp(−(2y−1)f) sigmoid

Φ((2y − 1)f) cumulative normal

ρ+ (1− 2ρ)δ((2y − 1)f ≥ 0) noisy threshold

where the noise ρ ∈ [0, 0.5). For example, a common type of label noise is

the flipping noise where the observed label simply flips the correct label. This

can be due to typos. To model it, we simple replace the factor δ(d > ε) by

ρδ(d > ε) + (1− ρ)δ(d < −ε).

3. Modeling label hierarchies. We propose a model in Appendix D.



Chapter 4

Kernel Measures of

Independence for non-iid Data

Statistical dependence measures have been proposed as a unifying framework to address

many machine learning problems. For instance, clustering can be viewed as a problem

where one strives to maximize the dependence between the observations and a discrete

set of labels (Song et al., 2007b). Conversely, if labels are given, feature selection can

be achieved by finding a subset of features in the observations which maximize the

dependence between labels and features (Song et al., 2007c). Similarly in supervised

dimensionality reduction (Song et al., 2008a), one looks for a low dimensional embed-

ding which retains additional side information such as class labels. Likewise, blind

source separation (BSS) tries to unmix independent sources, which requires a contrast

function quantifying the dependence of the unmixed signals.

The use of mutual information is well established in this context, as it is theoret-

ically well justified. Unfortunately, it typically involves nontrivial intermediate steps

such as density estimation, space partitioning (Learned-Miller, 2004), bias correction

(Stögbauer et al., 2004; Nemenman et al., 2002), etc. These operations often require so-

phisticated optimization procedures (Nguyen et al., 2008) or are not well underpinned

in theory for high dimensional data (Learned-Miller, 2004). In addition, most methods

work only for distributions in Euclidean spaces. Borgwardt & Ghahramani (2009) used

flexible models like Dirichlet process mixtures to test independence, which encodes the

inductive bias in terms of probability distributions (Dirichlet distribution). However,

it is essentially still based on density estimation and requires sophisticated graphical

model inference algorithms.

These problems can be averted by using the Hilbert Schmidt Independence Criterion

(HSIC). It can be computed directly from the dataset without needing any intermediate

step. It also enjoys concentration of measure properties and can be computed efficiently

on any domain where a reproducing kernel Hilbert space (RKHS) can be defined. The

RKHS essentially encodes the inductive bias, and allows the algorithm designers to

91
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(a) Directed model for XOR with causality
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(b) Moralized undirected graphical model

Figure 4.1: Graphical model for the XOR problem yt = xt ⊗ xt−1.

focus on the properties of a distribution that are most important to their problems.

However, the application of HSIC is limited to independent and identically dis-

tributed (iid) data, a property that many problems do not share (e.g., BSS on audio

data). For instance many random variables have a pronounced temporal or spatial

structure. A simple motivating example is given in Figure 4.1. Assume that the ob-

servations xt are drawn iid from a uniform distribution on {0, 1} and yt is determined

by an XOR operation via yt = xt⊗xt−1. Algorithms which treat the observation pairs

{(xt, yt)}∞t=1 as iid will consider the random variables x, y as independent. However, it

is trivial to detect the XOR dependence by using the information that x and y are, in

fact, sequences.

In view of its importance, temporal correlation has been exploited in the indepen-

dence test for blind source separation. For instance, Hosseni & Jutten (2003) used

this insight to reject nontrivial nonseparability of nonlinear mixtures, and Ziehe &

Müller (1998) exploited multiple time-lagged second-order correlations to decorrelate

over time.

These methods work well in practice. But they are rather ad hoc and appear very

different from standard criteria. In this paper, we propose a framework which extends

HSIC to structured non-iid data. Our new approach is built upon the connection

between exponential family models and the marginal polytope in an RKHS. This is

doubly attractive since distributions can be uniquely identified by the expectation

operator in the RKHS and moreover, for distributions with conditional independence

properties the expectation operator decomposes according to the clique structure of

the underlying undirected graphical model (Altun et al., 2004b).

In this chapter, we will first survey the existing works on Hilbert space embeddings

of distributions and kernel measures of independence for iid data (Section 4.1). Of

central importance is the empirical estimators, especially their computational efficiency

and statistical properties such as concentration of measure and sample efficiency. This

framework allows us to further decompose the probability embeddings and the kernel

independence criterion when the distribution and kernel factorize with respect to a
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graphical model. Accordingly, the empirical estimators can also be decomposed onto

the cliques which we will demonstrate in Section 4.2. Example estimators for typical

graphical models and various choices of kernels will be given in Section 4.3, where we

also show how homogeneity and stationarity can improve the efficiency of estimation.

Interestingly, for first order Markov chains, the asymptotic bounds on the concentration

of measure can be obtained under mild regularity conditions. Finally, Section 4.4

will provide the experimental results on independence test for non-iid data, ICA, and

sequence segmentation. In all these problems, methods taking into account the inter-

dependence of observations significantly outperform those treating them as iid.

4.1 Preliminaries of RKHS embeddings of probabilities

Many theoretical and practical problems involve comparison of distributions, and a lot

of measures have been proposed over the years, such as KL divergence, total variance,

dynamic range, Lp norm, and earth mover’s distance. However, we usually only have

samples of the distributions and therefore density estimation is often required before

these measures can be applied. This adds more complexity, and it is desirable for a

measure to be directly estimated from samples.

One solution is the discrepancy in moments, which can be directly estimated from

samples. More generally, we can compare the mean of distributions P and Q on

a class of touchstone functions F . This is especially suitable for many applications

where distributions matter only via their expectations, and the same idea motivated

the definition of weak convergence for random variables, where bounded continuous

functions are used. With a kernel k and its induced RKHS H, Shawe-Taylor & Dolia

(2007) proposed using samples from the unit ball of H as the touchstone function

class, and Song et al. (2008b) used the sup of the mean discrepancy over this ball. The

advantage of the latter is two folds: a) it can be easily estimated from samples of P,

Q with tight concentration, and b) the space of RKHS can be rich enough to capture

all the high order moments of the distributions. Intuitively, we measure:

sup
f∈H:‖f‖≤1

∣∣∣∣ E
x∼P

[f(x)]− E
x∼Q

[f(x)]

∣∣∣∣ = sup
f∈H:‖f‖≤1

∣∣∣∣∫ f(x)dP−
∫
f(x)dQ

∣∣∣∣
= sup
f∈H:‖f‖≤1

∣∣∣∣∫ 〈f, k(x, ·)〉dP−
∫
〈f, k(x, ·)〉 dQ

∣∣∣∣ (Using the reproducing property)

= sup
f∈H:‖f‖≤1

∣∣∣∣〈f, ∫ k(x, ·)dP−
∫
k(x, ·)dQ

〉∣∣∣∣
= sup
f∈H:‖f‖≤1

∣∣∣∣〈f, E
x∼P

[k(x, ·)]− E
x∼Q

[k(x, ·)]
〉∣∣∣∣ .
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The last form indicates a key object that captures the property of a distribution P:

Ex∼P[k(x, ·)]. It gives the expectation of any arbitrary function by a simple inner

product. This motivates the abstraction of mean mapping which we formulate in this

section.

Given a distribution P on domain X , define a mean operator TP : H → R as

TP(f) = Ex∼P[f(x)].

TP is obviously linear. To check whether it is bounded, notice

sup
f :‖f‖H=1

∣∣∣∣ E
x∼P

[f(x)]

∣∣∣∣ = sup
f :‖f‖H=1

E
x∼P

[|〈f, k(x, ·)〉H|] ≤ E
x∼P

[‖k(x, ·)‖H] = E
x∼P

[
√
k(x, x)].

Hence, TP is bounded if Ex∼P[
√
k(x, x)] <∞, and by Rietz representer theorem, there

exists an element µ[P] ∈ H such that

〈µ[P], f〉 = TP(f) = Ex∼P[f(x)] for all f ∈ H.

Formally, we define:

Definition 29 (Mean operators) Let P be a distribution on domain X and k be

a kernel on X with RKHS H. If Ex∼P[
√
k(x, x)] < ∞ then there exists an element

µ[P] ∈ H such that for all f ∈ H we have 〈µ[P], f〉 = Ex∼P[f(x)], and we call µ[P] the

mean element of P.

If we have a finite set of samples x1, . . . , xn from X , then the empirical mean

element is defined by 1
n

∑n
i=1 k(xi, ·), which is obviously in H.

Note µ[P] maps a function f ∈ H to its mean under P (a scalar), while µ maps

a distribution to H. We will call µ[P] the mean element of P, and call µ the mean

operator. From definition, the following useful property is immediate:

Property 1 If Ex∼P[
√
k(x, x)] <∞ then

〈µ[P], µ[Q]〉 = E
x∼P

E
x′∼Q

[k(x, x′)], in particular ‖µ[P]‖2 = E
x∼P

E
x′∼P

[k(x, x′)].

Proof

〈µ[P], µ[Q]〉 = E
x∼P

[µ[Q](x)] = E
x∼P

[〈µ[Q], k(x, ·)〉] = E
x∼P

E
x′∼Q

[k(x, x′)].

Incidentally, notice that ‖µ[P]‖2 6= Ex∼P[k(x, x)] in general.



§4.1 Preliminaries of RKHS embeddings of probabilities 95

Remark 30 It is possible to define µ[P] in the following more intuitive form:

µ[P] =

∫
k(x, ·) dP,

but then the proof of well-definedness for integral in the RKHS is more involved than our

definition. To this end, a sufficient condition required by Smola et al. (2007a) is that

Ex[k(x, x)] <∞. However, this condition is strictly stronger than our Ex[
√
k(x, x)] <

∞. For example if P has density p(x) ∝ 1
|x|3+1

on R and a linear kernel is used, then

Ex[
√
k(x, x)] <∞ but Ex[k(x, x)] =∞.

We naturally want µ[P] to be a signature of P, i.e., different distributions have

different mean elements in H. This is obviously not true for linear kernels because

different distributions can easily have the same mean. So more assumptions are needed

such as in the following theorem.

Theorem 31 (Injectivity of mean operator) If the kernel k is universal (see Def-

inition 15), then the mean operator P 7→ µ[P] is injective.

A simple example is Gaussian RBF kernels. Let αi, α
′
i ∈ R\ {0} and xi,x

′
i ∈ Rd where

{xi}ni=1 are distinct and {x′i}mi=1 are distinct, then
∑n

i=1 αik(xi, ·) =
∑m

i=1 α
′
ik(x′i, ·) iff

m = n and {(αi,xi)}ni=1 is a permutation of {(α′i,x′i)}ni=1.

In analogy to the characteristic functions of distributions, a kernel is called charac-

teristic if its induced mean operator is injective from the whole set of distributions on

X . Universality on compact domains is a sufficient but not necessary condition of char-

acteristicity. More properties on characteristic kernels can be found in (Sriperumbudur

et al., 2008; Fukumizu et al., 2009).

Empirical estimation

If we have n iid samples Xn
1 := {Xi}ni=1 of P, a natural estimator of µ[P] is

µ[Xn
1 ] :=

1

n

n∑
i=1

k(Xi, ·).

To quantify the concentration of measure for µ[Xn
1 ], we first note the following

relationship:

sup
f :‖f‖≤1

∣∣∣∣∣EX [f(X)]− 1

n

n∑
i=1

f(Xi)

∣∣∣∣∣ = sup
f :‖f‖≤1

|〈µ[P]− µ[Xn
1 ], f〉| = ‖µ[P]− µ[Xn

1 ]‖ .

The LHS is exactly the uniform deviation in statistical estimation (see Appendix E.5).

Therefore, the results like Eq. (E.14) translate directly to the following concentration:
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Theorem 32 (Concentration of measure) Assume f ∈ [0, 1] for all f ∈ H1 :=

{g ∈ H : ‖g‖ ≤ 1}. Given n iid samples Xn
1 = {X1, . . . , Xn} of P, with probability

1− δ we have

‖µ[P]− µ[Xn
1 ]‖ ≤ Rn(H) +

√
log(2/δ)

2n
≤ 2

n
E

√√√√ n∑
i=1

k(Xi, Xi)

+

√
log(2/δ)

2n
,

whereRn(H) is the Rademacher average of function spaceH (see definition in Eq. (E.13)).

This procedure is in complete analogy to the Glivenko-Cantelli lemma, which is used to

bound the deviations between empirical and expected means of functions, and at the

same time gives rise to the Kolmogorov-Smirnov statistics for comparing distributions.

4.1.1 Distance between distributions

The embedding µ[P] in the Hilbert space H immediately induces a distance between

two distributions P and Q:

D(P,Q)2 := ‖µ[P]− µ[Q]‖2 = ‖µ[P]‖2 + ‖µ[Q]‖2 − 2 〈µ[P], µ[Q]〉
= E

x∼P
E

x′∼P

[
k(x, x′)

]
+ E
y∼Q

E
y′∼Q

[
k(y, y′)

]
− 2 E

x∼P
E

y∼Q
[k(x, y)] . (4.1)

In view of

D(P,Q) = ‖µ[P]− µ[Q]‖ = sup
f :‖f‖≤1

|〈µ[P]− µ[Q], f〉| = sup
f :‖f‖≤1

∣∣∣∣ E
x∼P

[f(x)]− E
y∼Q

[f(y)]

∣∣∣∣ ,
we will call D(P,Q) the maximum mean discrepancy MMD(P,Q).

Empirical estimation

Suppose we have n iid samples {Xi}ni=1 of P and m iid samples {Yi}mi=1 of Q, then a

natural estimator for MMD(P,Q) is ‖µ[Xn
1 ]− µ[Y m

1 ]‖, and the concentration bound

can be easily derived by using the diagram:

µ[P] µ[Q]

µ[Xn
1 ] µ[Y m

1 ]

Theorem 33 Suppose {Xi}ni=1 and {Yi}mi=1 are iid samples from P and Q respectively.

Let Rn(H,P) be the Rademacher average of H wrt P. Then with probability 1− δ, we
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have

MMD(P,Q) ≤ ‖µ[Xn
1 ]− µ[Y m

1 ]‖+Rn(H,P) +Rm(H,Q) +

√
log(2/δ)

2m
+

√
log(2/δ)

2n
.

Another estimator can be obtained by noticing that MMD(P,Q) is a U-parameter

according to definition Eq. (4.1), and its corresponding U-statistic has the minimal

variance among all unbiased estimators (see Appendix E.2). But this estimator imposes

the constraint that P and Q have the same number of samples (n = m).

One advantage of using MMD(P,Q) as a distance measure between P and Q is

that it can be directly estimated from the samples with no need of density estimation.

If a universal kernel is used, then it captures the difference of all high order moments,

while a polynomial kernel of order d allows one to focus on the first d order moments.

And the use of kernel allows the distribution to be from any domain where kernels can

be defined, such as strings and graphs.

4.1.2 Hilbert-Schmidt independence criteria

Using the MMD distance, we can further quantify the (in)dependence of two random

variables X,Y on domains X and Y respectively. Define the product space Z := X ×Y.

Let the kernels on X , Y and Z be kx, ky, and kz respectively, and the corresponding

RKHS be Hx, Hy, Hz respectively. Let the joint distribution on Z be PXY and the

marginal distributions be PX and PY . Since X and Y are independent iff PXY =

PXPY , an independence measure can be naturally defined via the distance between

the RKHS embeddings of PXY and PXPY :

HSIC(X,Y ) := MMD(PXY ,PXPY ) =

∥∥∥∥∥ E
(x,y)∼PXY

kz((x, y), ·)− E
x∼PX

E
y∼PY

kz((x, y), ·)
∥∥∥∥∥ .

(4.2)

The name HSIC stands for Hilbert-Schmidt independence criteria, because this measure

was first proposed as a Hilbert-Schmidt norm of the cross-covariance operator between

X and Y (Gretton et al., 2005a), and then it was observed that this can be equally

motivated as above.

The definition in Eq. (4.2) requires a joint kernel kz on Z. A factorized kernel kz

allows one to substantially concretize the expression of HSIC. Let

kz((x, y), (x′, y′)) := kx(x, x′)ky(y, y
′), i.e., kz((x, y), (·, :)) := kx(x, ·)⊗ ky(y, :),
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which means Hz is the tensor product of Hx and Hy. Now Eq. (4.2) becomes

HSIC(X,Y )2 =

∥∥∥∥∥ E
(x,y)∼PXY

[kx(x, ·)⊗ ky(y, :)]− E
x∼PX

[kx(x, ·)]⊗ E
y∼PY

[ky(y, :)]

∥∥∥∥∥
2

= E
(x,y)∼PXY

E
(x′,y′)∼PXY

[
kx(x, x′)ky(y, y

′)
]

(4.3)

− 2 E
(x,y)∼PXY

[
E

x′∼PX

[
kx(x, x′)

]
E

y′∼PY

[
ky(y, y

′)
]]

(4.4)

+ E
x∼PX

E
x′∼PX

[
kx(x, x′)

]
E

y∼PY
E

y′∼PY

[
ky(y, y

′)
]
. (4.5)

A key property of HSIC is that it correctly detects independence:

Theorem 34 (Gretton et al., 2005a, Appendix B) If kx and ky are both universal

kernels on compact domains X and Y respectively, then HSIC = 0 if, and only if, X

and Y are independent.

Empirical estimation

Let Zn1 be n pairs of observations {Zi := (Xi, Yi)}ni=1 drawn iid from the joint distri-

bution PXY . A natural estimator is to replace all the expectations in Eq. (4.3), (4.4),

and (4.5), with the respective empirical means, namely n−2
∑

ij kx(Xi, Xj)ky(Yi, Yj),

n−3
∑

ij

∑
s kx(Xi, Xs)ky(Ys, Yj), and n−4

∑
ij kx(Xi, Xj)

∑
st ky(Ys, Yt) respectively. So

we finally obtain an estimator:

ĤSICb(Z
n
1 ) :=

1

n2
tr(KxHKyH), (4.6)

where Kx := (kx(Xi, Xj))ij , Ky := (ky(Yi, Yj))ij , and H is the n-by-n centering matrix

H := I− n−111>.

This estimator is clearly biased because of the self-interacting terms. For example,

check the first half of Eq. (4.5):

EXn
1

 1

n2

∑
ij

kx(Xi, Xj)

 =
n− 1

n
ExEx′ [kx(x, x′)] +

1

n
Ex[k(x, x)] (4.7)

6= ExEx′ [kx(x, x′)].

An obvious remedy is to remove these self-interacting terms as

EXn
1

 1

n(n− 1)

∑
i 6=j

kx(Xi, Xj)

 = ExEx′ [kx(x, x′)].
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This modification leads to an unbiased estimator for HSIC:

ĤSICu :=
1

n(n− 3)

(
tr(K̄xK̄y)−

2

n− 2
1>K̄xK̄y1 +

1>K̄x1 · 1>K̄y1

(n− 1)(n− 2)

)
, (4.8)

where K̄x is equal to Kx except that the diagonal terms are all set to 0.

Despite the biasedness of ĤSICb, its computational form is much simpler and in

fact the bias diminishes with more samples, as can be intuitively seen from the last

term in Eq. (4.7).

Theorem 35 The estimator ĤSICb has bias
∣∣∣HSIC− EZn1 [ĤSICb(Z

n
1 )]
∣∣∣ = O(n−1).

Finally we study the concentration properties of ĤSICu. To start with, it is im-

portant to recognize that HSIC is a U-parameter and ĤSICu happens to be its corre-

sponding U-statistic. The background of U-statistics can be found in Appendix E.2.

Theorem 36 HSIC can be written as a U-parameter with the kernel

h(i, j, q, r) =
1

24

(i,j,q,r)∑
(s,t,u,v)

Kx(s, t)(Ky(s, t) +Ky(u, v) + 2Ky(s, u)) (4.9)

where the summation means (s, t, u, v) enumerates all the permutations of (i, j, q, r).

ĤSICu is exactly the corresponding U-statistic

ĤSICu =

 n

4

−1 ∑
1≤i,j,q,r≤n and are distinct

h(i, j, q, r).

Rewriting ĤSICu as a U-statistics allows one to make use of a large body of lit-

erature on U-statistics. The following uniform bounds and asymptotic bounds are

straightforward from Theorem 80, 82, and 83 in Appendix E.

Theorem 37 (Uniform bounds) Assume kx and ky are nonnegative and bounded

almost everywhere by 1. Then with probability 1− δ we have for all PXY :

∣∣∣ĤSICb −HSIC
∣∣∣ ≤ 4

√
2 log(2/δ)

n
.

Theorem 38 (Asymptotic normality if not independent) Suppose E[h2] < ∞
where h is defined in Eq. (4.9). If X and Y are not independent, then

√
n
(

ĤSICu(Zn1 )−HSIC
) D→ N (0, σ2) as n→∞.
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Here σ2 = 16
(
EZi

[
(EZj ,Zq ,Zr [h(i, j, q, r)])2

]
−HSIC2

)
.

When X and Y are independent, the variance of ĤSICu becomes degenerate, and

a different asymptotic bound can be derived similar to Theorem 83.

4.1.3 Applications of HSIC

Independence measures are very useful in machine learning. A large variety of learning

algorithms can be posed in this framework, and here we just give some intuitions and

links.

In supervised learning, the labels are given. So in general, we seek for a systematic

way to transform the features such that:

1. The class of transform is restricted, e.g., linear transform.

2. A kernel can be defined on the range of the transform.

3. We look for the transformation which maximizes the dependence between the

transformed image and the labels, measured by HSIC or its empirical estimates.

One simple transformation is just inner product with a weight vector, and this recovers

(kernel) fisher discriminant analysis (Mika et al., 1999). Or, one can look for a subset

of features with a prescribed cardinality, and maximize the dependence between the

selected features and the labels. This leads to feature selection (Song et al., 2007a).

Furthermore, the transform can be a permutation of the training examples, which

gives kernelized sorting (Quadrianto et al., 2009). If we map to a lower dimensional

space keeping the distance between nearest neighbors intact, then we obtain supervised

dimensionality reduction (Song et al., 2008a).

In unsupervised learning, there is no label. While we still seek for a systematic

transformation of the features in some prescribed form, we now maximize the depen-

dence between the transformed image and the original data. For example, principal

component analysis restricts the transform to projection to a direction. If the transform

must take value in categories on which delta kernels are applied, we recover clustering

such as k-means, spectral clustering, and normalized graph cut (Song et al., 2007b).

4.2 Embedding distributions with graphical models

Bearing in mind that the domains X and Y are fully general, we will discuss a number

of different structural assumptions on them in Section 4.3 which allow us to recover

existing and propose new measures of dependence. For instance X and Y may represent

sequences or a mesh for which we wish to establish dependence. To this end, graphical
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models can be used as a unifying framework to model the relationship of conditional

independence and dependence, and we introduced graphical models in Section 1.2.

The starting point of our extension is how the RKHS embeddings of distributions

can be factorized onto cliques when the domain is associated with an undirected graph.

This involves two aspects: kernels k and distributions P which can be completely

independent in general. Naturally, we will assume factorization of both kernels and

distributions in the sense of Eq. (1.16) and (1.2) respectively. Since a lot is known about

the decomposition of distributions, we will develop some results on the decomposition

of kernels and their RKHS in Section 4.2.2. Based on these insights, we will study

the injectivity of the embeddings in Section 4.2.3, with special attention paid to the

exponential family generated by k whose RKHS we embed into. These analyses will

immediately facilitate the factorization of HSIC, which will be detailed in Section 4.2.4.

4.2.1 Factorization of mean operators

When the kernel and/or distribution factorize by an undirected graph, we naturally

conjecture that the RKHS embedding also factorizes onto the cliques:

Conjecture 39 Let P be a distribution which satisfies all conditional independence

relationships given by a graph G. Suppose a kernel k on Z decomposes along the

cliques as in Eq. (1.16), with joint RKHS H and clique-wise RKHSs Hc (c ∈ C). Then

for any (joint) distribution P on Z that also factorizes wrt G as Eq. (1.2), its joint

mean map µ[P] is related to the the mean map of µc[Pc] where Pc is the marginal

distribution of P on clique c and µc[Pc] is the mean map of Pc in Hc. Furthermore, if

kc are all characteristic, then the joint map µ is injective.

This intuition turns out only roughly correct. This section aims to rigorously estab-

lish the factorization results. We first show that even without making any assumption

on the conditional independence of the distribution, the factorization of kernels itself

is enough to guarantee the factorization of the square norm of mean elements.

Theorem 40 (Factorization of mean element) Let S1, S2, . . . be subsets of the node

set, and denote S := {S1, S2, . . .}. Suppose the kernel k on Z can be decomposed by:

k(z, z′) =
∑
S∈S

kS(zS , z
′
S), (4.10)

where kS are kernels on ZS. Let the RKHSs of k and kS be H and HS respectively,

and let µS be the mean operator induced by kS. Then for any arbitrary distribution P
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and Q on Z whose marginal distribution on ZS is PS and QS respectively, we have

〈µ[P], µ[Q]〉H =
∑
S∈S
〈µS [PS ], µS [QS ]〉HS ,

and in particular

‖µ[P]‖2H =
∑
S∈S
‖µS [PS ]‖2HS .

Proof The proof is straightforward from Property 1.

〈µ[P], µ[Q]〉H = E
z∼P

E
z′∼Q

[
k(z, z′)

]
= E

z∼P
E

z′∼Q

[∑
S∈S

kS(zS , z
′
S)

]
=
∑
S∈S

E
zS∼PS

E
z′S∼QS

[
kS(zS , z

′
S)
]

=
∑
S∈S
〈µS [PS ], µS [QS ]〉HS .

Theorem 40 is very suggestive of the decomposition of H: H factorizes into the direct

product (or direct sum1) of HS : H = ⊕SHS . However, this turns out to be true only

when all S in S are disjoint, and the next section will discuss the details.

4.2.2 Factorization of RKHS for factorized kernels

In this section, we temporarily ignore the distributions, and focus on the relationship

between H and {HS}S∈S when the kernel k factorizes according to Eq. (4.10). One

key encouraging property is the following existential theorem:

Theorem 41 Suppose kernel k factorizes by Eq. (4.10). Then for any f ∈ H, there

must exist fS ∈ HS such that

f(z) =
∑
S∈S

fS(zS), for all z ∈ Z, and ‖f‖2H =
∑
S∈S
‖fS‖2HS .

Proof First, if f(·) = k(ẑ, ·), then f(z) = k(ẑ, z) =
∑

S∈S kS(ẑS , zS) for all z ∈ Z.

Next, if f(·) =
∑

i αik(ẑi, ·), then for all z ∈ Z we have

f(z) =
∑
i

k(ẑi, z) =
∑
i

∑
S∈S

αikS(ẑiS , zS) =
∑
S∈S

∑
i

αikS(ẑiS , zS)︸ ︷︷ ︸
:=fS(zS)∈HS

. (4.11)

1The direct product is the same as the direct sum when the cardinality of S is finite.
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To check the norm, notice

‖f‖2 =
∑
ij

αiαjk(ẑi, ẑj) =
∑
ij

αiαj
∑
S

k(ẑiS , ẑ
j
S) =

∑
S

∑
ij

αiαjk(ẑiS , ẑ
j
S) =

∑
S

‖fS‖2 .

Finally, if f is a limit point of the linear span {k(z, ·) : z ∈ Z}, then there exists a

sequence of {fn}n∈N in the linear span, and fn
H→ f . For each n, due to the above

result, there exist functions fnS ∈ HS , such that fn(z) =
∑

S f
n
S (zS) for all z ∈ Z

and ‖fn‖2 =
∑

S ‖fnS ‖2. Since fn
H→ f , so {‖fn‖}n∈N is bounded, hence {‖fnS ‖}n∈N

is bounded for all S ∈ S. Call the sets in S as S1, S2, . . .. For S1, the sequence{
fnS1

}
n∈N must have a cluster point f∗S1

∈ HS1 , which is the limit of a subsequence{
fnkS1

}
k∈N

. Without loss of generality, assume this subsequence is
{
fnS1

}
n∈N itself.

Similar procedure of subsequence selection can be run for S2, S3, . . .. Finally, we obtain

f∗S ∈ HS for all S ∈ S and fnS
HS→ f∗S as n→∞. So

f(z) = lim
n→∞

fn(z) = lim
n→∞

∑
S

fnS (zS) =
∑
S

lim
n→∞

fnS (zS) =
∑
S

f∗S(zS),

‖f‖2 = lim
n→∞

‖fn‖2 = lim
n→∞

∑
S

‖fnS ‖2 =
∑
S

lim
n→∞

‖fnS ‖2 =
∑
S

‖f∗S‖2 .

Pathological behavior may occur when |S| =∞2, which we do not consider here.

It is convenient to formalize the above map from f ∈ H to {fS : S ∈ S}.

Definition 42 (Function factorization mapping) The function factorization map-

ping τS from H to the power set of ⊕S∈SHS is defined by mapping any function f ∈ H
to the set of all possible factorizations of f :

τS(f) :=

{
{fS ∈ HS}S : f(z) =

∑
S∈S

fS(zS), ∀z ∈ Z
}
. (4.12)

So Theorem 41 says |τS(f)| ≥ 1 for all f ∈ H.

For any arbitrary kernel, it is not hard to see that if the index sets in S constitute

a partition of all the nodes3, the factorization of any f ∈ H is unique, i.e., |τS(f)| = 1.

Conversely, for any set of functions {fS ∈ HS : S ∈ S}, f(Z) :=
∑

S∈S fS(ZS) must be

in H. However, if the index sets in S overlap, then in general neither uniqueness nor

surjectivity holds even if S is the set of maximal cliques. We give two examples.

2|A| denotes the cardinality of the set A.
3A partition of a set A is any set of subsets {Ai ⊆ A : i ∈ I} where I is an index set, such that

∪i∈IAi = A, and Ai ∩Aj = ∅ for all i, j ∈ I and i 6= j.
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Proposition 43 (Breakdown of uniqueness) One can construct an example with

the following elements: a) a graph with maximal clique set C, b) positive definite kernels

kc on all cliques c ∈ C, c) a joint kernel k defined by Eq. (4.10), and d) a function f ∈ H
such that its factorization is not unique, i.e., |τC(f)| ≥ 2, and different factorizations

have different sum of squared norm
∑

c ‖fc‖2.

Proof Let the graphical model of the random variable Z ∈ R4 be a loop with C =

{{Z1, Z2} , {Z2, Z3} , {Z3, Z4} , {Z4, Z1}}. Let the kernel on clique {Zi, Zj} be

kij((zi, zj), (z
′
i, z
′
j)) := exp(−(zi − z′i)2) + exp(−(zj − z′j)2),

and k(z, z′) :=
∑

c∈C kS(zc, z
′
c). Set f(z) := 1

2k(0, z) =
∑4

i=1 exp(−z2
i ) which is ob-

viously in the RKHS of k. It is not hard to check that the following {fc}c satisfy

f(z) =
∑

c fc(zc) for all α ∈ R:

Z1 Z4

Z2 Z3

f12(z1, z2) = α exp(−z2
1) + α exp(−z2

2)

f23(z2, z3) = (1− α) exp(−z2
2) + (1− α) exp(−z2

3)

f34(z3, z4) = α exp(−z2
3) + α exp(−z2

4)

f41(z4, z1) = (1− α) exp(−z2
4) + (1− α) exp(−z2

1).

Besides,
∑

S ‖fS‖2HS = 8α2−8α+4 which equals ‖f‖2H = 4 only when α = 0 or 1.

Proposition 44 (Breakdown of surjectivity) With the same conditions a), b), c)

as in Proposition 43, there exist {fc ∈ Hc} such that f(z) :=
∑

c fc(zc) is not in H.

Proof Consider a simple three node chain on R3 with cliques {{Z1, Z2} , {Z2, Z3}},

Z1 Z2 Z3

and let the kernel on the cliques be Gaussian:

kij((zi, zj), (z
′
i, z
′
j)) := exp(−(zi − z′i)2 − (zj − z′j)2) for {i, j} = {1, 2} or {2, 3} ,

and the joint kernel be k12 + k23:

k(z, z′) =: k12((z1, z2), (z′1, z
′
2)) + k23((z2, z3), (z′2, z

′
3)).
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Pick two functions f12 ∈ H12, f23 ∈ H23, and define f by

f12(x1, x2) := 0,

f23(x2, x3) := k23(0, (z2, z3)) = exp
(
−z2

2 − z2
3

)
,

f(z) = f(z1, z2, z3) := f12(x1, x2) + f23(x2, x3) = exp
(
−z2

2 − z2
3

)
. (4.13)

The proof of f not being in H is lengthy, hence moved to Appendix F. It is based

on the orthonormal basis of real Gaussian RKHS.

In conclusion, the relationship between H and {Hc}c∈C is much more involved than

just direct product, which holds only when the maximal cliques in C are mutually

disjoint. It will be interesting for future research to investigate when the fc are unique

(|τC(f)| = 1) and when ‖f‖2H =
∑

c ‖fc‖2Hc . Example conditions may be C being the

maximum clique set of a triangulated graph, or kernels being universal. Since the

example in Proposition 44 satisfies both, it indicates that some new conditions are

needed.

Fortunately, Theorem 40 is enough for our subsequent discussions on the indepen-

dence criteria.

4.2.3 Injectivity of factored mean operators

When the kernel factorizes by Eq. (4.10), it is again important to study the sufficient

and necessary conditions for the operator µ to be injective. In particular we study the

case where the kernel and the distribution factorize wrt the same graphical model.

In the cases without factorization, the injectivity results such as by Fukumizu et al.

(2009); Sriperumbudur et al. (2008) usually seek conditions on the kernels such as uni-

versality, while almost no assumption is made on the distribution space. The following

theorem shows the feasibility of the other way round: weaker assumption on kernels

and stronger assumptions on the distributions.

Theorem 45 For any kernel k, the mean operator from Pk to H is injective.

Notice that except for tree structured graphs, the marginal distribution on the

cliques does not uniquely identify the global distribution in general. However, among

them, only one can be in the exponential family.

Proof Immediate from Theorem 26.

Restricting the distributions to kernel exponential families does not cost much gen-

erality, thanks to Theorem 18 which says that if the kernel k is universal, then Pk can
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approximate a very general class of densities arbitrarily well in the sense of L∞ norm

or KL divergence. Now we generalize this result to the case where the distribution and

kernel decompose by a graphical model.

Theorem 46 (Dense distribution wrt graphical models) Given a graphical model

G on a multivariate random variable Z with maximal clique set C. Suppose the domain

of Z, Z, is measurable with respect to the Lebesgue measure. Let PG be the set of all dis-

tributions that a) have full support on Z, b) satisfy all the conditional independence rela-

tions encoded by G, and c) there exists a constant B such that ‖p‖∞ < B for all p ∈ PG.

Assume a joint kernel k on Z decomposes along the cliques by k(z, z′) =
∑

c kc(zc, z
′
c),

where the kernel kc on Zc are all universal. Suppose

σ({Hc}c) :=

{
f(z) :=

∑
c∈C

fc(zc) : fc ∈ Hc
}

is dense in H in L∞ norm. Then Pk is dense in PG in the sense that for any ε > 0

and any distribution in PG with density p, there exists a density pf in Pk with natural

parameter f ∈ H, such that ‖p− pf‖∞ ≤ ε.

Proof For any distribution in PG with density p, the Hammersley-Clifford theorem

guarantees that there exists a potential function ψc on Zc for all c ∈ C, such that

p(z) = exp

(∑
c

ψc(zc)− g
)
, where g = log

∫
exp

(∑
c

ψc(zc)

)
dz.

Let m := |C| be the number of maximal cliques. Since kc is universal, there must exist

a function fc ∈ Hc such that ‖fc − (ψc − g/m)‖∞ < ε
2m . Denoting ψ(z) :=

∑
c ψc(zc)

and f̃(z) :=
∑

c fc(zc), we have
∥∥∥log p− f̃

∥∥∥
∞

= ‖ψ − g − f‖∞ < ε/2. Since σ({Hc}c)
is dense inH in L∞ sense, there must exist a function f ∈ H such that

∥∥∥f − f̃∥∥∥
∞
< ε/2.

Hence ‖log p− f‖∞ < ε.

f determines a distribution in Pk with density pf (z) = exp(f(z)− gf ), where

|gf | =
∣∣∣∣log

∫
exp(f(z))dz

∣∣∣∣ =

∣∣∣∣log

∫
exp(f(z)− log p(z))p(z)dz

∣∣∣∣ ≤ ∣∣∣∣log

∫
eεp(z)dz

∣∣∣∣ = ε.

Therefore,

‖log pf − log p‖∞ = ‖f − gf − log p‖∞ ≤ ‖f − log p‖∞ + |gf | < ε+ ε = 2ε,

‖pf − p‖∞ = ‖exp(log pf )− exp(log p)‖∞
≤ ‖p‖∞ ‖exp (log pf − log p)− 1‖∞ < ‖p‖∞ (e2ε − 1) = ‖p‖∞ o(ε).
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Noting the uniform bound B on ‖p‖∞ for all p ∈ PG completes the proof.

Incidentally, the density of Pk in PG also holds in the sense of KL divergence (both

KL(p||pf ) and KL(pf ||p) for p ∈ PG and pf ∈ Pk), which can be derived in exactly the

same fashion as Altun & Smola (2006, Proposition 3).

So below we focus on Pk, where another map Λk : H 7→ H naturally arises in

complete analogy with the mean operator for vanilla exponential family (from the

natural parameter to the marginal polytope): Λk[f ] := µ[P(x; f)], i.e.

f 7−→ p(x; f) = exp(f(x)− g) 7−→ Ex∼p(x;f)[k(x, ·)]
∈ H ∈ Pk ∈ H

Studying the properties of Λk can be interesting for future research on the infer-

ence in kernel exponential families with graphical models, hence generalizing the large

volume of existing literature (e.g. Wainwright & Jordan, 2008).

In Pk, the natural parameters are the function f ∈ H and the sufficient statistics

are the evaluating elements k(x, ·). So according to Theorem 25, the map Λk from H
to the mean of the sufficient statistics is injective if, and only if, k(x, ·) is minimal,

i.e., there does not exist any nonzero function f ∈ H such that 〈f, k(x, ·)〉 is constant.

Hence we just require that H not contain constant functions.

Proposition 47 If the RKHS of kernel k does not contain nonzero constant functions,

then the map Λk from H to H via Pk is injective.

In view of the important role played by the existence of nonzero constant functions

in RKHS, we formally define:

Definition 48 (Constant-exclusive (CE) kernels) A kernel is called constant ex-

clusive (CE) if its RKHS H does not contain nonzero constant functions. Furthermore,

if the kernel is defined on the space Z1 × . . .×Zn, then the kernel is called coordinate

constant exclusive (CCE) if H does not contain any function f for which there is a

coordinate i ∈ [n] and a set of assignment {x̃j}j 6=i such that f(x̃1, . . . , x̃i−1, xi, x̃i−1, . . .)

is constant in xi and nonzero.

The CE property looks simple but has not been well studied. Steinwart & Christ-

mann (2008, Corollary 4.44) gave a nontrivial proof that nonzero constant functions

are not in the RKHS of Gaussian kernels on a subset of Rn which contains open set,

hence is CE. Lemma 92 further proves that it is CCE as well. However, in general,

there seems to be no implication between a kernel being universal/characteristic and

CE/CCE. Even universal kernels are not necessarily CE or CCE, e.g., Gaussian kernel
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plus 1 is universal but not CE or CCE. Polynomial kernels are also clearly not CE or

CCE. The RKHS of linear kernels only contains linear functions, hence CE but not

necessarily CCE. The kernel k((x1, x2), (x′1, x
′
2)) = exp(−(x1− x′1)2) + 1 is CE but not

CCE. Conversely, CCE clearly guarantees CE.

The following Theorem 49 gives an interesting result which connects three impor-

tant aspects: a) the graphical model topology, b) CCE of the kernels on the cliques,

and c) CE of the joint kernel.

Theorem 49 Suppose G is a tree and the kernels kc are all CCE, then k is CE and

hence the mean operator Λk is injective.

Proof Suppose k is not CE and its RKHS has a non-zero constant function f . Then

there must exist functions {fc : Zc → R, c ∈ C} such that f(Z) =
∑

c∈C fc(Zc). Since

the maximal cliques of a tree are just edges, take an edge c = (l, n) where l is a leaf.

Since l does not appear in other c ∈ C, so fc must be constant in l. However, kc is

CCE, so fc can only be 0. This argument can be run recursively from all leaves, to

parent of leaves, and finally to the root, resulting in fc being 0 for all c, hence f ≡ 0.

This contradiction means k must be CE.

4.2.4 Factorization of independence criteria

Theorem 40 implies that we will be able to perform all subsequent operations on struc-

tured domains simply by dealing with mean operators on the corresponding maximal

cliques. In addition, it implies that if the kernel decomposes along an undirected graph

G we may decompose HSIC(X,Y ) further into

I(X,Y ) =
∑

c∈C
‖µc[PXcYc ]− µc[PXcPYc ]‖2Hc

=
∑

c∈C

{
E(xcyc)(x′cy

′
c)

+ Excycx′cy′c − 2E(xcyc)x′cy
′
c

}
[kz,c((xc, yc), (x

′
c, y
′
c))]

(4.14)

where bracketed random variables in the subscripts are drawn from their joint distri-

butions and un-bracketed ones are from their respective marginals, e.g., E(xcyc)x′cy
′
c

:=

E(xcyc)Ex′cEy′c (refer to Eq. (4.3) to (4.5) for the full expansion). Obviously the chal-

lenge is to find good empirical estimates of (4.14). In its simplest form we may replace

each of the expectations by sums over samples, that is, by replacing

E(x,y)[f(x, y)]← 1

n

n∑
i=1

f(xi, yi) and E(x)(y)[f(x, y)]← 1

n2

n∑
i,j=1

f(xi, yj). (4.15)
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Figure 4.2: From left to right: (a) a graphical model representing iid observations,
(b) a graphical model for first order sequential data, and (c) a graphical model for
dependency on a two dimensional mesh.

4.3 Estimates for special structures

To illustrate the versatility of our approach we apply our model to a number of graphical

models ranging from independent random variables to meshes proceeding according to

the following recipe:

1. Define a conditional independence graph.

2. Identify the maximal cliques.

3. Choose suitable joint kernels on the maximal cliques.

4. Exploit stationarity (if existent) in I(X,Y ) in (4.14).

5. Derive the corresponding empirical estimators for each clique, and hence for all

of I(X,Y ).

4.3.1 Independent and identically distributed data

As the simplest case, we first consider the graphical model in Figure 4.2a, where

{(xt, yt)}Tt=1 are iid random variables. Correspondingly the maximal cliques are {(xt, yt)}Tt=1.

We choose the joint kernel on the cliques to be

k̄z,t((xt, yt), (x
′
t, y
′
t)) := k̄x(xt, x

′
t)k̄y(yt, y

′
t) (4.16)

hence kz((x,y), (x′,y′)) =
T∑
t=1

k̄x(xt, x
′
t)k̄y(yt, y

′
t), (4.17)

where k̄x and k̄y are ground kernels on the cliques of X and Y respectively. The

representation for kz,t implies that we are taking an outer product between the Hilbert

spaces on xt and yt induced by kernels k̄x and k̄y respectively. If the pairs of random

variables (xt, yt) are not identically distributed, all that is left is to use (4.17) to obtain

an empirical estimate via (4.15).
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We may improve the estimate considerably if we are able to assume that all pairs

(xt, yt) are drawn from the same distribution p(xt, yt). Consequently all coordinates

of the mean map are identical and we can use all the data to estimate just one of the

discrepancies ‖µc[pc(xc, yc)]− µc[pc(xc)pc(yc)]‖2. The latter expression is identical to

the standard HSIC criterion and we obtain the biased estimate

Î(X,Y ) = 1
T trHKxHKy (4.18)

where (Kx)st := k̄x(xs, xt), (Ky)st := k̄y(ys, yt) and Hst := δst − 1
T .

4.3.2 Sequence data

A more interesting application beyond iid data is sequences with a Markovian depen-

dence as depicted in Figure 4.2b. Here the maximal cliques are the sets {(xt, xt+1, yt, yt+1)}T−1
t=1 .

More generally, for longer range dependency of order τ ∈ N, the maximal cliques will

involve the random variables (xt, . . . , xt+τ , yt, . . . , yt+τ ) =: (xt,τ , yt,τ ).

We assume homogeneity and stationarity of the random variables: that is, all cliques

share the same sufficient statistics (feature map) and their expected value is identical.

In this case the kernel

k̄z((xt,τ , yt,τ ), (x′t,τ , y
′
t,τ )) := k̄x(xt,τ , x

′
t,τ )k̄y(yt,τ , y

′
t,τ )

can be used to measure discrepancy between the random variables. Stationarity means

that µc[pc(xc, yc)] and µc[pc(xc)pc(yc)] are the same for all cliques c, hence I(X,Y ) is

a multiple of the difference for a single clique.

Using the same argument as in the iid case, we can obtain a biased estimate of the

dependence measure by using (Kx)ij = k̄x(xi,τ , xj,τ ) and (Ky)ij = k̄y(yi,τ , yj,τ ) instead

of the definitions of Kx and Ky in (4.18). This works well in experiments. In order to

obtain an unbiased estimate we need some more work. Recall the unbiased estimate of

I(X,Y ) is a fourth order U-statistic (see Theorem 36 and (Gretton et al., 2008)).

Theorem 50 An unbiased empirical estimator for ‖µ[p(x, y)]− µ[p(x)p(y)]‖2 is

Î(X,Y ) :=
(n− 4)!

n!

∑
(i,j,q,r)

h(xi, yi, . . . , xr, yr), (4.19)

where the sum is over all terms such that i, j, q, r are mutually different, and

h(x1, y1, . . . , x4, y4) :=
1

4!

(1,2,3,4)∑
(t,u,v,w)

k̄x(xt, xu)k̄y(xt, xu) + k̄x(xt, xu)k̄y(xv, xw)

− 2k̄x(xt, xu)k̄y(xt, xv),
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and the latter sum denotes all ordered quadruples (t, u, v, w) drawn from (1, 2, 3, 4).

The theorem implies that in expectation h takes on the value of the dependence mea-

sure. To establish that this also holds for dependent random variables we use a result

from (Aaronson et al., 1996) which establishes convergence for stationary mixing se-

quences under mild regularity conditions, namely whenever the kernel of the U-statistic

h is bounded and the process generating the observations is absolutely regular. See

also Appendix E.3 and (Borovkova et al., 2001, Section 4). We note that Kontorovich

(2007) developed a similar result for uniform bound, and his results are highlighted in

Appendix E.4.

Theorem 51 Whenever I(X,Y ) > 0, that is, whenever the random variables are

dependent, the estimate Î(X,Y ) is asymptotically normal with

√
n(Î(X,Y )− I(X,Y ))

d−→ N (0, 4σ2) (4.20)

where the variance is given by

σ2 =Var [h3(x1, y1)]2 + 2

∞∑
t=1

Cov(h3(x1, y1), h3(xt, yt)) (4.21)

and h3(x1, y1) :=E(x2,y2,x3,y3,x4,y4)[h(x1, y1, . . . , x4, y4)] (4.22)

This follows from (Borovkova et al., 2001, Theorem 7), again under mild regularity

conditions (note that Borovkova et al. (2001) state their results for U-statistics of

second order, and claim the results hold for higher orders). The proof is tedious but

does not require additional techniques.

4.3.3 TD-SEP as a special case

So far we did not discuss the freedom of choosing different kernels. In general, an RBF

kernel will lead to an effective criterion for measuring the dependence between random

variables, especially in time-series applications. However, we could also choose linear

kernels for k̄x and k̄y, for instance, to obtain computational savings.

For a specific choice of cliques and kernels, we can recover the work of Ziehe &

Müller (1998) as a special case of our framework. In (Ziehe & Müller, 1998), for two

centered scalar time series x and y, the contrast function is chosen as the sum of same-

time and time-lagged cross-covariance E[xtyt] + E[xtyt+τ ]. Using our framework, two

types of cliques, (xt, yt) and (xt, yt+τ ), are considered in the corresponding graphical

model. Furthermore, we use a joint kernel of the form

〈xs, xt〉 〈ys, yt〉+ 〈xs, xt〉 〈ys+τ , yt+τ 〉 , (4.23)
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which leads to the estimator of structured HSIC:

Î(X,Y ) =
1

T

(
trHKxHKy + trHKxHK

τ
y

)
.

Here Kτ
y denotes the linear covariance matrix for the time lagged y signals. For scalar

time series, basic algebra shows that trHKxHKy and trHKxHK
τ
y are the estimators

of E[xtyt] and E[xtyt+τ ] respectively (up to a multiplicative constant).

Further generalization can incorporate several time lagged cross-covariances into

the contrast function. For instance, TD-SEP (Ziehe & Müller, 1998) uses a range of

time lags from 1 to τ . That said, by using a nonlinear kernel we are able to obtain

better contrast functions, as we will show in our experiments.

4.3.4 Grid structured data

Structured HSIC can go beyond sequence data and be applied to more general depen-

dence structures such as 2-D grids for images. Figure 4.2c shows the corresponding

graphical model. Here each node of the graphical model is indexed by two subscripts,

i for row and j for column. In the simplest case, the maximal cliques are

C = {(xij , xi+1,j , xi,j+1, xi+1,j+1, yij , yi+1,j , yi,j+1, yi+1,j+1)}ij .

In other words, we are using a cross-shaped stencil to connect vertices. Provided that

the kernel k̄z can also be decomposed into the product of k̄x and k̄y, then a biased

estimate of the independence measure can be again formulated as trHKxHKy up to a

multiplicative constant. The statistical analysis of U-statistics for stationary Markov

random fields is highly nontrivial. We are not aware of results equivalent to those

discussed in Section 4.3.2. Kontorovich (2007), when dealing with uniform bounds,

also did not give any result on grid structured data.

4.4 Experiments

Having a dependence measure for structured spaces is useful for a range of applications.

Analogous to iid HSIC, structured HSIC can be applied to non-iid data in applications

such as independent component analysis (Shen et al., 2009), independence test (Gretton

et al., 2008), feature selection (Song et al., 2007c), clustering (Song et al., 2007b), and

dimensionality reduction (Song et al., 2008a). The fact that structured HSIC can take

into account the interdependency between observations provides us with a principled

generalization of these algorithms to, e.g., time series analysis. In this thesis, we will

focus on three examples:
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1. Independence test where structured HSIC is used as a test statistic;

2. Independent component analysis where we wish to minimize the dependence;

3. Time series segmentation where we wish to maximize the dependence.

4.4.1 Independence test

We first present two experiments that use the structured HSIC as an independence

measure for non-iid data, namely XOR binary sequence and Gaussian process. With

structured HSIC as a test statistic, we still need an approach to building up the distri-

bution of the test statistic under the null hypothesis H0 : x ⊥⊥ y. For this purpose, we

generalize the random shuffling technique commonly used for iid observations (Gretton

et al., 2008) into a clique-bundled shuffling. This shuffling technique randomly pairs

up the observations in x and y. Depending on the clique configurations of structured

HSIC, one observation in x may be paired up with several observations in y. The

observations corresponding to an instance of a maximal clique need to be bundled to-

gether and shuffled in blocks. For instance, if the maximal cliques are {(xt, yt, yt+1)},
after shuffling we may have pairs such as (x3, y8, y9) and (x8, y3, y4), but never have

pairs such as (x3, y4, y9) or (x4, y3, y8), because y3 is bundled with y4, and y8 is bundled

with y9. If the structured HSIC has a form of (4.18) with Gram matrices Kx and Ky

possibly assuming more general forms like k̄x(xi,τ , xj,τ ), the shuffling can be performed

directly on the matrix entries. In this case, Kx and Ky can be computed offline and

separately. Given a permutation π, a shuffle will change (Ky)st into (Ky)π(s)π(t). The

random shuffling is usually carried out many times and structured HSIC is computed

at each time, which results in the null distribution.

Independence test for XOR binary sequences

In this experiment, we compared iid HSIC and structured HSIC for independence test.

We generated two binary sequences x and y of length T = 400. The observations in x

were drawn iid from a uniform distribution over {0, 1}. y were determined by an XOR

operation over observations from x: yt = xt⊗xt−1. If we treat the observation pairs as

iid, then the two sequences must appear independent. The undirected graphical model

for this data is shown in Figure 4.1b.

For iid HSIC, we used maximal cliques {(xt, yt)} to reflect its underlying iid as-

sumption. The corresponding kernel is δ(xs, xt)δ(ys, yt). The maximal cliques for

structured HSIC are {(xt−1, xt, yt)}, which takes into account the interdependent na-

ture of the observations. The corresponding kernel is δ(xs−1, xt−1)δ(xs, xt)δ(ys, yt). We

tested the null hypothesis H0 : x ⊥⊥ y with both methods at significance level 0.01.
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Table 4.1: The number of times HSIC and structured HSIC rejected the null hypothesis.

data HSIC p-value Structured HSIC p-value

XOR 1 0.44±0.29 100 0±0

RAND 1 0.49±0.28 0 0.49±0.31

The distributions of the test statistics was built by shuffling the paring of kernel entries

for 1000 times.

We randomly instantiated the two sequences for 100 times, then counted the number

of times each method rejected the null hypothesis (Table 4.1 XOR row). Structured

HSIC did a perfect job in detecting the dependence between the sequences, while

normal HSIC almost completely missed that out. For comparison, we also generated

a second dataset with two independent and uniformly distributed binary sequences.

Now both methods correctly detected the independence (Table 4.1 RAND row). We

also report the mean and standard deviation of the p-values over the 100 instantiations

of the experiment to give a rough picture of the distribution of the p-values.

Independence test for Gaussian processes

In this experiment, we generated two sequences x = {xt}Tt=1 and y = {yt}Tt=1 using the

following formulae:

x = Au and y = A
(
εu +

√
1− ε2v

)
, (4.24)

where A ∈ RT×T is a mixing matrix, and u = {ut}Tt=1 and v = {vt}Tt=1 are sequences of

iid zero-mean and unit-variance normal observations. ε ∈ [0, 1] and larger values of ε

lead to higher dependence between sequences x and y. In this setting, both x and y are

stationary Gaussian processes. Furthermore, due to the mixing matrix A (especially

its non-zero off-diagonal elements), observations within x and y are interdependent.

We expect that an independence test which takes into account this structure will out-

perform tests assuming iid observations. In our experiment, we used T = 2000 and

Aab = exp(− |a− b| /25) with all elements below 0.7 clamped to 0. This banded matrix

makes the interdependence in x and y localized. For structured HSIC, we used the

maximal cliques {(xt,τ , yt,τ )} where τ = 10 and linear kernel 〈xs,10, xt,10〉 〈ys,10, yt,10〉.
We varied ε ∈ {0, 0.05, 0.1, . . . , 0.7}. For each value of ε, we randomly instantiated

u and v for 1000 times. For each instantiation, we followed the strategy in (Karvanen,

2005) which formed a new subsequence of length 200 by resampling every d observations

and here we used d = 5. We tested the null hypothesis H0 : x ⊥⊥ y with 500 random

shuffles, and the nominal risk level was set to α = 0.01. When ε = 0 we are interested
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Figure 4.3: Independence test for a Gaussian process.

in the Type I error, i.e., the fraction of times when H0 is rejected which should be

no greater than the α. When ε > 0 we are concerned about the same fraction, but

now called empirical power of the test because a higher value is favored. d and τ

were chosen to make the comparison fair. Smaller d includes more autocorrelation and

increases the empirical power for both iid HSIC and structured HSIC, but it causes

higher Type I error (see e.g., Table II in Karvanen, 2005). We chose d = 5 since it is

the smallest d such that Type I error is close to the nominal risk level α = 0.01. τ is

only for structured HSIC, and in our experiment higher values of τ did not significantly

improve the empirical power, but just make the kernels more expensive to compute.

In Figure 4.3, we plot the number of times H0 is rejected. When ε = 0, x and y are

independent and both iid HSIC and structured HSIC almost always accept H0. When

ε ∈ [0.05, 0.2], i.e., x and y are slightly dependent, both tests have a low empirical

power. When ε > 0.2, structured HSIC is considerably more sensitive in detecting

dependency and consistently rejects H0 more frequently. Note u and v have the same

weight in Eq. (4.24) when ε = 2−1/2 = 0.71.

4.4.2 Independent component analysis

In independent component analysis (ICA), we observe a time series of vectors t that

corresponds to a linear mixture t = As of n mutually independent sources s (each

entry in the source vector s here is a random process, and depends on its past values;

examples include music and EEG time series). Based on the series of observations t,

we wish to recover the sources using only the independence assumption on s. Note

that sources can only be recovered up to scaling and permutation. The core of ICA is

a contrast function that measures the independence of the estimated sources. An ICA

algorithm searches over the space of mixing matrix A such that this contrast function is
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minimized. Thus, we propose to use structured HSIC as the contrast function for ICA.

By incorporating time lagged variables in the cliques, we expect that structured HSIC

can better deal with the non-iid nature of time series. In this respect, we generalize

the TD-SEP algorithm (Ziehe & Müller, 1998), which implements this idea using a

linear kernel on the signal. Thus, we address the question of whether correlations

between higher order moments, as encoded using non-linear kernels, can improve the

performance of TD-SEP on real data.

Data Following the setting of (Gretton et al., 2005b, Section 5.5), we unmixed various

musical sources, combined using a randomly generated orthogonal matrix A (since

optimization over the orthogonal part of a general mixing matrix is the more difficult

step in ICA). We considered mixtures of two to four sources, drawn at random without

replacement from 17 possibilities. We used the sum of pairwise dependencies as the

overall contrast function when more than two sources were present.

Methods We compared structured HSIC to TD-SEP and iid HSIC. While iid HSIC

does not take the temporal dependence in the signal into account, it has been shown to

perform very well for iid data (Shen et al., 2009). Following Gretton et al. (2005b), we

employed a Laplace kernel, k̄x(x, x′) = exp(−λ‖x−x′‖) with λ = 3 for both structured

and iid HSIC. For both structured and iid HSIC, we used gradient descent over the

orthogonal group with a Golden search, and low rank Cholesky decompositions of the

Gram matrices to reduce computational cost, as in (Bach & Jordan, 2002).

Results We chose the Amari divergence as the index for comparing performance of

the various ICA methods. This is a divergence measure between the estimated and true

unmixing matrices, which is invariant to the output ordering and scaling ambiguities. A

smaller Amari divergence indicates better performance. Results are shown in Table 4.2.

Overall, contrast functions that take time delayed information into account perform

best, although the best time lag is different when the number of sources varies.

4.4.3 Time series clustering and segmentation

We can also extend clustering to time series and sequences using structured HSIC.

This is carried out in a similar way to the iid case. One can formulate clustering as

generating the labels y from a finite discrete set, such that their dependence on x is

maximized (Song et al., 2007b):

maximizey trHKxHKy subject to constraints on y. (4.25)
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Table 4.2: Median performance of ICA on music using HSIC, TDSEP, and structured
HSIC. In the top row, the number m of sources and n of samples are given. In the
second row, the number of time lags τ used by TDSEP and structured HSIC are
given: thus the observation vectors xt, xt−1, . . . , xt−τ were compared. The remaining
rows contain the median Amari divergence (multiplied by 100) for the three methods
tested. The original HSIC method does not take into account time dependence (τ = 0),
and returns a single performance number. Results are in all cases averaged over 136
repetitions: for two sources, this represents all possible pairings, whereas for larger m
the sources are chosen at random without replacement.

Method
m = 2, n = 5000 m = 3, n = 10000 m = 4, n = 10000

1 2 3 1 2 3 1 2 3

HSIC 1.51 1.70 2.68

TDSEP 1.54 1.62 1.74 1.84 1.72 1.54 2.90 2.08 1.91

Structured HSIC 1.48 1.62 1.64 1.65 1.58 1.56 2.65 2.12 1.83

Here Kx and Ky are the kernel matrices for x and the generated y respectively. More

specifically, assuming (Ky)st := δ(ys, yt) for discrete labels y, we recover clustering.

Relaxing discrete labels to yt ∈ R with bounded norm ‖y‖2 and setting (Ky)st := ysyt,

we obtain principal component analysis.

This reasoning for iid data carries over to sequences by introducing additional de-

pendence structure through the kernels: (Kx)st := k̄x(xs,τ , xt,τ ) and (Ky)st := k̄y(ys,τ , yt,τ ).

In general, the interacting label sequences make the optimization in (4.25) intractable.

However, for a class of kernels k̄y an efficient decomposition can be found by applying

a reverse convolution on k̄x.

Efficient optimization for convolution kernels

Suppose the kernel k̄y assumes a special form given by

k̄y(ys,τ , yt,τ ) =
∑τ

u,v=0
k̄◦y(ys+u, yt+v)Muv, (4.26)

where M ∈ R(τ+1)×(τ+1) is positive semi-definite, and k̄◦y is a base kernel between

individual time points. A common choice is k̄◦y(ys, yt) = δ(ys, yt). In this case we can

rewrite trHKxHKy by applying the summation over M to HKxH, i.e.,

T∑
s,t=1

[HKxH]ij

τ∑
u,v=0

k̄◦y(ys+u, yt+v)Muv =

T+τ∑
s,t=1

τ∑
u,v=0

s−u,t−v∈[1,T ]

Muv[HKxH]s−u,t−v

︸ ︷︷ ︸
:=K?

st

k̄◦y(ys, yt)

(4.27)
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This means that we may apply the matrix M to HKxH and thereby we are able

to decouple the dependency within y. That is, in contrast to k̄y which couples two

subsequences of y, k̄◦y only couples two individual elements of y. As a result, the

optimization over y is made much easier. Denoting the convolution by K? = [HKxH]?

M , we can directly apply (4.25) to time series and sequence data in the same way as

iid data, treating K? as the original Kx. In practice, approximate algorithms such

as incomplete Cholesky decomposition are needed to efficiently compute and represent

K? and the details can be found in Appendix G.

Empirical Evaluation

Datasets We studied two datasets in this experiment.

1. Swimming dataset. The first dataset was collected by the Australian Institute

of Sports (AIS) from a 3-channel orientation sensor attached to a swimmer which

monitors: 1. the body orientation by a 3-channel magnetometer; 2. the acceleration

by a 3-channel accelerometer. The three time series we used in our experiment have

the following configurations: T = 23000 time steps with 4 laps; T = 47000 time steps

with 16 laps; and T = 67000 time steps with 20 laps. The task is to automatically find

the starting and finishing time of each lap based on the sensor signals. We treated this

problem as a segmentation problem, and used orientation data for our experiments

because they lead to better results than the acceleration signals. Since the dataset

contains four different styles of swimming, we assumed there are six states/clusters for

the sequence: four clusters for the four styles of swim, two clusters for approaching and

leaving the end of the pool (finishing and starting a lap, respectively).

2. BCI dataset. The second dataset is a brain-computer interface data (data

IVb of Berlin BCI group4). It contains EEG signals collected when a subject was

performing three types of cued imagination: left, foot, and relax. Between every

two successive imaginations, there is an interim. So an example state sequence is:

left, interim, relax, interim, foot, interim, relax, interim,...

Therefore, the left/foot/relax states correspond to the swimming styles and the

interim corresponds to the turning at the end or beginning of the laps. Including

the interim period, the dataset consists of T = 10000 time points with 16 different

segments (32 boundaries). The task is to automatically detect the start and end of an

imagination. We used four clusters for this problem.

We preprocessed the raw signal sequences by applying them to a bandpass filter

which only keeps the frequency range from 12Hz to 14Hz. Besides, we followed the

4http://ida.first.fraunhofer.de/projects/bci/competition-iii/desc-IVb.html
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common practice and only used the following electrode channels (basically those in the

middle of the test region):

33,34,35,36,37,38,39,42,43,44,45,46,47,48,49,51,52,53,54,

55,56,57,59,60,61,62,63,64,65,66,69,70,71,72,73,74,75.

Finally, for both swimming and BCI datasets, we smoothed the raw data with

moving averages, i.e., xt ←
∑w

τ=−w x
raw
t+τ followed by normalization to zero mean and

unit variance for each feature dimension. Here w is set to 100 for swimming data and

50 for BCI data due to its higher frequency of state switching. This smoothed and

normalized x was used by all the three algorithms.

Methods We compared three algorithms: structured HSIC for clustering, spectral

clustering (Ng et al., 2002), and HMM.

1. Structured HSIC. For the three swimming datasets, we used the maximal

cliques of {(xt, yt−50,100)} for structured HSIC, where y is the discrete label sequence to

be generated. Time lagged labels in the maximal cliques reflect the fact that clustering

labels keep the same for a period of time. The kernel k̄y took the form of equation (4.26),

with M ∈ R101×101 and Mab := exp(−(a − b)2). We used the technique described

in Section 4.4.3 to shift the dependence within y into x. The kernel k̄x was RBF:

exp(−‖xs − xt‖2). We performed kernel k-means clustering based on the convolved

kernel matrix K?. To avoid the local minima of k-means, we randomly initialized it

for 20 times and reported the error made by the model which has the lowest sum of

point-to-centroid distances. The parameters for BCI dataset are the same, except that

M ∈ R51×51 to reflect the fact that state changes more frequently in this dataset.

2. Spectral clustering. We first applied the algorithm in (Ng et al., 2002) on

x and it yielded far larger error, and hence is not reported here. Then we applied

its kernelized version to the convolved kernel K?. We used 100 nearest neighbors with

distance function exp(−‖xi − xj‖2). These parameters delivered uniformly best result.

3. HMM. We trained a first order homogeneous HMM by the EM algorithm with

6 hidden states for swimming dataset and 4 states for BCI dataset, and its observa-

tion model contained diagonal Gaussians. After training, we used Viterbi decoding

to determine the cluster labels. We used the implementation from Torch5. To reg-

ularize, we tried a range of minimum variance σ ∈ {0.5, 0.6, ..., 2.0}. For each σ, we

randomly initialized the training of HMM for 50 times to avoid local maxima of EM,

and computed the error incurred by the model which yielded the highest likelihood on

the whole sequence. Finally, we reported the minimum error over all σ.

5http://www.torch.ch
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Figure 4.4: Illustration of error calculation. Red lines denote the ground truth and
blues line are the segmentation results. The error introduced for segment R1 to R′1 is
a + b, while that for segment R2 to R′2 is c + d. The overall error in this example is
then (a+ b+ c+ d)/4.

Table 4.3: Segmentation errors by various methods on the four studied time series.

Method Swimming 1 Swimming 2 Swimming 3 BCI

structured HSIC 99.0 118.5 108.6 111.5

spectral clustering 125 212.3 143.9 162

HMM 153.2 120 150 168

Results To evaluate the segmentation quality, the boundaries found by various meth-

ods were compared against the ground truth. First, each detected boundary was

matched to a true boundary, and then the discrepancy between them was counted

into the error. The overall error was this sum divided by the number of boundaries.

Figure 4.4 gives an example on how to compute this error.

According to Table 4.3, in all of the four time series we studied, segmentation using

structured HSIC leads to lower error compared with spectral clustering and HMM.

For instance, structured HSIC reduces nearly 1/3 of the segmentation error in the

BCI dataset. We also plot the true boundaries together with the segmentation results

produced by structured HSIC, spectral clustering, and HMM respectively. Figures 4.6

to 4.8 present the results for the three swimming datasets, and Figure 4.5 for the BCI

dataset. Although the results of swimming data in Figure 4.6 to 4.8 are visually similar

among all algorithms, the average error produced by structured HSIC is much smaller

than that of HMM or spectral clustering. Finally, the segment boundaries of BCI data

produced by structured HSIC clearly fit better with the ground truth.

4.5 Conclusion

In this paper, we extended the Hilbert Schmidt Independence Criterion from iid data

to structured and non-iid data. Our approach is based on RKHS embeddings of dis-

tributions, and utilizes the efficient factorizations provided by the exponential family
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(c) HMM. In (c), we did specify 4 hid-
den states, but the Viterbi decoding
showed only two states were used.
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associated with undirected graphical models. Encouraging experimental results were

demonstrated on independence test, ICA, and segmentation for time series. Further

work will be done in the direction of applying structured HSIC to PCA and feature

selection on structured data. It will be also impacting in theory to study the asymp-

totic bounds for grid structured non-iid data, in the same line as Section 4.3.2 and

(Kontorovich, 2007).
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Chapter 5

Lower Bounds for BMRM and

Faster Rates for Training SVMs

CRFs are log-linear models for learning from structured data. A similar approach

to this task is maximum margin models (e.g., Taskar et al., 2004) which a) allows

decomposition of loss and variable parameterization along the graphical models, and

b) admits straightforward kernelization to implicitly model nonlinear dependencies

with a much richer feature space while still retaining linear estimation. However, the

nonsmooth objective function poses new challenges in optimization (Collins et al.,

2008; Taskar et al., 2006). Fortunately, the problem can be cast as an example of

regularized risk minimization, for which bundle methods (BMRM, Teo et al., 2007) and

the closely related SVMStruct (Tsochantaridis et al., 2005) are state-of-the-art general

purpose solvers. Section 1.6 provided a brief introduction to these solvers.

Smola et al. (2007b) proved that BMRM requires O(1/ε) iterations to converge

to an ε accurate solution, and we will show in this chapter that this rate is tight,

i.e. there exists a function for which BMRM requires O(1/ε) steps. Motivated by

Nesterov’s optimal first-order methods (Nesterov, 1983, 2005a, 2007), we further devise

an algorithm for the structured loss which finds an ε accurate solution in O(1/
√
ε)

iterations.

Let xi ∈ X ⊆ Rd denote the feature vector of examples and yi ∈ Y be the cor-

responding labels1. Given a training set of n sample label pairs
{

(xi, yi)
}n
i=1

, drawn

i.i.d. from a joint probability distribution on X ×Y, many machine learning algorithms

solve the following regularized risk minimization problem:

min
w

J(w) := λΩ(w) +Remp(w), where Remp(w) :=
1

n

n∑
i=1

l(xi, yi; w). (5.1)

Here l(xi, yi; w) denotes the loss on instance (xi, yi) using the current model w and

1We first discuss binary SVMs and therefore use the symbol yi without boldface. Structured
outputs will be discussed in Section 5.4 where we will use y to denote the structured labels.
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Remp(w), the empirical risk, is the average loss on the training set. The regularizer

Ω(w) acts as a penalty on the complexity of the classifier and prevents overfitting.

Usually the loss is convex in w but can be nonsmooth while the regularizer is usually

a smooth strongly convex function. Binary support vector machines (SVMs) are a

prototypical example of such regularized risk minimization problems where Y = {1,−1}
and the loss considered is the binary hinge loss:

l(xi, yi; w) =
[
1− yi

〈
w,xi

〉]
+
, with [·]+ := max(0, ·). (5.2)

Recently, a number of solvers have been proposed for the regularized risk minimiza-

tion problem. The first and perhaps the best known solver is SVMStruct by Tsochan-

taridis et al. (2005), which was shown to converge in O(1/ε2) iterations to an ε accurate

solution. The convergence analysis of SVMStruct was improved to O(1/ε) iterations by

Smola et al. (2007b). In fact, Smola et al. (2007b) showed that their convergence anal-

ysis holds for a more general solver than SVMStruct namely BMRM (Bundle method for

regularized risk minimization).

At every iteration BMRM replaces Remp by a piecewise linear lower bound Rcp
t and

optimizes

min
w

Jt(w) := λΩ(w) +Rcp
t (w), where Rcp

t (w) := max
1≤i≤t

〈w,ai〉+ bi, (5.3)

to obtain the next iterate wt. Here ai ∈ ∂Remp(wi−1) denotes an arbitrary subgradient

of Remp at wi−1 and bi = Remp(wi−1) − 〈wi−1,ai〉. The piecewise linear lower bound

is successively tightened until the gap

εt := min
0≤t′≤t

J(wt′)− Jt(wt), (5.4)

falls below a predefined tolerance ε. The full details of BMRM can be found in Section

1.6.4 and (Teo et al., 2010).

Even though BMRM solves an expensive optimization problem at every iteration,

the convergence analysis only uses a simple one-dimensional line search (Algorithm 3

in Chapter 1) to bound the decrease in εt. Furthermore, the empirical convergence

behavior of BMRM is much better than the theoretically predicted rates on a number

of real life problems (Teo et al., 2010, Section 5). It was therefore conjectured that

the rates of convergence of BMRM could be improved. In Section 5.2, we answer

this question in the negative by explicitly constructing a regularized risk minimization

problem for which BMRM takes at least O(1/ε) iterations.

One possible way to circumvent the O(1/ε) lower bound is to solve the problem

in the dual. Using a very old result of Nesterov (1983) we obtain in Section 5.3 an
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algorithm for SVMs which only requires O(1/
√
ε) iterations to converge to an ε accurate

solution; each iteration of the algorithm requiring O(nd) work. Although we primarily

focus on the regularized risk minimization with the binary hinge loss, our algorithm can

also be used whenever the empirical risk is piecewise linear and contains a small number

of pieces. Examples of this include multi-class, multi-label, and ordinal regression hinge

loss and other related losses. Extension to more general structured output spaces is

also feasible as long as it factorizes according to a graphical model. Section 5.4 shows

the details. Finally, experimental results will be presented in Section 5.5 which confirm

our bounds.

5.1 Preliminaries

In this section, we quickly recap the necessary convex analysis concepts. A brief

introduction to convex analysis is available in Appendix A, and more details can

be found in textbooks like (Hiriart-Urruty & Lemaréchal, 1993a; Rockafellar, 1970).

Unless specified otherwise, ‖·‖ refers to the Euclidean norm ‖w‖ :=
(∑n

i=1w
2
i

) 1
2 .

R := R ∪ {∞}, and [t] := {1, . . . , t}. The dom of a convex function f is defined

by dom f := {w : f(w) <∞}. ∆k refers to the k dimensional simplex. The following

three notions will be used extensively:

Definition 52 (Strong convexity) A convex function f : Rn → R is strongly convex

(s.c.) wrt norm ‖ · ‖ if there exists a constant σ > 0 such that f − σ
2 ‖ · ‖2 is convex. σ

is called the modulus of strong convexity of f , and for brevity we will call f σ-strongly

convex or σ-s.c..

Definition 53 (Lipschitz continuous gradient) A function f is said to have Lip-

schitz continuous gradient (l.c.g) if there exists a constant L such that

‖∇f(w)−∇f(w′)‖ ≤ L‖w −w′‖ ∀ w and w′. (5.5)

For brevity, we will call f L-l.c.g.

Definition 54 (Fenchel duality) The Fenchel dual of a function f : E1 → E2, is a

function f? : E?2 → E?1 given by

f?(w?) = sup
w∈E1

{〈w,w?〉 − F (w)} (5.6)

The following theorem specifies the relationship between strong convexity of a primal

function and Lipschitz continuity of the gradient of its Fenchel dual.

Theorem 55 (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 4.2.1 and 4.2.2)
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1. If f : Rn → R is σ-strongly convex, then dom f? = Rn and ∇F ? is 1
σ -l.c.g.

2. If f : Rn → R is convex and L-l.c.g, then f? is 1
L -strongly convex.

Subgradients generalize the concept of gradients to nonsmooth functions. For w ∈
dom f , µ is called a subgradient of f at w if

f(w′) ≥ f(w) +
〈
w′ −w,µ

〉
∀w′. (5.7)

The set of all subgradients at w is called the subdifferential, denoted by ∂f(w). If f

is convex, then ∂f(w) 6= ∅ for all w ∈ dom F , and is a singleton if, and only if, f is

differentiable (Hiriart-Urruty & Lemaréchal, 1993a).

Any piecewise linear convex function f(w) with t linear pieces can be written as

f(w) = max
i∈[t]
{〈ai,w〉+ bi}, (5.8)

for some ai and bi. If the empirical risk Remp is a piecewise linear function then the

convex optimization problem in (5.1) can be expressed as

min
w

J(w) := min
w

max
i∈[t]
{〈ai,w〉+ bi}+ λΩ(w). (5.9)

Let A := (a1, . . . ,at) and b := (b1, . . . , bn), then the adjoint form of J(w) can be

written as

D(α) := −λΩ?(−λ−1Aα) + 〈α,b〉 with α ∈ ∆t (5.10)

where the primal and the adjoint optimum are related by

w∗ = ∂Ω?(−λ−1Aα∗). (5.11)

In fact, using concepts of strong duality (see e.g.Theorem 2 of (Teo et al., 2010)), it

can be shown that

inf
w∈Rd

{
max
i∈[n]
〈ai,w〉+ bi + λΩ(w)

}
= sup

α∈∆t

{
−λΩ?(−λ−1Aα) + 〈α,b〉

}
(5.12)

5.2 Lower bounds

The following result was shown by Smola et al. (2007b):

Theorem 56 (Theorem 4 of (Smola et al., 2007b)) Assume that J(w) ≥ 0 for

all w, and that ‖∂wRemp(w)‖ ≤ G for all w ∈W , where W is some domain of interest

containing all wt′ for t′ ≤ t. Also assume that Ω∗ has bounded curvature, i.e. let
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∥∥∂2
µΩ∗(µ)

∥∥ ≤ H∗ for all µ ∈
{
−λ−1Aα where α ∈ ∆t

}
. Then, for any ε < 4G2H∗/λ

we have εt < ε after at most

log2

λJ(0)

G2H∗
+

8G2H∗

λε
− 4 (5.13)

steps.

Although the above theorem proves an upper bound of O(1/ε) on the number of iter-

ations, the tightness of this bound has been an open question. We now demonstrate a

function which satisfies all the conditions of the above theorem, and yet takes Ω(1/ε)

iterations to converge.

5.2.1 Concepts and notations

Since most rates of convergence discussed in machine learning community are upper

bounds, we will first clarify the meaning of lower bound wrt ε, with special attention

paid to the qualifiers of objective functions and optimization algorithms.

Given a function f and an optimization algorithm, we define T (ε; f) as the number

of steps required to reduce the gap defined in Eq. (5.4) to less than ε2:

T (ε; f) = max {k : f(wk)− f∗ ≥ ε} .

Since convergence rates are often expressed in O(·) form, comparisons need to be

redefined up to multiplicative constants. It is intuitive to define the following total

order on the convergence rate.

Type Meaning

g(ε) ≺ h(ε) limε→0 g(ε)/h(ε) = 0

g(ε) � h(ε) limε→0 h(ε)/g(ε) = 0

g(ε) ∼ h(ε) limε→0 g(ε)/h(ε) = C ∈ (0,+∞)

g(ε) 4 h(ε) g(ε) ≺ h(ε) or g(ε) ∼ h(ε)

g(ε) < h(ε) g(ε) � h(ε) or g(ε) ∼ h(ε)

Special attention should be paid to the qualifications in upper and lower bounds.

Upper bounds are usually qualified by “for all functions and for all ε”, it takes at most

2Indeed the initial point also matters: in the best case one just starts from the optimal x0 = x∗.
So rigorously, it should be T (ε; f, x0). Here for simplicity, we omit the x0 which is always qualified as
existential in lower bounds and universal in upper bounds. Furthermore, an algorithm can be random
to some extent, e.g., pick a subgradient in the subdifferential. Again, we qualify it as existential in
lower bound and universal in upper bound.
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O(g(ε)) steps to reduce the gap to ε. However, for lower bounds, the two “for all” may

be turned into “there exist” in two different ways.

Type Meaning

Upper bound: For all function f , T (ε; f) 4 g(ε)

Strong lower bound

(SLB):

There exists a function f , such that T (ε; f) < g(ε).

Weak lower bound

(WLB):

For all ε, there exists a function fε which may depend

on ε, such that T (ε; fε) ≥ g(ε).

Clearly, if SLB holds, WLB must hold, but not vice versa. A simple example is

the well known WLB for cutting plane (Hiriart-Urruty & Lemaréchal, 1993a, Example

1.1.2 of Chapter XV): for all ε, there exists a function fε with n variables such that

it takes k ≥ O(1/εn/2) steps to ensure f(wk) − f∗ < ε. However, after that many

steps, the gap immediately drops to 0, hence it is not admissible as a SLB example.

Incidentally, there is no known SLB example for cutting plane algorithm (Nemirovski,

2009).

Both upper bound and SLB are defined in an asymptotic fashion, while WLB is

not. Obviously SLB and upper bound are incompatible, i.e., if g(ε) ≺ h(ε), then the

following cannot be true at the same time: a) for all function f , T (ε; f) 4 g(ε); and b)

there exists a function f such that T (ε; f) < h(ε). However, WLB and upper bound

are compatible, i.e., given an optimization algorithm there can be two rates g(ε) ≺ h(ε)

such that the following two hold simultaneously:

1. for all function f there exist a constant Cf such that for all ε, it takes at most

k = Cfg(ε) steps to ensure f(xk)− f∗ < ε

2. for all ε, there exists a function fε which may depend on ε, such that it takes at

least k = h(ε) steps to ensure fε(wk)− f∗ε < ε.3

The objective function domain F under consideration is also important. When

discussing upper bounds where f is universally qualified, broader F leads to stronger

statements. However, when discussing lower bounds where f is existential, a narrower

F means stronger claims.

For both upper and lower bounds, a statement is stronger if the domain of the algo-

rithm is more general. For example, Nesterov (2003) showed a WLB for all algorithms

that satisfy the condition that wk+1 lies in the linear span of previous subgradients

{∇f(wi)}ki=0.

3Note we do not further allow a function-dependent constant Cf since f is qualified as existential.
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To understand optimization algorithms, both WLB and SLB are important. The

algorithm domain of this section is restricted to BMRM, and we construct SLB and

WLB examples for binary linear SVM objectives, as well as a WLB example for L2

regularized piecewise linear objectives.

5.2.2 Strong lower bounds

Strong lower bounds are harder to construct and prove. We now demonstrate one for

ls-bmrm (see Section 1.6.4 for an introduction to ls-bmrm and qp-bmrm). In particular,

we show that the primal gap of ls-bmrm on an SVM training example is decreased at

O(1/k) rate where k is the step index. Similar examples can be constructed to show

the O(1/ε) SLB for pegasos, which is given in Appendix H. The SLB for qp-bmrm is

an open problem.

Consider the following training instances in 1-d space. Let xi ∈ R be features and

yi ∈ {−1, 1} be labels. Pick (x1, y1) = (1, 1), (x2, y2) = (−1,−1), (x3, y3) = (1
2 , 1), and

(x4, y4) = (−1
2 ,−1). Set λ = 1

16 . Then the objective function of a SVM can be written

as:

min
w∈R

J(w) = min
w∈R

1

32
w2 +

1

2
[1− w]+ +

1

2

[
1− w

2

]
+
. (5.14)

Our main result is the following Theorem:

Theorem 57 limk→∞ k(J(wk)− J(w∗)) = 1
4 , where w∗ = argminw J(w).

The proof is based on the fact that {wk} oscillates about and approaches w∗ = 2

at the rate of 1/k:

Lemma 58 limk→∞ k |2− wk| = 2 with w2k+1 > 2 and w2k ∈ (1, 2).

To this end, we establish a recursive relation between wk and αk,1, the first element

of the solution αk of the inner dual problem in BMRM (Eq. (5.10) or step 2 of Algorithm

2 in Chapter 1).

Lemma 59 For k ≥ 1, we have

w2k+1 = 2
w3

2k−1 + 12α2k−1,1w
2
2k−1 + 16w2k−1α

2
2k−1,1 − 64α3

2k−1,1

w2k−1 (w2k−1 + 4α2k−1,1)2 > 2, (5.15)

α2k+1,1 =
w2

2k−1 + 16α2
2k−1,1

(w2k−1 + 4α2k−1,1)2α2k−1,1, (5.16)

w2k = 2− 8α2k−1,1

w2k−1
∈ (1, 2). (5.17)

(5.15) and (5.16) provide recursive formulae to compute w2k+1 and α2k+1,1 based on

w2k−1 and α2k−1,1, and (5.17) gives w2k.
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The straightforward but technical proof for Theorem 57, Lemma 58 and 59 can

be found in Appendix H. Also notice that these results only show how fast the opti-

mization problem 5.14 can be solved, while the question of how fast the generalization

performance gets improved is still open.

5.2.3 Weak lower bounds

Although we are unable to construct a SLB for qp-bmrm on binary SVM, we manage

to prove a WLB: O(1/ε). For ease of presentation, we postpone the description and

first show a WLB example for L2 regularized piecewise linear objectives.

Our example of L2 regularized piecewise linear objective can be written in the

framework of RRM as:

Ω(w) :=
1

2
‖w‖2 , Remp(w) := max

i∈[n]
wi = max

i∈[n]
〈ei,w〉 , J(w) := Ω(w) +Remp, (5.18)

where w ∈ Rn, ei is the i-th coordinate vector (straight 0 except the i-th coordinate

being 1). Our key result is the following:

Theorem 60 Let w0 = 0 and w∗ := argminw J(w). Suppose running qp-bmrm on

the objective J(w) in Eq. (5.18) gives w1,w2, . . . ,wk, . . .. Then for all k ∈ [n] we have

min
i∈[k]

J(wi)− J(w∗) =
1

2k
+

1

2n
. (5.19)

And J(wk) = J(w∗) for all k > n.

Proof We prove Theorem 60 by simply running qp-bmrm by hand. The Remp in

Eq. (5.18) consists of n hyperplanes. Since qp-bmrm cuts a tangent plane of Remp at

each iteration, we can assume without loss of generality that after k steps, the first k

hyperplanes cut by qp-bmrm are: 〈e1,w〉 , . . . , 〈ek,w〉. Then we obtain a regularized

lower approximation Jk(w) to minimize:

Jk(w) :=
1

2
‖w‖2 + max

i∈[k]
〈ei,w〉 =

1

2
‖w‖2 + max

i∈[k]
wi.

It is not hard to see that the optimal solution of Jk(w) is

wk = argmin
w

Jk(w) =
( k copies︷ ︸︸ ︷
−1

k
, . . . ,

−1

k
, 0, . . .

)>
,

because ∂Jk(wk) =
{

wk +
∑

i∈[k] αiei : α ∈ ∆k

}
3 0. Similarly, we can derive that

w∗ = − 1
n1. Plugging wk and w∗ into the definition of J(w) we immediately derive



§5.2 Lower bounds 133

Eq. (5.20).

To complete our construction, for any arbitrary ε, set n to b1/εc. Then for all

k ≤ n < 1/ε, mini∈[k] J(wi) − J(w∗) = 1
2k + 1

2n ≥ 1
2n + 1

2n = 1
n > ε. Since ls-bmrm

cannot converge faster than qp-bmrm, this is also a WLB of O(1/ε) for ls-bmrm.

In fact, a careful look at the proof of Theorem 60 shows that the rate in Eq. (5.20)

holds not only for qp-bmrm, but also for any optimizer which satisfies:

wk+1 ∈ span {∇Remp(wi) : i ∈ [k]} , where ∇Remp(wi) ∈ ∂Remp(wi).

Now coming back to SVM, the definition of hinge loss [1 − y 〈x,w〉]+ indicates

that we can treat any data point (x, y) (y ∈ {−1, 1}) as a new example yx with

fixed label +1. So let the n “new” examples in Rn+1 be x1 = (
√
n, n, 0, 0, . . .), x2 =

(
√
n, 0, n, 0, . . .), x3 = (

√
n, 0, 0, n, 0, . . .), i.e., xi = nei+1 +

√
ne1 (n will be set later).

So the objective function is

J(w) =
1

2
‖w‖2 +

1

n

n∑
i=1

[1−
〈
w,xi

〉
]+ =

1

2
‖w‖2 +

1

n

n∑
i=1

[1−√nw1 − nwi+1]+.

Our key result is the following.

Theorem 61 Let w0 = (n−1/2, 0, 0, . . .)>. Suppose running qp-bmrm on the objective

function Eq. (5.18) gives w1,w2, . . . ,wk, . . .. Then for all k ∈ [n] we have

min
i∈[k]

J(wi)− J(w∗) =
1

2k
− 1

2n
. (5.20)

And J(wk) = J(w∗) for all k > n.

Proof Again we run qp-bmrm by hand. Since ∂Remp(w0) =
{−1
n

∑n
i=1 αix

i : α ∈ ∆n

}
,

we can choose

a1 = −n−1x1 = (−n−1/2,−1, 0, . . .)>

b1 = Remp(w0)− 〈a1,w0〉 = 0− n−1 = −n−1

w1 = argmin
w

{
1

2
‖w‖2 − n−1/2w1 − w2 − n−1

}
= (n−1/2, 1, 0, . . .)>.
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Since ∂Remp(w1) =
{−1
n

∑n
i=2 αix

i : α ∈ ∆n−1

}
, we can choose

a2 = −n−1x2 = (−n−1/2, 0,−1, 0, . . .)>

b2 = Remp(w1)− 〈a2,w1〉 = 0− n−1 = −n−1

w2 = argmin
w

{
1

2
‖w‖2 + max

{
−n−1/2w1 − w2 − n−1,−n−1/2w1 − w3 − n−1

}}
=

(
1√
n
,
1

2
,
1

2
, 0, . . .

)>
.

Proceeding in the same way, we can show that

wk =
( 1√

n
,

k copies︷ ︸︸ ︷
1

k
, . . . ,

1

k
, 0, . . .

)>
,

And w∗ = wn =
(

1√
n
, 1
n ,

1
n , . . .

)>
. Hence J(wk)− J(w∗) = 1

2k − 1
2n .

To complete the construction of WLB example, set n = d2/εe, then for all k < 2
5ε <

n, we have

J(wk)− J(w∗) >
5ε

4
− ε

4
= ε.

That is, qp-bmrm has WLB O(1/ε) on binary linear SVM problem. As ls-bmrm con-

verges no faster than qp-bmrm, this is also a WLB example for ls-bmrm.

5.3 A new algorithm with convergence rates O(1/
√
ε)

We now turn our attention to the regularized risk minimization with the binary hinge

loss, and propose a new algorithm. Our algorithm is based on (Nesterov, 1983) and

(Nesterov, 2005a) which proposed a non-trivial scheme of minimizing an L-l.c.g func-

tion to ε-precision in O(1/
√
ε) iterations. Our contributions are two fold. First, we show

that the dual of the regularized risk minimization problem is indeed a L-l.c.g function.

Second, we introduce an O(n) time algorithm for projecting onto an n-dimensional sim-

plex or in general an n-dimensional box with a single linear equality constraint, thus

improving upon the O(n log n) deterministic algorithm of Duchi et al. (2008) (who also

gave a randomized algorithm having expected complexity O(n)). This projection is

repeatedly invoked as a subroutine by Nesterov’s algorithm when specialized to our

problem.

Consider the problem of minimizing a function J(w) with the following structure
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over a closed convex set Q1:

J(w) = f(w) + g?(Aw). (5.21)

Here f is strongly convex on Q1, A is a linear operator which maps Q1 to another

closed convex set Q2, and g is convex and l.c.g on Q2. Nesterov (2005a) works with

the adjoint form of J :

D(α) = −g(α)− f?(−A>α), (5.22)

which is l.c.g according to Theorem 55. Under some mild constraint qualifications

which we omit for the sake of brevity (see e.g. Theorem 3.3.5 of (Borwein & Lewis,

2000)) we have

J(w) ≥ D(α) ∀w,α and inf
w∈Q1

J(w) = sup
α∈Q2

D(α). (5.23)

By using the algorithm in (Nesterov, 1983) to maximize D(α), one can obtain an

algorithm which converges to an ε accurate solution of J(w) in O(1/
√
ε) iterations.

The regularized risk minimization with the binary hinge loss can be identified with

(5.21) by setting

J(w) =
λ

2
‖w‖2︸ ︷︷ ︸
f(w)

+ min
b∈R

1

n

n∑
i=1

[
1− yi(

〈
xi,w

〉
+ b)

]
+︸ ︷︷ ︸

g?(Aw)

(5.24)

The latter, g?, is the dual of g(α) = −∑i αi (see Appendix Example 3). Here Q1 = Rd.
Let A := −Y X> where Y := diag(y1, . . . , yn), X :=

(
x1, . . . ,xn

)
. Then the adjoint

can be written as :

D(α) := −g(α)− f?(−A>α) =
∑
i

αi −
1

2λ
α>Y X>XYα with (5.25)

Q2 =

{
α ∈ [0, n−1]n :

∑
i

yiαi = 0

}
. (5.26)

In fact, this is the well known SVM dual objective function with the bias incorporated.

Now we present the algorithm of (Nesterov, 2005a) in Algorithm 10. Since it

optimizes the primal J(w) and the adjoint D(α) simultaneously, we call it pragam

(PRimal-Adjoint GAp Minimization). It requires a σ2-strongly convex prox-function

on Q2: d2(α) = σ2
2 ‖α‖2, and sets D2 = maxα∈Q2 d2(α). Let the Lipschitz constant

of ∇D(α) be L. Algorithm 10 is based on two mappings αµ(w) : Q1 7→ Q2 and

w(α) : Q2 7→ Q1, together with an auxiliary mapping v : Q2 7→ Q2. They are defined

by
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Algorithm 10: pragam: an O(1/k2) rate primal-adjoint solver (Nesterov, 2005a).

Input: Objective function f which has a composite form as Eq. (5.21). L as a
conservative estimate (i.e. upper bound) of the Lipschitz constant of
∇D(α).

Output: Two sequences wk and αk which reduce the duality gap
J(wk)−D(αk) at O(1/k2) rate.

1 Initialize: Randomly pick α−1 in Q2. Let µ0 = 2L, α0 ← v(α−1),
w0 ← w(α−1).

2 for k = 0, 1, 2, . . . do
3 τk = 2

k+3 , βk ← (1− τk)αk + τkαµk(wk).

4 Set wk+1 ← (1− τk)wk + τkw(βk), αk+1 ← v(βk), µk+1 ← (1− τk)µk.

αµ(w) := argmin
α∈Q2

µd2(α)− 〈Aw,α〉+ g(α) (5.27)

= argmin
α∈Q2

µ

2
‖α‖2 + w>XYα−

∑
i

αi, (5.28)

w(α) := argmin
w∈Q1

〈Aw,α〉+ f(w) (5.29)

= argmin
w∈Rd

−w>XYα+
λ

2
‖w‖2 =

1

λ
XYα, (5.30)

v(α) := argmin
α′∈Q2

L

2

∥∥α′ −α∥∥2 −
〈
∇D(α),α′ −α

〉
. (5.31)

Eq. (5.30) is exactly the dual relationship in binary SVM. Eq. (5.28) and (5.31) are

examples of a box constrained QP with a single equality constraint. In Section 5.3.2,

we provide a linear time algorithm to find the minimizer of such a QP. The overall

complexity of each iteration is thus O(nd) due to the gradient calculation in (5.31) and

the matrix multiplication in (5.30).

5.3.1 Convergence rates

According to (Nesterov, 2005a), on running Algorithm pragam for k iterations, the αk

and wk satisfy:

J(wk)−D(αk) ≤
4LD2

(k + 1)(k + 2)σ2
. (5.32)

For SVMs, L = 1
λ ‖A‖

2
1,2 where ‖A‖1,2 = max {〈Aw,α〉 : ‖α‖ = 1, ‖w‖ = 1}, σ2 = 1,

D2 = 1
2n . Assuming

∥∥xi∥∥ ≤ R,

|〈Aw,α〉|2 ≤ ‖α‖2
∥∥∥Y X>w

∥∥∥2
=
∥∥∥X>w

∥∥∥2
=
∑
i

〈
xi,w

〉2 ≤
∑
i

‖w‖2
∥∥xi∥∥2 ≤ nR2.
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Thus by (5.32), we conclude

J(wk)−D(αk) ≤
4LD2

(k + 1)(k + 2)σ2
≤ 2R2

λ(k + 1)(k + 2)
< ε,

which gives

k > O

(
R√
λε

)
.

This O(
√

1/ε) rate improves upon the O(1/ε) rate in state-of-the-art SVM solvers

like pegasos (Shalev-Shwartz et al., 2007), SVMPerf (Joachims, 2006), SVMStruct (Tsochan-

taridis et al., 2005), and BMRM (Teo et al., 2010). It should also be noted that our

algorithm has a better dependence on λ compared to these methods which have a fac-

tor of 1
λ in their convergence rates. Our rate of convergence is also data dependent,

showing how the correlation of the dataset XY = (y1x1, . . . , ynxn) affects the rate via

the Lipschitz constant L, which is equal to the square of the maximum singular value

of XY (or the maximum eigenvalue of Y X>XY ). On one extreme, if xi is the i-th

dimensional unit vector then L = 1, while L = n if all yixi are identical.

5.3.2 A linear time algorithm for simple QP

It is easy to see that the dual optimization problem D(α) from (5.25) is a box con-

strained QP with a single linear equality constraint.

In this section, we focus on solving the following simple QP:

min
1

2

n∑
i=1

d2
i (αi −mi)

2

s.t. li ≤ αi ≤ ui ∀i ∈ [n];
n∑
i=1

σiαi = z. (5.33)

Without loss of generality, we assume li < ui and di 6= 0 for all i. Also assume σi 6= 0

because otherwise αi can be solved independently. To ensure the feasible region is

nonempty, we further assume∑
i

σi(δ(σi > 0)li + δ(σi < 0)ui) ≤ z ≤
∑
i

σi(δ(σi > 0)ui + δ(σi < 0)li).

The algorithm we describe below stems from (Pardalos & Kovoor, 1990) and finds the

exact optimal solution in O(n) time, faster than the O(n log n) complexity in (Duchi

et al., 2008).
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With a simple change of variable βi = σi(αi − mi), the problem is simplified as

min
1

2

n∑
i=1

d̄2
iβ

2
i

s.t. l′i ≤ βi ≤ u′i ∀i ∈ [n];
n∑
i=1

βi = z′,

where

l′i =

 σi(li −mi) if σi > 0

σi(ui −mi) if σi < 0
,

u′i =

 σi(ui −mi) if σi > 0

σi(li −mi) if σi < 0
,

d̄2
i =

d2
i

σ2
i

, z′ = z −
∑
i

σimi.

We derive its dual via the standard Lagrangian.

L =
1

2

∑
i

d̄2
iβ

2
i −

∑
i

ρ+
i (βi − l′i) +

∑
i

ρ−i (βi − u′i)− λ
(∑

i

βi − z′
)
.

Taking derivative:

∂L

∂βi
= d̄2

iβi − ρ+
i + ρ−i − λ = 0 ⇒ βi = d̄−2

i (ρ+
i − ρ−i + λ). (5.34)

Substituting into L, we get the dual optimization problem

minD(λ, ρ+
i , ρ

−
i ) =

1

2

∑
i

d̄−2
i (ρ+

i − ρ−i + λ)2 −
∑
i

ρ+
i l
′
i +
∑
i

ρ+
i u
′
i − λz′

s.t. ρ+
i ≥ 0, ρ−i ≥ 0 ∀i ∈ [n].

Taking derivative of D with respect to λ, we get:∑
i

d̄−2
i (ρ+

i − ρ−i + λ)− z′ = 0. (5.35)

The KKT condition gives:

ρ+
i (βi − l′i) = 0, (5.36a)

ρ−i (βi − u′i) = 0. (5.36b)

Now we enumerate four cases.

1. ρ+
i > 0, ρ−i > 0. This implies that l′i = βi = u′i, which is contradictory to our

assumption.

2. ρ+
i = 0, ρ−i = 0. Then by (5.34), βi = d̄−2

i λ ∈ [l′i, u
′
i], hence λ ∈ [d̄2

i l
′
i, d̄

2
iu
′
i].
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λd̄2i l
′
i d̄2i u

′
i

l′i

u′
i

slope = d̄−2
i

hi(λ)

Figure 5.1: hi(λ)

Algorithm 11: O(n) algorithm to find the root of f(λ). Ignoring boundary
condition checks.

1 Set kink set S ←
{
d̄2
i l
′
i : i ∈ [n]

}
∪
{
d̄2
iu
′
i : i ∈ [n]

}
.

2 while |S| > 2 do
3 Find median of S: m← MED(S).
4 if f(m) ≥ 0 then
5 S ← {x ∈ S : x ≤ m}.
6 else
7 S ← {x ∈ S : x ≥ m}.

8 return Root lf(u)−uf(l)
f(u)−f(l) where S = {l, u}.

3. ρ+
i > 0, ρ−i = 0. Now by (5.36) and (5.34), we have l′i = βi = d̄−2

i (ρ+
i +λ) > d̄−2

i λ,

hence λ < d̄2
i l
′
i and ρ+

i = d̄2
i l
′
i − λ.

4. ρ+
i = 0, ρ−i > 0. Now by (5.36) and (5.34), we have u′i = βi = d̄−2

i (−ρ−i + λ) <

d̄−2
i λ, hence λ > d̄2

iu
′
i and ρ−i = −d̄2

iu
′
i + λ.

In sum, we have ρ+
i = [d̄2

i l
′
i − λ]+ and ρ−i = [λ− d̄2

iu
′
i]+. Now (5.35) turns into

f(λ) :=
∑
i

d̄−2
i ([d̄2

i l
′
i − λ]+ − [λ− d̄2

iu
′
i]+ + λ)︸ ︷︷ ︸

=:hi(λ)

−z′ = 0. (5.37)

In other words, we only need to find the root of f(λ) in (5.37). hi(λ) is plotted

in Figure 5.1. Note that hi(λ) is a monotonically increasing function of λ, so the

whole f(λ) is monotonically increasing in λ. Since f(∞) ≥ 0 by z′ ≤ ∑
i u
′
i and

f(−∞) ≤ 0 by z′ ≥ ∑i l
′
i, the root must exist. Considering that f has at most 2n

kinks (nonsmooth points) and is linear between two adjacent kinks, the simplest idea is

to sort
{
d̄2
i l
′
i, d̄

2
iu
′
i : i ∈ [n]

}
into s(1) ≤ . . . ≤ s(2n). If f(s(i)) and f(s(i+1)) have different

signs, then the root must lie between them and can be easily found because f is linear

in [s(i), s(i+1)]. This algorithm takes at least O(n log n) time because of sorting.

However, this complexity can be reduced to O(n) by making use of the fact that

the median of n (unsorted) elements can be found in O(n) time. Notice that due to the



140 Lower Bounds for BMRM and Faster Rates for Training SVMs

Algorithm 12: O(1/k2) rate optimization for l.c.g functions (Nesterov, 1983).

Input: A l.c.g function f , a conservative estimate (upper bound) of the
Lipschitz constant of its gradient, an oracle which gives the gradient of
f at any query point x, a proxy-function d(x) which is σ-strongly
convex on Q wrt a norm ‖·‖.

Output: A sequence
{
yk
}

which converges to the optimal solution at O(1/k2)
rate.

1 Initialize: Set x0 to a random value in Q.
2 for k = 0, 1, 2, . . . do
3 Query the gradient of f at point xk: ∇f(xk).

4 Find yk ← argminx∈Q
〈
∇f(xk), x− xk

〉
+ 1

2L
∥∥x− xk

∥∥2
.

5 Find zk ← argminx∈Q
L
σ d(x) +

∑k
i=0

i+1
2

〈
∇f(xi),x− xi

〉
.

6 Update xk+1 ← 2
k+3zk + k+1

k+3yk.

monotonicity of f , the median of a set S gives exactly the median of function values,

i.e., f(MED(S)) = MED({f(x) : x ∈ S}). Algorithm 11 sketches the idea of binary

search. The while loop terminates in log2(2n) iterations because the set S is halved in

each iteration. And in each iteration, the time complexity is linear to |S|, the size of

current S. So the total complexity is O(n). Note the evaluation of f(m) potentially

involves summing up n terms as in (5.37). However by some clever aggregation of slope

and offset, this can be reduced to O(|S|).

5.3.3 Other versions of Neseterov’s algorithms

The Algorithm 10 is one of the three major algorithms proposed by Nesterov which offer

a O
(√

1/ε
)

rate of convergence. We detail it because a) it captures all the important

techniques in this series of work, b) it is primal-dual, which bounds the duality gap

instead of merely the gap for primal or dual objective, and c) it is not too complicated

to describe. Below we sketch the other two important variants of Nesterov’s algorithm:

1. (Nesterov, 1983) outlined in Algorithm 12. This was the first algorithm that gives

the O
(√

1/ε
)

rate of convergence in our setting. It works only on l.c.g functions

constrained to a convex set which allows efficient projection. It works purely in

the primal. Similar to (Nesterov, 2005a), it also needs the explicit knowledge of

the Lipschitz constant of the gradient, which is often expensive in practice.

2. (Nesterov, 2007) outlined in Algorithm 13. The main contribution of this work

is to automatically estimate the Lipschitz constant of the gradient via geomet-

ric scaling. Its objective function is assumed to be the same as the primal of

(Nesterov, 2005a) in Eq. (5.21), i.e. composite. This algorithm works only in the

primal, hence not bounding the duality gap.
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Algorithm 13: O(1/k2) solver for composite functions as Eq. (5.21), with built-in
Lipschitz constant estimation (Nesterov, 2007).

Input: L0 ∈ (0, L] as an optimistic estimate (lower bound) of L, two scaling
parameters γu > 1 and γd ≥ 1.

Output: A sequence xk which converges to the optimal solution at O(1/k2)
rate.

1 Initialize: Set Ak = 0, L̃ := L0/γu, set x0 randomly and φ0(x) := 1
2

∥∥x− x0
∥∥2

.
2 for k = 0, 1, 2, . . . do
3 repeat

4 L̃← γuL̃.

5 Find the positive root of a2

Ak+a = 21+µAk
L̃

.

6 Set y = Akx
k+avk

Ak+a , where vk := argminx φk(x).

7 Set TL̃(y) := argminx
L̃
2 ‖x− y‖2 + 〈∇f(y),x− y〉+ Ψ(x) + f(y).

8 until
〈
φ′(TL̃(y)),y − TL̃(y)

〉
≥ L̃−1

∥∥φ′(TL̃(y))
∥∥2

, where

φ′(x) ∈ ∇f̂(x) + ∂Ψ(x).

9 Set Ak+1 := Ak + a, xk+1 := TL̃(y) and finally L̃← L̃/(γdγu).

10 Set φk+1(x) := φk(x) + a
[
f̂(xk+1) +

〈
∇f̂(xk+1),x− xk+1

〉
+ Ψ(x)

]
.

5.4 Structured output space

It is noteworthy that applying pragam to structured data is straightforward, and this

section sketches the basic ideas. As we will see, a key interesting problem here is how

to project onto a probability simplex such that the image decomposes according to a

graphical model.

Recall the margin rescaled hinge loss for multi-class classification in Section 1.6.1:

l(xi,yi; w) = max
y∈Y

{
∆(y,yi; xi)−

〈
w,φ(xi,yi)− φ(xi,y)

〉}
,

where we moved the sample index to superscript. For structured output space Y,

optimization becomes intractable as there are exponentially many candidates in the

max operation. Therefore, the graphical model structure must be exploited to factorize

the features φ and discrepancy ∆(y,yi), which leads to parameter estimation based

on cliques. We illustrate this idea using the maximum margin Markov network (Taskar

et al., 2004), and show how pragam can be applied. For ease of exposition, the output

space of all training examples is assumed to have the same graphical model structure

with maximal clique set C, and this restriction can be easily relaxed.
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5.4.1 Margin scaled maximum margin Markov network

The maximum margin Markov network (M3N) by Taskar et al. (2004) uses square norm

regularizer and margin rescaled hinge loss:

J(w) =
λ

2
‖w‖2 +

∑
i

max
y∈Y

{
∆(y,yi; xi)−

〈
w,φ(xi,yi)− φ(xi,y)

〉}
, (5.38)

where both φ(xi,y) and ∆(y,yi; xi) are assumed to decompose onto the cliques:

φ(xi,y) = ⊕
c∈C
φc(x

i
c, yc), ∆(yi,y; xi) =

∑
c∈C

lc(y
i
c, yc; x

i), (5.39)

where ⊕ means Cartesian product.

Viewing the primal objective J in Eq. (5.38) as a composite function in the same

way as in Eq. (5.24), we can derive the adjoint form:

D(α) =
1

2λ

∑
i,j

∑
y,y′

A(i,y),(j,y′)α
i(y)αj(y′)−

∑
i

∑
y

∆(y,yi; xi)αi(y), (5.40)

where A(i,y),(j,y′) :=
〈
ψi(y),ψj(y′)

〉
denoting ψi(y) := φ(xi,yi)− φ(xi,y). The con-

straints are that αi be in the simplex:

αi(y) ≥ 0 ∀ i,y, and
∑
y

αi(y) = 1 ∀ i. (5.41)

The dual connection is:

w =
∑
i

∑
y

αi(y)ψi(y). (5.42)

Now incorporating the decomposition in Eq. (5.39), we can derive the factorized

adjoint form:

D(α) =
1

2λ

∑
i,j

∑
c,c′

∑
yc,y′c′

A(i,c,yc),(j,c′,y′c′ )
αic(yc)α

j
c′(y
′
c′)−

∑
i,c,yc

lc(yc, y
i
c; x

i)αic(yc), (5.43)

where αic(yc) :=
∑

y∼yc α
i
c(y). Here y ∼ yc means ranging over all possible assignments

of y which match yc on the clique c. Then the constraints in Eq. (5.41) become

αic(yc) ≥ 0 ∀ i, c, yc, and
∑
yc

αic(yc) = 1 ∀ i. (5.44)
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In addition, a new set of constraints need to be introduced to enforce consistency:∑
yc∼yc∩c′

αi,c(yc) =
∑

yc′∼yc∩c′
αi,c′(yc′) ∀i,∀c, c′ ∈ C : c ∩ c′ 6= ∅, ∀yc∩c′ , (5.45)

which ensures that the marginal distribution of yc∩c′ computed from the marginal

distribution of clique c is consistent with that computed from clique c′. Notice that

the simplex conditions Eq. (5.44) and the local consistency conditions Eq. (5.45) are

just necessary but not sufficient conditions of global consistency Eq. (5.41). When the

graph is tree structured, they are equivalent.

Finally, the dual connection becomes

w = ⊕
c∈C

∑
i

∑
yc

αic(yc)ψ
i
c(yc). (5.46)

Now it turns out straightforward to apply Algorithm 12 (Nesterov, 1983) and Al-

gorithm 13 (Nesterov, 2007) to optimize the dual objective Eq. (5.43) subject to the

constraints Eq. (5.44) and (5.45). Both algorithms only require the following form of

projection as the inner solver:

min
1

2

∑
c

d2
c ‖αc −mc‖22 (5.47)

s.t. αc ∈ ∆|Vc| ∀ c ∈ C∑
yc∼yc∩c′

αc(yc) =
∑

yc′∼yc∩c′
αc′(yc′) ∀ c ∩ c′ 6= ∅,∀ yc∩c′ .

where Vc is the range of assignments that yc can assume, and mc is an arbitrary

vector in R|Vc| that is not necessarily a distribution. This problem bears significant

resemblance to the inner solver for binary SVM in Eq. (5.33). The key difference is

that we now have to enforce additional local consistency constraints originating from

the graphical models. Intuitively speaking, we are again projecting to a probability

simplex, but subject to the conditional independence relations encoded in a graphical

model. More details on how to solve this constrained projection will be given in Section

5.4.2.

Application of the primal-dual Algorithm 10 (Nesterov, 2005a) is still hard, because

the factorized problem Eq. (5.43) is not exactly the adjoint form of the primal problem

Eq. (5.38). Technically, the key obstacle is that the projection in Eq. (5.31) measures

the L2 distance of the joint distribution:

‖α−m‖22 , (5.48)
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where α is the joint distribution, and this square distance can not be decomposed onto

the cliques as in Eq. (5.47). This disallows us to apply the trick in (Collins et al., 2008):

conceptually optimize wrt joint distributions
{
αi(y)

}
i,y

via practically updating the

marginals on the cliques
{
αic(yc)

}
i,c,yc

.

Most machine learning models for structured output data perform parameter esti-

mation by graphical model decomposition, and it is not hard to apply the same idea

here to those models, e.g. Gaussian process for sequence labeling (Altun et al., 2004a).

5.4.2 Efficient projection onto factorized simplex

We consider in this section how to solve the constrained projection (5.47), which extends

the simple projection in Section 5.3.2. In addition to projecting onto the n dimensional

simplex wrt L2 distance, we also restrict the image to be factorized by a graphical

model. Formally, given a set of marginal parameters on the cliques
{
mc ∈ R|Vc| : c ∈ C

}
where mc may not be a distribution, we want to find a set of marginal distributions{
αc ∈ ∆|Vc| : c ∈ C

}
which minimize:

min
1

2

∑
c

d2
c ‖αc −mc‖22

s.t. αc ∈ ∆|Vc| ∀ c ∈ C∑
yc∼yc∩c′

αc(yc) =
∑

yc′∼yc∩c′
αc′(yc′) ∀c ∩ c′ 6= ∅,∀ yc∩c′ .

We proceed by writing out the standard Lagrangian:

L =
1

2

∑
c

d2
c

∑
yc

(αc(yc)−mc(yc))
2 −

∑
c

λc

(∑
yc

αc(yc)− 1

)
−
∑
c,yc

ξc(yc)αc(yc)

−
∑

c,c′:c∩c′ 6=∅

∑
yc∩c′

µ̄c,c′(yc∩c′)

 ∑
yc:yc∼yc∩c′

αc(yc)−
∑

yc′∼yc∩c′
αc′(yc′)

 .

Taking derivative over αc(yc):

∂L
∂αc(yc)

= d2
c(αc(yc)−mc(yc))− λc − ξc(yc)−

∑
c′

µ̄c,c′(yc∩c′) +
∑
c′

µ̄c′,c(yc∩c′) = 0,

⇒ αc(yc) = mc(yc) + d−2
c

(
λc + ξc(yc) +

∑
c′

µc,c′(yc∩c′)

)
, (5.49)
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where µc,c′(yc∩c′) := µ̄c,c′(yc∩c′) − µ̄c′,c(yc∩c′). Plugging it back into L, we derive the

dual problem:

minD(λc, ξc(yc), µc,c′(yc∩c′)) =
1

2

∑
c

d−2
c

∑
yc

(
λc + ξc(yc) +

∑
c′

µc,c′(yc∩c′)

)2

(5.50)

+
∑
c

∑
yc

mc(yc)

(
λc + ξc(yc) +

∑
c′

µc,c′(yc∩c′)

)
−
∑
c

λc

s.t. ξc(yc) ≥ 0.

This problem is essentially a QP over λc, ξc(yc), µc,c′(yc∩c′) with the only constraint

that ξc(yc) ≥ 0. Similar to Section 5.3.2, one can write ξc(yc) as a hinge function of λc

and µc,c′(yc∩c′). However since it is no longer a single variable function, it is very hard

to apply the median trick here. So we resort to a simple block coordinate descent as

detailed in Algorithm 14 with reference to the following expressions of gradient:

∂D

∂ξc(yc)
= −d−2

c (λc + ξc(yc) +
∑
c′

µc,c′(yc∩c′)) +mc(yc) = 0 (5.51a)

∂D

∂λc
= d−2

c

∑
yc

(
λc + ξc(yc) +

∑
c′

µc,c′(yc∩c′)

)
+
∑
yc

mc(yc)− 1 (5.51b)

∂D

∂µc,c′(yc∩c′)
= d−2

c

∑
y′c∼yc∩c′

(
λc + ξc(y

′
c) +

∑
c̄

µc,c̄(y
′
c,c̄)

)
+

∑
y′c∼yc∩c′

mc(y
′
c). (5.51c)

From (5.51a) and ξc(yc) ≥ 0, we can derive

ξc(yc) =

[
−d2

cmc(yc)− λc −
∑
c′

µc,c′(yc∩c′)

]
+

. (5.52)

Example: sequence

Suppose the graph is simply a sequence: y1 − y2 − . . . − yL and each node can take

value in [m]. Then the cliques are {(yt, yt+1) : t ∈ [L− 1]} and the primal is:

min
1

2

L−1∑
t=1

d2
t

m∑
i,j=1

(αt(i, j)−mt(i, j))
2

s.t. αt ∈ ∆m2 ∀t ∈ [L− 1]∑
i

αt(i, j) =
∑
k

αt+1(j, k) ∀t ∈ [L− 2], j ∈ [m].
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Algorithm 14: A coordinate descent scheme for minimizing the dual problem
(5.50).

1 Initialize: Randomly set {λc : c} , {ξc(yc) : c, yc} ,
{
µc,c′(yc∩c′) : c, c′, yc∩c′

}
.

2 while not converged do
3 Fixing ξc(yc), apply conjugate gradient to minimize the unconstrained

quadratic form in (5.50) with respect to {λc : c} and{
µc,c′(yc∩c′) : c, c′, yc∩c′

}
. The necessary gradients are given in (5.51b) and

(5.51c).
4 Set ξc(yc)←

[
−d2

cmc(yc)− λc −
∑

c′ µc,c′(yc∩c′)
]
+

for all c ∈ C and yc.

5 Compute αc(yc) according to Eq. (5.49).
6 return αc(yc)c,yc.

Proceeding with the standard Lagrangian:

L =
L−1∑
t=1

d2
t

m∑
i,j=1

(αt(i, j)−mt(i, j))
2 −

L−1∑
t=1

λt

∑
i,j

αt(i, j)− 1


−
L−1∑
t=1

∑
i,j

ξt(i, j)αt(i, j)−
L−2∑
t=1

∑
j

µt(j)

(∑
i

αt(i, j)−
∑
k

αt+1(j, k)

)
.

Taking derivative over αt(i, j):

∂L
∂αt(i, j)

= d2
t (αt(i, j)−mt(i, j))− λt − ξt(i, j)− µt(j) + µt−1(i) = 0

⇒ αt(i, j) = d−2
t (λt + ξt(i, j) + µt(j)− µt−1(i)) +mt(i, j), (5.53)

where we define µ0(j) := 0. Plugging into L, we derive the dual problem:

minD(λt, ξt(i, j), µt(i)) =
1

2

L−1∑
t=1

d2
t

∑
i,j

(λt + ξt(i, j) + µt(j)− µt−1(i))2 (5.54)

+
L−1∑
t=1

∑
i,j

mt(i, j)(λt + ξt(i, j) + µt(j)− µt−1(i))−
L−1∑
t=1

λt

s.t. ξt(i, j) ≥ 0. ∀t ∈ [L− 1], i, j ∈ [m].

Taking derivatives:

∂D

∂ξt(i, j)
= d−2

t (λt + ξt(i, j) + µt(j)− µt−1(i)) +mt(i, j) = 0 ∀t ∈ [L− 1]

⇒ ξt(i, j) = [−d2
tmt(i, j)− λt − µt(j) + µt−1(i)]+
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Table 5.1: Dataset statistics. n: #examples, d: #features, s: feature density.

dataset n d s(%) dataset n d s(%) dataset n d s(%)

adult9 32,561 123 11.28 covertype 522,911 6,274,932 22.22 reuters-c11 23,149 1,757,801 0.16

astro-
ph

62,369 99,757 0.077 news20 15,960 7,264,867 0.033 reuters-
ccat

23,149 1,757,801 0.16

aut-avn 56,862 20,707 0.25 real-sim 57,763 2,969,737 0.25 web8 45,546 579,586 4.24

∂D

∂λt
= d−2

t

∑
i,j

(λt + ξt(i, j) + µt(j)− µt−1(i)) +
∑
i,j

mt(i, j)− 1 ∀t ∈ [L− 1]

∂D

∂µt(i)
= d−2

t

∑
j

(λt + ξt(j, i) + µt(i)− µt−1(j)) ∀t ∈ [L− 2]

+ d−2
t+1

∑
j

(λt+1 + ξt+1(i, j) + µt+1(j)− µt(i)) +
∑
j

mt(j, i)−
∑
j

mt+1(i, j),

where we further define µL−1(j) := 0. Obviously it takes O(Lm2) time to compute all

the gradients, and so is {ξt(i, j)}.

5.5 Experimental results

In this section, we compare the empirical performance of our pragam with state-of-

the-art binary linear SVM solvers, including two variants of pegasos4 (Shalev-Shwartz

et al., 2007), and two variants of BMRM5 (Teo et al., 2010).

Datasets Table 5.1 lists the statistics of the dataset. adult9, astro-ph, news20,

real-sim, reuters-c11, reuters-ccat are from the same source as in (Hsieh et al.,

2008a). aut-avn classifies documents on auto and aviation (http://www.cs.umass.edu/

∼mccallum/data/sraa.tar.gz). covertype is from UCI repository. We did not normal-

ize the feature vectors and no bias was used.

Algorithms Closest to pragam in spirit is the line search BMRM (ls-bmrm) which

minimizes the current piecewise lower bound of regularized Remp via a one dimensional

line search between the current wt and the latest subgradient. This simple update was

enough for Smola et al. (2007b) to prove the 1/ε rate of convergence. Interpreted in

the adjoint form, this update corresponds to coordinate descent with the coordinate

being chosen by the Gauss-Southwell rule (Bollen, 1984). In contrast, pragam performs

a parallel update of all coordinates in each iteration and achieves faster convergence

4http://ttic.uchicago.edu/∼shai/code/pegasos.tgz
5http://users.rsise.anu.edu.au/∼chteo/BMRM.html
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Table 5.2: λ for datasets.

dataset λ dataset λ dataset λ dataset λ

adult 2−18 astro-ph 2−17 aut-avn 2−17 covertype 2−17

news20 2−14 reuters-c11 2−19 reuters-ccat 2−19 real-sim 2−16

web8 2−17

rate. So in this section, our main focus is to show that pragam converges faster than

ls-bmrm.

We also present the results of pegasos, which is a primal estimated subgradient

solver for SVM with L1 hinge loss. We tested two extreme variants of pegasos: pegasos-

n where all the training examples are used in each iteration, and pegasos-1 where only

one randomly chosen example is used. Finally, we also compare with the qp-bmrm

which solves the full QP in (5.10) in each iteration.

It should be noted that SVMStruct (Tsochantaridis et al., 2005) is also a general

purpose regularized risk minimizer, and when specialized to binary SVMs, the SVMPerf

(Joachims, 2005, 2006) gave the first linear time algorithm for training linear SVMs.

We did not compare with SVMPerf because its cutting plane nature is very similar to

BMRM when specialized to binary linear SVMs.

For pragam, since the Lipschitz constant L of the gradient of the SVM dual is

unknown in practice, we resort to Algorithm 13 (Nesterov, 2007) which automatically

estimates L while the rates presented in Section 5.3.1 are unchanged. We further

implemented pragam-b, the pragam algorithm which uses SVM bias. In this case the

inner optimization is a QP with box constraints and a single linear equality constraint.

For all datasets, we obtained the best λ ∈
{

2−20, . . . , 20
}

using their corresponding

validation sets, and the chosen λ’s are given in Table 5.2.

Results We first compared how fast errt := mint′<t J(wt′) − J(w∗) decreases with

respect to the iteration index t. We used errt instead of J(wt)− J(w∗) because J(wt)

in pegasos and ls-bmrm fluctuates drastically on some datasets. The results in Figure

5.2 show pragam converges faster than ls-bmrm and pegasos-n which both have 1/ε

rates. qp-bmrm converges faster than the rest algorithms in general. pegasos-1 is not

included because it converges very slowly in terms of iterations.

Next, we compared in Figure 5.3 how fast errt decreases in wall clock time. pragam is

not fast in decreasing errt to low accuracies like 10−3. But it becomes quite competitive

when higher accuracy is desired, whereas ls-bmrm and pegasos-1 often take a long time

in this case. Again, qp-bmrm is much faster than the other algorithms.

Another important comparison is on generalization performance: how fast a solver

finds a model with reasonable testing accuracy. At iteration t, we examined the test
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accuracy of wt′ where t′ := argmint′≤t J(wt′), and the result is presented in Figures

5.4 and 5.5 with respect to number of iterations and time respectively. It can be seen

that although pragam manages to minimize the primal function fast, its generalization

power is not improved efficiently. This is probably because this generalization perfor-

mance hinges on the sparsity of the solution (or number of support vectors, (Graepel

et al., 2000)), and compared with all the other algorithms pragam does not achieve any

sparsity in the process of optimization. Asymptotically, all the solvers achieve very

similar testing accuracy.

Since the objective function of pragam-b has a different feasible region than other

optimizers which do not use bias, we only included it when comparing test accuracy.

In Figures 5.4 and 5.5, the test accuracy of the optimal solution found by pragam-b

is always higher than or similar to that of the other solvers. In most cases, pragam-b

achieves the same test accuracy faster than pragam both in number of iterations and

time.

5.6 Discussion and conclusions

In this chapter, we described a new lower bound for the number of iterations required

by BMRM and similar algorithms which are widely used solvers for the regularized

risk minimization problem. This shows that the iteration bounds shown for these

solvers are optimum. Our lower bounds are somewhat surprising because the empirical

performance of these solvers indicates that they converge linearly to an ε accurate

solution on a large number of datasets. Perhaps a more refined analysis is needed to

explain this behavior.

The SVM problem has received significant research attention recently. For instance,

Shalev-Shwartz et al. (2007) proposed a stochastic subgradient algorithm pegasos. The

convergence of pegasos is analyzed in a stochastic setting and it was shown that it

converges in O(1/ε) iterations. We believe that our lower bounds can be extended to

any arbitrary subgradient based solvers in the primal including pegasos. This is part

of ongoing research.

Our technique of solving the dual optimization problem is not new. A number of

solvers including SVM-Light (Joachims, 1999) and SMO (Platt, 1999) work on the dual

problem. Even though linear convergence is established for these solvers, their rates

have n≥2 dependence which renders the analysis unusable for practical purposes. Other

possible approaches include the interior-point method of (Ferris & Munson, 2002) which

costs O(nd2 log(log(1/ε))) time and O(d2) space where d refers to the dimension of the

features. liblinear (Hsieh et al., 2008a) performs coordinate descent in the dual, and

has O(nd log(1/ε)) complexity but only after more than O(n2) steps. Mirror descent
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Figure 5.2: Primal function error versus number of iterations.

algorithms (Beck & Teboulle, 2003) cost O(nd) per iteration, but their convergence

rate is 1/ε2. These rates are prohibitively expensive when n is very large.

The O(1/
√
ε) rates for the new SVM algorithm we described in this chapter has

a favorable dependence on n as well as λ. Although our emphasis has been largely

theoretical, the empirical experiments indicate that our solver is competitive with the

state of the art. Finding an efficient solver with fast rates of convergence and good

empirical performance remains a holy grail of optimization for machine learning.
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Figure 5.3: Primal function error versus time.
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Figure 5.4: Test accuracy versus number of iterations.
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Figure 5.5: Test accuracy versus time.
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Appendix A

Fundamentals of Convex Analysis

In this appendix, we provide an introduction to convex analysis which is used in this the-

sis. All definitions and most properties can be found in (Hiriart-Urruty & Lemaréchal,

1993b).

A.1 Convex set and convex function

Definition 62 (Convex set) A set C ⊆ Rd is convex if for any two points x1,x2 ∈ C
and any λ ∈ (0, 1), we have

λx1 + (1− λ)x2 ∈ C.

In other words, the line segement between any two points must lie in C.

Definition 63 (Open set) A set C ⊆ Rd is open if for any point x ∈ C, there exists

an ε > 0, such that z ∈ C for all z : ‖z− x‖ < ε. In other words, there is an ε-ball

around x: Bε(x) := {z : z : ‖z− x‖ < ε} which is contained in C.

Definition 64 (Convex hull) For any nonempty set S in Rd, its convex hull coS is

defined as:

coS :=

{
k∑
i=1

λixi : xi ∈ S, λi ≥ 0,
∑
i

λi = 1, k ∈ N

}
.

It can be shown to be the smallest convex set that subsumes S.

Definition 65 (Convex function) Given a convex set C, a function f : C 7→ R is

convex if for any two points x1,x2 ∈ C and any λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).
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In general, we can define a generalized function f : Rd 7→ R = R ∪ {+∞}, such that

f(x) is +∞ for all x /∈ C. And we call C, on which f is finite, the domain of f

dom f :=
{

x ∈ Rd : f(x) <∞
}
.

Definition 66 (Subgradient and subdifferential) Given a function f and a point

x with f(x) <∞, a vector u is called a subgradient of f at x if

f(y)− f(x) ≥ 〈y − x,u〉 , ∀ y ∈ Rd.

The set of all such u is called the subdifferential of f at x, and is denoted by ∂f(x).

Function f is convex iff ∂f(x) is not empty for all x where f(x) < ∞. If f is further

differentiable at x, then ∂f(x) is a singleton comprised of the gradient of f at x: ∇f(x).

Property 2 (Calculus rules for subgradient)

• Linearity: if f and g are convex functions from Rd to R, then ∂(f + g)(x) =

∂f(x) + ∂g(x) for all x ∈ Rd.

• Affine transformation: for any linear transform A and offset b, define g(x) :=

f(Ax + b). Then ∂g(x) = A>∂f(Ax + b) for all x ∈ Rd.

• Point-wise maximization: Suppose g(x) := maxi∈I fi(x), then ∂f(x) is the

convex hull of the union ∪i∈I∗x∂fi(x), where I∗x is the index set which attains the

max: I∗x := {i ∈ I : fi(x) = f(x)}.

Definition 67 (Strong convexity) Given a norm ‖·‖ on Rd, a convex function f is

called strongly convex with modulus σ wrt ‖·‖ if for all x1,x2 ∈ dom f and λ ∈ (0, 1)

we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)− 1

2
λ(1− λ) ‖x1 − x2‖2 .

Strong convexity can be equivalently defined in the following ways depending on

the differentiability:

Property 3 f is σ-strongly convex wrt ‖·‖ iff:

• f(x)− σ
2 ‖x‖ is convex.

• f(x2) ≥ f(x1) + 〈g,x2 − x1〉 + 1
2σ ‖x1 − x2‖2 for all x1,x2 ∈ domf and g ∈

∂f(x1).
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• If f is differentiable, then 〈∇f(x1)−∇f(x2),x1 − x2〉 ≥ σ ‖x1 − x2‖2 for all

x1,x2 ∈ domf .

• If f is twice differentiable, then
〈
∇2f(x),x

〉
≥ σ ‖x‖2 for all x ∈ domf . If the

norm is chosen as the Euclidean norm, then this is equivalent to the Hessian’s

eigenvalues being lower bounded by σ.

Definition 68 (Lipschitz continuity) Given a norm ‖·‖ on Rd and a norm ‖·‖∗ on

Rs, a function f : Rd 7→ Rs is called Lipschitz continuous with modulus L wrt ‖·‖ and

‖·‖∗ if

|f(x1)− f(x2)|∗ ≤ L ‖x1 − x2‖ ∀x1,x2 : f(x1) < +∞, f(x2) < +∞.

Lipschitz continuity characterizes the rate of change of f , and is stronger than conti-

nuity but weaker than differentiability.

If a convex function f : Rd 7→ R is differentiable and its gradient ∇f : int domf →
Rd is Lipschitz continuous with modulus L wrt ‖·‖ (setting ‖·‖∗ = ‖·‖), then we call f

as L-l.c.g.

A.2 Fenchel conjugate

Definition 69 (Fenchel dual) Given a function f : Rd → R, its Fenchel dual is

defined as

f?(µ) := sup
x∈Rd

〈x,µ〉 − f(x).

Example 1 (Affine functions) Let f : Rd → R be defined as f(x) = 〈a,x〉+b where

a ∈ Rd and b ∈ R. Then

f?(µ) =

 −b if µ = a

+∞ otherwise
.

Example 2 (Hinge loss) Let f : Rd → R be defined as f(x) = [ρ − 〈w,x〉]+ where

ρ ∈ R, w ∈ Rd, and [·]+ := max {·, 0}. Then

f?(µ) =

 ρλ if µ = λw, and λ ∈ [−1, 0]

+∞ otherwise
.
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Example 3 Let us consider the Fenchel dual of the function

f(x) =

 −
∑d

i=1 xi if x ∈ Q
+∞ otherwise

,

where Q =
{
x ∈ Rd : xi ∈ [0, d−1],

∑
i yixi = 0

}
and yi ∈ {−1,+1}. Below we show

f?(µ) = min
b∈R

1

d

∑
i

[1 + µi − yib]+ ,

where [x]+ := max {x, 0}. To this end, it suffices to show that for all µ ∈ Rd:

sup
z∈Q
〈z,µ〉+

∑
i

zi = min
b∈R

1

d

∑
i

[1 + µi − yib]+ . (A.1)

Posing the latter optimization as:

min
ξi,b

1

d

∑
i

ξi s.t. 1 + µi − yib ≤ ξi, ξi ≥ 0.

Write out the Lagrangian:

L =
1

d

∑
i

ξi +
∑
i

ρi(1 + zi − yib− ξi)−
∑
i

βiξi.

Taking partial derivatives:

∂L
∂ξi

=
1

d
− zi − βi = 0 ⇒ zi ∈ [0, d−1],

∂L
∂b

= −
∑
i

ρiyi = 0 ⇒
∑
i

ziyi = 0.

Plugging back into L,

L =
∑
i

zi(1 + µi), s.t. zi ∈ [0, d−1],
∑
i

yizi = 0.

Maximizing L wrt z is exactly the LHS of (A.1).

Example 4 (Relative entropy) Suppose

f(x) =


∑d

i=1wi ln wi
1/n if x ∈ ∆d

+∞ otherwise
.
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where ∆d is the d-dimensional simplex:
{
x ∈ [0, 1]d :

∑
i xi = 1

}
. Then

f?(µ) = ln

(
1

d

d∑
i=1

expµ)

)
.

Property 4 (Dual connection) If f is convex and closed, then

f(x) + f?(µ)− 〈x,µ〉 ≥ 0.

And the equality is attained iff µ ∈ ∂f(x) iff x ∈ ∂f?(µ).

Property 5 f?, as the supremum of linear functions, is convex. It is also closed.

When f is closed and convex, f?? = f .

Property 6 (Calculus rules)

1. If g(x) = f(x) + a, then g?(µ) = f?(µ)− a.

2. If g(x) = af(x) with a > 0, then g?(µ) = af?(µ/a).

3. If A is an invertible linear operator, and g(x) = f(Ax), then g?(µ) = f?(A−1µ).

4. If g(w) = f(x− x0), then g?(µ) = f?(µ) + 〈µ,x0〉.

5. If g(x) = f(x) + 〈µ0,x〉, then g?(µ) = f?(µ− µ0).

Property 7 (max rule) (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 2.4.7) Let

f1, . . . , fn be finitely many convex functions from Rd to R and let f := maxi fi. Denote

by m := min {n, d+ 1}. For every

µ ∈ dom f? = co ∪i∈[n] {dom f?i } .

there exists si ∈ dom f?i and convex multipliers σi ∈ R (i = 1, . . . ,m) such that

µ =
∑
i

σisi and f?(µ) =
∑
i

σif
?
i (si).

The expansion of {σi} may be not unique, but the value of f?(µ) is unique.

As an application of the max rule, we have

Example 5 (Maximum of affine functions) Let f : Rd → R be defined as f(x) =

maxi∈[n] 〈ai,x〉+ bi where bi ∈ R, and ai ∈ Rd. Then

f?(µ) =

 −
∑n

i=1 λibi if µ =
∑n

i=1 λiai with λi ≥ 0,
∑

i λi ≤ 1

+∞ otherwise
.
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Example 6 (Maximum of hinge loss) Let f : Rd → R be defined as f(x) = maxi∈[n][ρi−
〈wi,x〉]+ where ρi ∈ R, and wi ∈ Rd. Then

f?(µ) =

 −
∑n

i=1 λiρi if µ ∈
{
−∑k

i=1 λiwi, λi ≥ 0,
∑

i λi ≤ 1
}

+∞ otherwise
.

Property 8 (Strong convexity and L-l.c.g under Fenchel dual) (Hiriart-Urruty

& Lemaréchal, 1993b, Theorem 4.2.1 and 4.2.2)

1. If f : Rn → R is strongly convex with modulus c > 0, then dom f? = Rn, and

∇f? is Lipschitz continuous with constant σ−1.

2. If f : Rn → R is convex and have L-Lipschitz continuous gradient mapping

(L > 0), then f? is strongly convex with modulus L−1.

Property 9 (Borwein & Lewis, 2000, Theorem 3.3.5) Let E1 be a subset of Rd, and

E2 be a subset of Rs. Let A be a linear map from E1 to E2. Given functions f : E1 → R
and g : E2 → R, we have

inf
x∈E1

f(x) + g(Ax) ≥ sup
µ∈E2

−f?(A?µ)− g?(−µ).

If f and g are convex and 0 ∈ core(domg −A domf)1, then the equality holds and the

supremum is attained if finite.

A.3 Convex analysis for the log partition function

In this section, we prove some important fundamental properties of the log partition

function of exponential family distributions.

Proposition 70 g(θ) strongly convex if, and only if, φ is minimal.

Proof Strong convexity ⇒ minimality: Suppose there exits an α, which is not

necessarily in Θ, such that 〈φ(x),α〉 = C ν-almost everywhere. For any θ in the

interior of Θ, there must exist a δ > 0 such that θ + λα ∈ Θ for all λ ∈ [0, δ].

Let f(x) := exp(〈φ(x),θ/2〉) and g(x) := exp(〈φ(x), (θ + δα)/2〉). As g(x)/f(x) =

exp(〈φ(x), (δα)/2〉) = exp(δC/2) ν-almost everywhere, so ‖f‖2 ‖g‖2 = ‖fg‖1, i.e.√∫
exp(〈φ(x),θ〉)ν(dx) ·

√∫
exp(〈φ(x),θ + δα〉)ν(dx) =

∫
exp(〈φ(x),θ + δα/2〉)ν(dx).

1The core of a set C in a space E is the set of points x ∈ C such that for any direction d ∈ E,
x + td ∈ C for all small real t.
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Therefore, taking log of both sides,

1

2
g(θ) +

1

2
g(θ + δα) = g(θ + δα/2),

which contracts with the strong convexity (in fact contracts with the strict convexity

which is implied by strong convexity).

Minimality ⇒ strong convexity: As the Hessian is the covariance matrix and

Θ is open, strong convexity follows if we can show the covariance matrix is positive

definite very where. Suppose otherwise, there exists a θ such that the covariance matrix

under p(x;θ) is just positive semi-definition, i.e. there is a vector α satisfying

α>(E[φφ>]− E[φ]E[φ]>)α = 0 ⇒ E[〈φ(x),α〉2] = (E[〈φ(x),α〉])2.

This means∫
〈φ(x),α〉2 exp(〈φ(x),θ〉)∫

exp(〈φ(y),θ〉)ν(dy)
=

(∫
〈φ(x),α〉 exp(〈φ(x),θ〉)∫

exp(〈φ(y),θ〉)ν(dy)

)2

⇒
∫
〈φ(x),α〉2 exp(〈φ(x),θ〉)ν(dx)

∫
exp(〈φ(x),θ〉)ν(dx)

=

(∫
〈φ(x),α〉 exp(〈φ(x),θ〉)ν(dx)

)2

.

By Cauchy-Schwartz inequality, we derive 〈φ(x),α〉 exp(〈φ(x),θ/2〉)/ exp(〈φ(x),θ/2〉) =

〈φ(x),α〉 is constant ν-almost everythere.

Proposition 71 Irrespective of whether Θ is open, the log partition function g(θ) is

lower semi-coninuous.

Proof Let θ ∈ Θ, and let a sequence in Θ {θn} converge to θ. Since exp(〈φ(x),θ〉) =

limn→∞ exp(〈φ(x),θn〉) for all x, so by Fatou’s lemma, we have∫
exp(〈φ(x),θ〉)ν(dx) ≤ lim inf

n→∞

∫
exp(〈φ(x),θn〉)ν(dx).

So h(θ) :=
∫

exp(〈φ(x),θ〉)ν(dx) is a lower semi-continuous function in θ. As log is

monotonically increasing, hence g(θ) = log h(θ) must be lower semi-coninuous.

When Θ is open, the lower semi-continuity is direct from the convexity of g(θ)

because any convex function must be continuous on the interior of its domain.

Below we assume that Θ is open.
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Proposition 72 For any distribution p(x;θ) from an exponential family, the expecta-

tion of the absolute value of sufficient statistics and their arbitrary power is in R:

E
x∼p(x;θ)

[∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣
]
∈ R.

for all αi ∈ N ∪ {0}. As a result,

E
x∼p(x;θ)

[∏
i

φαii (x)

]
∈ R.

Proof For any z ∈ R, δ > 0, by elementary math we have |z| ≤ δ−1(ezδ + e−zδ). So

for any n ∈ N ∪ {0}, we have

|z|n ≤ δ−n(ezδ + e−zδ)n = δ−n
n∑
i=0

(
n

i

)
e(n−2i)zδ ≤

(
2

δ

)n
(enzδ + e−nzδ).

Therefore ∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ ≤
(

2

δ

)∑
i αi∏

i

(eδαiφi(x) + e−δαiφi(x))

=

(
2

δ

)∑
i αi ∑

bi∈{−1,1}

exp

(
δ
∑
i

biαiφi(x)

)

For any θ ∈ Θ, due to the openness of Θ, there must exist a δ > 0 such that θ +

δ veci {biαi} ∈ Θ for all bi ∈ {−1, 1}. Here veci {biαi} means assembling all biαi into

one vector. So ∫ ∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ exp(〈φ(x),θ〉)ν(dx)

≤
(

2

δ

)∑
i αi ∑

bi∈{−1,1}

∫
exp

(〈
φ(x),θ + δ vec

i
{biαi}

〉)
ν(dx)

< +∞. (A.2)

For improper integral, absolute convergence implies normal convergence.

Proposition 73 For any distribution p(x;θ) from an exponential family, g(θ) must

be differentiable at θ and the derivative is equal to the mean of suffficient statistics, i.e.

∇g(θ) = E
x∼p(x;θ)

[φ(x)].
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Proof First,

∂

∂θi
g(θ) =

∂
∂θi

∫
exp(〈φ(x),θ〉)dx∫

exp(〈φ(x),θ〉)ν(dx)
,

and we show that the direvative and integral can be interchanged

∂

∂θi

∫
exp(〈φ(x),θ〉)ν(dx) =

∫
∂

∂θi
exp(〈φ(x),θ〉)ν(dx).

By definition, letting ei be the i-th coordinate unit vector, we have

∂

∂θi

∫
exp(〈φ(x),θ〉)ν(dx) = lim

t→0

1

t

{∫
exp(〈φ(x),θ + tei〉)ν(dx)−

∫
exp(〈φ(x),θ〉)ν(dx)

}
= lim

t→0

∫
1

t
[exp(〈φ(x),θ + tei〉)− exp(〈φ(x),θ〉)]︸ ︷︷ ︸

:=h(x,t)

ν(dx)

As Θ is open, there exists a δ > 0 such that both θ− δei and θ+ δei are in Θ. For any

z ∈ R, it is elementary to show that |ez − 1| ≤ e|z| − 1. And if a ∈ R+ and z ∈ (0, δ),

then eaz−1
z ≤ eaδ−1

δ . So for any t ∈ (−δ, δ),∣∣∣∣exp(φi(x)t)− 1

t

∣∣∣∣ ≤ e|φi(x)t| − 1

|t| ≤ e|φi(x)|δ − 1

δ
≤ eφi(x)δ + e−φi(x)δ

δ
.

Hence

|h(x, t)| = exp(〈φ(x),θ〉)
∣∣∣∣exp(φi(x)t)− 1

t

∣∣∣∣
≤ δ−1 exp(〈φ(x),θ〉)(exp(φi(x)t) + exp(−φi(x)t))

= δ−1 (exp(〈φ(x),θ + δei〉) + exp(〈φ(x),θ − δei〉)) .

Since both θ−δei and θ+δei are in Θ, so
∫
|h(x, t)| ν(dx) ≤ δ−1(g(θ+δei)+g(θ−δei)).

Therefore by the dominated convergence theorem, we have

∂

∂θi

∫
exp(〈φ(x),θ〉)ν(dx) = lim

t→0

∫
h(x, t)ν(dx) =

∫
lim
t→0

h(x, t)ν(dx)

=

∫
∂

∂θi
exp(〈φ(x), θ〉)ν(dx) =

∫
φi(x) exp(〈φ(x), θ〉)ν(dx).

So

∂

∂θi
g(θ) =

∂
∂θi

∫
exp(〈φ(x),θ〉)ν(dx)∫

exp(〈φ(x),θ〉)ν(dx)
=

∫
φi(x)

exp(〈φ(x),θ〉)∫
exp(〈φ(x),θ〉)ν(dx)

ν(dx) = E
x∼p(x;θ)

[φi(x)].
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Proposition 74 The log partition function g(θ) is C∞ on Θ.

Proof It is not hard to see that we only need to prove, without loss of generality,

∂

∂θ1

∫ ∏
i

φαii (x) · exp(〈φ(x),θ〉)ν(dx) =

∫
∂

∂θ1

∏
i

φαii (x) · exp(〈φ(x),θ〉)ν(dx) ∈ R

for all αi ≥ 0 and for all θ ∈ Θ. We can proceed in the same way as the proof of

Proposition 73, but we prefer writing out the details. First,

∂

∂θ1

∫ ∏
i

φαii (x) exp(〈φ(x),θ〉)ν(dx)

= lim
t→0

1

t

{∫ ∏
i

φαii (x) exp(〈φ(x),θ + te1〉)ν(dx)−
∫ ∏

i

φαii (x) exp(〈φ(x),θ〉)ν(dx)

}

= lim
t→0

∫
1

t

∏
i

φαii (x) [exp(〈φ(x),θ + te1〉)− exp(〈φ(x),θ〉)]︸ ︷︷ ︸
:=h(x,t)

ν(dx).

As Θ is open, there exists a δ > 0 such that both θ− δe1 and θ+ δe1 are in Θ. So for

any t ∈ (−δ, δ), we have

|h(x, t)| =
∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ exp(〈φ(x),θ〉)
∣∣∣∣exp(φ1(x)t)− 1

t

∣∣∣∣
≤ δ−1

∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ exp(〈φ(x),θ〉)(exp(φ1(x)t) + exp(−φ1(x)t))

= δ−1

∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ (exp(〈φ(x),θ + δe1〉) + exp(〈φ(x),θ − δe1〉)) .

By Eq. (A.2), we have

∫
|h(x, t)| ν(dx) ≤ δ−1

∫ ∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ exp(〈φ(x),θ + δe1〉)ν(dx)

+ δ−1

∫ ∣∣∣∣∣∏
i

φαii (x)

∣∣∣∣∣ exp(〈φ(x),θ − δe1〉)ν(dx)

< +∞.
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Therefore by the dominated convergence theorem, we have

∂

∂θi

∫ ∏
i

φαii (x) · exp(〈φ(x),θ〉)ν(dx) = lim
t→0

∫
h(x, t)ν(dx) =

∫
lim
t→0

h(x, t)ν(dx)

=

∫
∂

∂θi

∏
i

φαii (x) · exp(〈φ(x), θ〉)ν(dx) =

∫
φ1(x)

∏
i

φαii (x) · exp(〈φ(x), θ〉)ν(dx)

<+∞,

where the last step is due to Proposition 72.
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Appendix B

Message Update Formulae of

Expectation Propagation

In this appendix, we give the detailed derivation of the messages used in EP updates

in Chapter 3.

B.1 Preliminaries: canonical parametrization of multi-

variate Gaussians

The multi-variate Gaussian distributions (MVGs) are commonly expressed in terms of

moment parametrization:

N (x;µ,Σ) =
1

(2π̃)n/2 |Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (B.1)

where π̃ = 3.14159...1 The mean and variance can be easily read off from Eq (B.1),

hence its name. However, inconvenience arises when we study the product of two

MVGs’ density function. Although the result still assumes the exponential form of

Eq. (B.1), the new mean and variance can not be expressed in simple forms of the

original mean and variance. Therefore the canonical representation is often adopted:

Π := Σ−1, Γ := Σ−1µ,

and we obtain an equivalent formulation of Eq (B.1) denoted by N ′:

N ′(x; Γ,Π) := exp

(
a+ Γ>x− 1

2
x>Πx

)
, (B.2)

1We will use π later for the precision of univariate Gaussians as a standard notation, so here we
introduce π̃ to avoid symbol conflict.
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where a :=
(
−n log(2π̃) + log |Π| − Γ>ΠΓ

)
/2. Π is often called precision and Γ is

called precision-mean. For one dimensional Gaussians, the canonical parametrization

can be simplified into

π =
1

σ2
, τ = πµ =

µ

σ2
⇔ σ =

√
1

π
, µ =

τ

π
.

So whenever we see p(x) ∝ exp
(
−1

2ax
2 + bx

)
, we can immediately read off π = a and

τ = b from the quadratic form. The representation of Eq. (B.2) is also useful when we

multiply or divide two Gaussians. Suppose pi(x) ∼ N ′(Γi,Πi) for i = 1, 2, then

p1(x)p2(x) ∼ N ′(Γ1 + Γ2,Π1 + Π2),
p1(x)

p2(x)
∼ N ′(Γ1 − Γ2,Π1 −Π2). (B.3)

Notice that p1(x)
p2(x) can have a negative definite “covariance matrix”. Anyway, p1(x)

p2(x) is

obviously NOT the density function of the random variable x1
x2

.

B.2 EP updates for all factors in Figure 3.1

We now derive the update formulae in Figure 3.1, which can also be found in Table 1 of

(Herbrich et al., 2007). We only need messages from factor to node. We use mf→x to

denote the message sent from factor f to node x in the last iteration, and the current

iteration will send mnew
f→x which is what we are computing.

Prior factor

x

�

mf→x

BB

N (x;m, v2)

The factor is f(x) = N (x;m, v2), and the update equation is

πnew
x ← πx +

1

v2
, τnew

x ← τx +
m

v2
. (B.4)

This update equation should be taken with care. It does not mean that if we run EP on

the whole graph repeatedly, then the formulae (B.4) should be applied again and again.

In fact, that would push the πx and τx to infinity. Because the factor is Gaussian and is

attached only to x, the message mf→x is always exact and equals N ′(m
v2
, 1
v2

). If mf→x

is initialized to N ′(0, 0), then the first message from f to x will update the marginal

p(x) according to Eq. (B.4). Afterwards, p(x) will never be changed by mf→x.
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Noise factor

x y

�

mf→x

MM

N (x; y, c2)

Here the factor is f(x, y) = exp
(
−(x− y)2/(2c2)

)
. Suppose the message mf→y ∼

N ′(τf→y, πf→y) and current marginal p(y) ∼ N ′(τy, πy). Then by Eq. (B.3),

my→f =
p(y)

mf→y(y)
∼ N ′(τy − τf→y, πy − πf→y).

So the message mnew
f→x is:

mnew
f→x(x) =

∫
f(x, y)my→f (y)dy

∝
∫

exp

(
− 1

2c2
(x− y)2

)
exp

(
−1

2
(πy − πf→y)y2 + (τy − τf→y)y

)
dy

∝ exp

(
−1

2

πy − πf→y
1 + c2(πy − πf→y)

x2 +
τy − τf→y

1 + c2(πy − πf→y)
x

)
,

i.e., mnew
f→x ∼ N ′(a(τy − τf→y), a(πy − πf→y)), where a =

(
1 + c2(πy − πf→y)

)−1
.

Linear combination factor 1

x y1 . . . yn

�

mf→x

NN

δ(x− 〈b,y〉)

Here the factor is f(x,y) = δ(x− a>y), where δ is the Dirac impulse function. So

mf→x(x) =

∫
f(x,y)

n∏
i=1

myi→f (yi)dy

=

∫
f(x,y)

n∏
i=1

p(yi)

mf→yi(yi)
dy

=

∫
δ(x− a>y)

∏
i

N ′ (yi; τyi − τf→yi , πyi − πf→yi)︸ ︷︷ ︸
:=p(y)

dy (B.5)
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To proceed, we need a property of the Dirac function:

δ(x) = lim
ε→0

fε(x), where fε(x) :=

 1
ε x ∈ [0, ε]

0 x∈[0, ε]
. (B.6)

So
mf→x(x) = lim

ε→0

∫
fε(x− a>y)p(y)dy = lim

ε→0

1

ε
Pr

y∼p(y)

{
a>y − x ∈ [0, ε]

}
= pz(x), where z := a>y.

In general, if y ∼ N (µy,Σy), then

z = a>y ∼ N (a>µy,a
>Σya) = N ′

(
a>µy

a>Σya
, (a>Σya)−1

)
.

By definition of p(y) in Eq. (B.5), we have

y ∼ N ′
(

vec

(
τyi − τf→yi
πyi − πf→yi

)
, diag

(
1

πyi − πf→yi

))
,

where vec(ai) stands for (a1, . . . , an)> and diag yields a diagonal matrix. We now have

mf→x ∼ a>y ∼ N ′
(∑

i

a2
i

πyi − πf→yi

)−1∑
i

ai
τyi − τf→yi
πyi − πf→yi

,

(∑
i

a2
i

πyi − πf→yi

)−1
 .

If fact, this result is obvious, because this factor enforces that x = a>y, and hence

x should have the same distribution as a>y.

Linear combination factor 2

x y1 . . . yn

�

mf→yi

[[

δ(x− 〈b,y〉)

Here the factor is f(x, y) = δ(x = b>y). Update equations for this factor can be

derived by converting the it into the case in row 3. In row 3, the receiving node (x)

appears in the factor δ(x = a>y) as the linear combination (a>y) of the rest nodes.

Here in row 4, the receiving node yn does not appear in the factor potential as the linear

combination of the rest nodes. However, we can re-write the potential δ(x = b>y) into

δ(yn = a>[y1, . . . , yn−1, x]>), where a = b−1
n (−b1, . . . ,−bn−1, 1)>. If bn = 0, then in
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fact yn is not connected to the factor, and hence we can ignore yn.

Margin comparison factor

x x

δ(x > ε) �

mf→x

AA

�

mf→x

]]

δ(x < −ε)

Here the factor is f(x) = δ(x > ε) and f(x) = δ(|x| > ε). Suppose the message

mf→x in the last time step is N ′(πf→x, τf→x). Then the product of the latest messages

that f has received from other adjacent nodes is mrest→f = N ′(πx − πf→x︸ ︷︷ ︸
:=c

, τx − τf→x︸ ︷︷ ︸
:=d

),

where τx and πx are the precision-mean and precision of the current marginal p(x).

The message mf→x in the current time step, if calculated by standard belief prop-

agation formula, should be exactly δ(x > ε). Hence the new marginal pnew(x) =

mrest→f (x)δ(x > ε). However, in EP we want to approximate it by a Gaussian. In

particular, we approximate the new marginal pnew(x) by a Gaussian which preserves

the mean and (co)variance2. This means we only require the mean and (co)variance of

pnew(x), as computed below.

In fact, this is a standard truncated Gaussian. In general, if X ∼ N (µ, σ2) is

restricted into the interval X ∈ (a, b) where −∞ ≤ a < b ≤ ∞, then the truncated

Gaussian distribution has normalized probability density function (pdf)

h(x;µ, σ, a, b) =
1
σN

(x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) ,
where Φ is the cumulative distribution function of the standard Gaussian distribution.

Then one has (by http://en.wikipedia.org/wiki/Truncated normal distribution):

E[X|a < X < b] = µ+ σ
N
(a−µ

σ

)
−N

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) (B.7a)

Var[X|a < X < b] = σ2

1 +

a−µ
σ N

(a−µ
σ

)
− b−µ

σ N
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) −

N (a−µσ )−N
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
2


(B.7b)

2Notice that row 5 is the only approximate message of EP in the whole graph.

http://en.wikipedia.org/wiki/Truncated_normal_distribution
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In our case, σ = 1√
c
, µ = d

c . If f = δ(x > ε), then a = ε, b =∞. Then

E[X|a < X < b] =
d

c
+

1√
c

N
(
ε− d

c

1/
√
c

)
− 0

1− Φ

(
ε− d

c

1/
√
c

) =
d

c
+

1√
c

N
(
d−εc√
c

)
Φ
(
d−εc√
c

) ,

Var[X|a < X < b] =
1

c

1 +

ε− d
c

1/
√
c
N
(
ε− d

c

1/
√
c

)
− 0

1− Φ

(
ε− d

c

1/
√
c

) −

N
(
ε− d

c

1/
√
c

)
− 0

1− Φ

(
ε− d

c

1/
√
c

)


2


=
1

c

1−
N
(
d−εc√
c

)
Φ
(
d−εc√
c

)
N

(
d−εc√
c

)
Φ
(
d−εc√
c

) +
d− εc√

c

 .
By introducing functions

Vδ(·>ε)(t, ε) :=
N (t− ε)
Φ(t− ε) , Wδ(·>ε)(t, ε) := Vδ(·>ε)(t, ε)(Vδ(·>ε)(t, ε) + t− ε),

we arrive at

τnew

πnew
= E[X|a < X < b] =

d

c
+

1√
c
Vδ(·>ε)

(
d√
c
, ε
√
c

)
,

1

πnew
= Var[X|a < X < b] =

1

c

(
1−Wδ(·>ε)

(
d√
c
, ε
√
c

))
.

The case of f(x) = δ(x < ε) can be dealt with similarly by using Eq. (B.7).

B.3 Message passing for the max factor

There turns out no closed form formula for the messages related to the max factor.

We will first give the mathematical form of the messages, and then show how it can be

reduced to the cumulative distribution functions of multi-variate Gaussians. Finally,

we provide an efficient approximate algorithm.

B.3.1 Mathematical formulation of messages

Suppose the factor is f(x, y1, . . . , yn) := δ(x = maxi {yi}). We are interested in the

update formulae for this max node: mf→x and mf→yi . Similar to the case of linear

combination, we proceed as follows:
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x y1 . . . yn

�

mf→x

NN

δ(x = max
i
{yi})

x y1 . . . yn

�

mf→yi

[[

δ(x = max
i
{yi})

mf→x(x) =

∫
f(x,y)

n∏
i=1

myi→f (yi)dy =

∫
f(x,y)

n∏
i=1

p(yi)

mf→yi(yi)
dy

=

∫
δ(x = max {yi})

∏
i

N ′ (yi; τyi − τf→yi , πyi − πf→yi)︸ ︷︷ ︸
:=p(y)

dy (B.8)

Again using the definition in Eq. (B.6), we have

mf→x(x) = lim
ε→0

∫
fε(x−max {yi})p(y)dy

= lim
ε→0

1

ε
Pr

y∼p(y)
{max {yi} − x ∈ [0, ε]}

= pz(x), where z := max {yi} .

So the message mf→x is exactly the distribution of the max of multiple Gaussians {yi},
where yi ∼ N ′ (yi; τyi − τf→yi , πyi − πf→yi).

Finally, we compute mf→y1 . Different from factor δ(x = a>y), we cannot convert

the derivation of mf→y1 into mf→x. First similar to Eq. (B.8), for a fixed value of y1

we have:

mf→y1(y1) =

∫
f(x,y)

n∏
i=2

:=pi(yi)︷ ︸︸ ︷
myi→f (yi)︸ ︷︷ ︸
p2:n(y2:n)

px(x)︷ ︸︸ ︷
mf→x(x) dy2 . . . dyndx

=

∫
δ

(
x− max

i=1...n
{yi}

)
p2:n(y2:n)px(x)dy2 . . . dyndx (B.9)
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Using the definition in Eq. (B.6), we have

mf→y1(y1) = lim
ε→0

∫
fε

(
x− max

i=1...n
{yi}

)
p2:n(y2:n)px(x)dy2 . . . dyndx

= lim
ε→0

1

ε
Pr

y2:n∼p2:n,x∼px

{
max

{
y1, max

i=2,...,n
yi

}
− x ∈ [0, ε]

}
.

Here y2, . . . , yn are involved only in terms of max
i=2,...,n

yi. So we can treat them in

whole by introducing z := max
i=2...n

yi and denoting its distribution as pz, which is again

the max of n − 1 Gaussians. We now study Prz∼pz ,x∼px {max {y1, z} − x ∈ [0, ε]} in

more detail.

Pr
z∼pz ,x∼px

{max {y1, z} − x ∈ [0, ε]}

= Pr(max {y1, z} ≤ x+ ε)− Pr(max {y1, z} ≤ x)

= Pr {z ≤ y1 and y1 ≤ x+ ε}+ Pr {z ≥ y1 and z ≤ x+ ε}
− (Pr {z ≤ y1 and y1 ≤ x}+ Pr {z ≥ y1 and z ≤ x})

∗
= Pr

z
(z ≤ y1) Pr

x
(y1 ≤ x+ ε) +

∫ +∞

y1

Pr
x

(x ≥ z − ε)pz(z)dz

− Pr
z

(z ≤ y1) Pr
x

(y1 ≤ x)−
∫ +∞

y1

Pr
x

(z ≤ x)pz(z)dz

= Pr
z

(z ≤ y1) Pr
x

(y1 − ε ≤ x ≤ y1) +

∫ +∞

y1

Pr
x

(z − ε ≤ x ≤ z)pz(z)dz

where the step (*) makes use of the independence between x and z (do not get confused

by x = max {y1, z}). So now

mf→y1(y1) = lim
ε→0

1

ε
Pr

z∼pz ,x∼px
{max {y1, z} − x ∈ [0, ε]}

= Pr
z

(z ≤ y1) lim
ε→0

Prx(y1 − ε ≤ x ≤ y1)

ε
+

∫ +∞

y1

pz(z) lim
ε→0

Prx(z − ε ≤ x ≤ z)
ε

dz

= Pr
z

(z ≤ y1)px(y1) +

∫ +∞

y1

pz(z)px(z)dz,

which makes a lot of sense. mf→y1 involves the cumulative distribution function (cdf)

of z, the max of n− 1 independent Gaussians. If pz(z) is approximated by a Gaussian

via moment matching up to the second order, then the second term (integral) is just

the cdf of a one dimensional Gaussian.

The mean and variance of mf→y1 are not trivial. Even after pz(z) is approximated

by a Gaussian, they are still not trivial. In the next subsection, we will discuss how to

compute the mean and variance of the maximum of multiple Gaussians.
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B.3.2 Moments of the maximum of multiple Gaussians

In this subsection, we show how the mean and variance of the maximum of multiple

Gaussians can be expressed in terms of the cumulative distribution functions (cdf) of

multi-variable Gaussians (MVGs). This result is completely from (Afonja, 1972). We

fixed some typos and polished the symbols. In the whole subsection, we use i, j 6= p, q, r

to represent that i 6= p, i 6= q, i 6= r, j 6= p, j 6= q, and j 6= r.

Max of Two Gaussians

In the simplest case of only two Gaussians xi ∼ N (µi, σ
2
i ) with correlation ρ, we have

an exact expression of the pdf of x = max {x1, x2}: p(x) = m1(−x) +m2(−x), where

f1(x) =
1

σ1
φ

(
x+ µ1

σ1

)
× Φ

(
ρ(x+ µ1)

σ1

√
1− ρ2

− x+ µ2

σ2

√
1− ρ2

)

f2(x) =
1

σ2
φ

(
x+ µ2

σ2

)
× Φ

(
ρ(x+ µ2)

σ2

√
1− ρ2

− x+ µ1

σ1

√
1− ρ2

)
,

and φ(·) and Φ(·) are, respectively, the pdf and cdf of the standard normal distribution.

The moments can also be easily derived:

E [x] = µ1Φ

(
µ1 − µ2

θ

)
+ µ2Φ

(
µ2 − µ1

θ

)
+ θφ

(
µ1 − µ2

θ

)
E
[
x2
]

= (σ2
1 + µ2

1)Φ

(
µ1 − µ2

θ

)
+ (σ2

2 + µ2
2)Φ

(
µ2 − µ1

θ

)
+ (µ1 + µ2)θφ

(
µ1 − µ2

θ

)
,

where θ :=
√
σ2

1 + σ2
2 − 2ρσ1σ2.

Recursively raply the max of two Gaussians

It is obvious that the max of two Gaussians is not Gaussian. But knowing its mean

and variance allows us to approximate it by a Gaussian with the same mean and

variance. This also allows us to recursively apply the procedure of taking the max of

two Gaussians. For example, Figure B.1 uses a chain style where t1 = max {x1, x2},
and ti = max {ti−1, xi+1} for i = 2, 3, . . . , n− 1.

Figure B.2 uses a tree structure for recursion. Intuitively, the topology in Figure

B.2 may deliver lower approximation error than Figure B.1 because the highest layer

of Figure B.2 introduce independent noises while the error of t1 in Figure B.1 will be

propagated through the whole chain. This intuition is confirmed by (Sinha et al., 2006).

Finally, neither of the approaches makes use of the correlation of the n Gaussians, so

they work only for independent Gaussians.
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x1 x3

t2

x2

t1

x4

t3

......

xn–1

tn–2

xn

tn–1

δ(t1 = max{x1, x2})

δ(t3 = max{t2, x4})

δ(tn–1 = max{tn–2, xn})

Figure B.1: Recursively apply the max
of two Gaussians in a chain structure
to compute the max of n Gaussians.

x1 x3

t2

x2

t1

x4

δ(t1 = max{x1, x2})

δ(t2 = max{x3, x4})

x5 x7

t4

x6

t3

x8

δ(t3 = max{x5, x6})

δ(t4 = max{x7, x8})

t5 t6

t7

δ(t5 = max{t1, t2})

δ(t6 = max{t3, t4})

δ(t7 = max{t5, t6})

Figure B.2: Recursively apply the max of two
Gaussians in a tree structure to compute the
max of n Gaussians.

General results for correlated multi-dimensional random variables

Suppose a k-dimensional multivariate random variable x has p.d.f. φk(x;θ,Σ) (not

necessarily Gaussian), where θ = E[x] is the mean and Σ = {σij} = {Cov(xixj)} is the

covariance matrix. Notice this notation does not imply that x must be a multivariate

Gaussian distribution with mean θ and covariance matrix Σ. To avoid introducing

more symbols, we denote φk(z; R) as the standardized form of φk(x;θ,Σ) with zi =
xi−θi
σi

and σi =
√
σii, i.e., only translation and scaling are applied, with no rotation.

Furthermore, we define Φk(b; R) :=
∫∞
b1
. . .
∫∞
b2
φk(z; R)dz =

∫∞
b φk(z; R)dz. See the

last part of this appendix section for a summary of the symbols.

Denote y := max {x1, . . . , xk}. The general results is:

Theorem 75 (Theorem 1 of (Afonja, 1972)) The r-th moment of y about the ori-

gin is given by

µ′r(y) =
k∑
i=1

∫
a+
i

(θi + σizi)
rφk(z; R+

i )dz =
k∑
i=1

r∑
j=1

(
r

j

)
θr−ji σjiµj(zi) (B.10)

where
µj(zi) =

∫∞
a+
i
zji φk(z; R+

i )dz

a+
i = (ai(1), . . . , ai(k)) =: {ai(j)}kj=1 ∈ Rk

ai(j) =


θj−θi√

Var(xi−xj)
if j 6= i

−∞ if j = i

R+
i = {ri(s, t)}ks,t=1 ∈ Rk×k

ri(s, t) =


Corr(xi − xs, xi − xt) if s, t 6= i

Corr(xi, xi − xs) or Corr(xi, xi − xt) if s 6= i = t or t 6= i = s resp.

1 if s = t = i
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Note we have changed the notation from (Afonja, 1972), in order to make the

subscript indices clearer. The notations in the original paper are extremely hairy. For

clarity, we write all vectors or matrices in boldface. All variables denoted with (), e.g.,

ai(j), ri,j(p, q) are real values, and those without are vectors or matrices except for

simple ground symbols like θi, σij . Vectors and matrices are denoted by removing ()

from their elements, e.g., Ri,j is a matrix made up of {ri,j(s, t)}s,t 6=i,j . We also try not

to use superscript in order to avoid confusion with exponents unless double indices are

used like rs,ti (p, q).

We will focus on the Gaussian distributions of φk, and compute the 1st and 2nd

moments of y = max {xi}. Attention will be paid to special cases like: equal mean of

marginals of xi, equal variance and covariance, and independent {xi} which is of our

particular interest.

First order moments of the max of Gaussians

We first derive the general formula for the first order moment (mean) of y = max {xi}
where x is a multivariate normal distribution.

µ′1(y) =
k∑
i=1

θiΦk−1(ai; Ri) +
k∑
i=1

∑
j 6=i

σii − σij√
σii + σjj − 2σij

φ1(ai(j))Φk−2(αi,j ; Ri,j)

(B.11)

where

ai = {ai(j)}j 6=i ∈ Rk−1

Ri = {ri(s, t)}s,t 6=i ∈ R(k−1)×(k−1)

αi,j = {αi,j(t)}t6=i,j ∈ Rk−2

Ri,j = {ri,j(s, t)}s,t 6=i,j ∈ R(k−2)×(k−2)

ai(j) =
θj−θi√

Var(xi−xj)
i 6= j by definition

ri(s, t) = Corr(xi − xs, xi − xt) s, t 6= i by definition

ri,j(s, t) = partial correlation between xi − xs and xi − xt given xi − xj
αi,j(t) = ai(t)−ai(j)·ri(j,t)√

1−ri(j,t)2
i 6= j 6= t 6= i by definition

φ1(a) = standard normal p.d.f. evaluated at a

Φ0(·; ·) = 1.

A short note on partial correlation. Given random variables X, Y and set of random

variables Zn := {Z1, . . . , Zn}, the (n-th order) partial correlation between X and Y

given Z can be computed recursively based on three (n−1)-th order partial correlations:

ρXY |Z =
ρXY |Zn−1 − ρXZn|Zn−1ρY Zn|Zn−1√

1− ρ2
XZn|Zn−1

√
1− ρ2

Y Zn|Zn−1

(B.12)
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where Zn−1 := {Z1, . . . , Zn−1}, and the base of recursion is that ρXY |∅ := ρXY which is

the regular correlation between X and Y (we also denoted it as Corr(X,Y )). Naively

applying Eq. (B.12) costs exponential time complexity in n (order), and dynamic pro-

gramming can reduce the complexity to O(n3). However, our problem only involves

n = 2, so we just implemented the recursive formula.

Special case 1: equivariance and equicorrelated case Assuming

σii = σ2 and σij = σ2ρ (i 6= j),

then we have

ai(j) =
θj − θi

σ
√

2(1− ρ)

ri(s, t) = 1/2

ri,j(s, t) = 1/3

αi,j(t) =
2θt − θi − θj
σ
√

6(1− ρ)
.

The derivations are simple:

ai(j) =
θj − θi√

Var(xi − xj)
=

θj − θi√
2σ2 − 2σ2ρ

=
θj − θi

σ
√

2(1− ρ)

ri(s, t) = Corr(xi − xs, xi − xt) =
Cov(xi − xs, xi − xt)√

Var(xi − xs)
√

Var(xi − xt)

=
σ2 − 2σ2ρ+ σ2ρ√

2σ2 − 2σ2ρ
√

2σ2 − 2σ2ρ
=

1

2

αi,j(t) =

θt−θi
σ
√

2(1−ρ)
− θj−θi

σ
√

2(1−ρ)

1
2√

1− 1/4
=

2θt − θi − θj
σ
√

6(1− ρ)
.

Denoting A := xi − xs, B := xi − xt, and C := xi − xj , by Eq. (B.12) we have:

ri,j(s, t) =
ρAB − ρACρBC√
1− ρ2

AC

√
1− ρ2

BC

=
1
2 − 1

2
1
2

1− 1
2

1
2

=
1

3
. (B.13)

Special case 2: equal means Suppose θi = θ. In this case, ai(j) = 0 and αi,j(t) =

0. Using Eq. (B.11), we have

µ′1(y) = θ +
k∑
i=1

∑
j 6=i

σii − σij√
σii + σjj − 2σij

(2π)−1/2Φk−2(0; Ri,j),
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where
∑k

i=1 Φk−1(0; Ri) = 1 is from the main theorem in Eq. (B.10) setting r = 0.

Special case 3: {xi} are independent (covariance σij = 0 for i 6= j) In this

case σij = 0 for i 6= j. Then

ai(j) =
θj − θi√

Var(xi − xj)
=

θj − θi√
σ2
i + σ2

j

,

ri(s, t) = Corr(xi − xs, xi − xt) =
Cov(xi − xs, xi − xt)√

Var(xi − xs)
√

Var(xi − xt)
=

σ2
i√

σ2
i + σ2

s

√
σ2
i + σ2

t

.

Using same notation in Eq. (B.13), we can compute ri,j(s, t) with

ρAB =
σ2
i√

σ2
i + σ2

s

√
σ2
i + σ2

t

, ρAC =
σ2
i√

σ2
i + σ2

s

√
σ2
i + σ2

j

, ρBC =
σ2
i√

σ2
i + σ2

t

√
σ2
i + σ2

j

.

And the rest αi,j(t) does not admit any simple form.

Second order moments of the max of Gaussians

Finally, the second order moment of y = max {xi} where x is multivariate Gaussian is

µ′2(y) =
k∑
i=1

σi
∑
j 6=i

ri(j, i) {θiφ1(ai(j)) + σiai(j) · ri(j, i)}Φk−2(αi,j ; Ri,j) (B.14)

+
k∑
i=1

σ2
i

∑
s 6=i

ri(s, i)
∑
t6=i,s

{
φ2

((
ai(s)

ai(t)

)
; ri(s, t)

)

× Φk−3

(
αs,ti ; Rs,t

i

)
[ri(t, i)− ri(s, t) · ri(s, i)]

}
where

αs,ti =
{
αs,ti (p)

}
p 6=i,s,t

∈ Rk−3 i, s, t mutually different by def

Rs,t
i =

{
rs,ti (p, q)

}
p,q 6=i,s,t

∈ R(k−3)×(k−3) i, s, t mutually different by def

rs,ti (p, q) = partial correlation between xi − xp and xi − xq given xi − xs and xi − xt
αs,ti (p) =

ai(p)−βi,t(p,s)ai(s)−βi,s(p,t)ai(t)√
1−ri(p,s)2

√
1−ri,s(p,t)2

i, s, t, p mutually different by def

βi,j(s, t) = ri(s,t)−ri(s,j)ri(t,j)
1−ri(t,j)2 i, j, s, t mutually different by def

Φ−1(·; ·) = 0 if k = 2.

Special case 1: {xi} are independent (covariance σij = 0 for i 6= j) It only

affects rs,ti (p, q). The only convenience provided by independence is that Corr(xi −
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xs, xi − xt) =
σ2
i√

σ2
i+σ2

s

√
σ2
i+σ2

t

. The rest terms still do not admit simple forms.

Summary of symbols

In Figure B.3 we summarize the relationship among symbols which is helpful for imple-

mentation. Table B.1 summarizes the correspondence between symbols in this report

and in (Afonja, 1972). Finally, we list all the symbols used in this section of appendix.

ri
s,t (p, q) ri (s, t) ri,j (s, t)

βi,j (s, t) αi,j (t)

αi
s,t (p)

ai (j)

Figure B.3: Relationship among symbols. Those without inbound arrows can be com-
puted directly from θ and Σ.

(Afonja, 1972) here with original indices here with new indices

ai,j ⇔ ai(j) ai(j)

αi,jj′ ⇔ αi,j(j
′) αi,j(t)

αi,jj′j′′ ⇔ αj,j
′

i (j′′) αs,ti (p)

βi,qs.j ⇔ βi,j(q, s) βi,j(s, t)

ri,qs.j ⇔ ri,j(q, s) ri,j(s, t)

ri,jj′ ⇔ ri(j, j
′) ri(s, t)

ri,qs.jj′ ⇔ rj,j
′

i (q, s) rs,ti (p, q)

Table B.1: Correspondence Between Symbols in This Report and in (Afonja, 1972).
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List of symbols

φk(x;θ,Σ) = p.d.f. of k-dimensional multivariate random variable x

φk(z,R) = standardized form of φk(x,θ,Σ)

Φk(b; R) =
∫∞
b1
. . .
∫∞
b2
φk(z; R)dz =

∫∞
b φk(z; R)dz

y = max {x1, . . . , xk}
µ′r(y) = r-th moment of y (about the origin)

µj(zi) =
∫∞
a+
i
zji φk(z; R+

i )dz

a+
i = (ai(1), . . . , ai(k)) =: {ai(j)}kj=1 ∈ Rk

ai(j) =


θj−θi√

Var(xi−xj)
if j 6= i

−∞ if j = i

R+
i = {ri(s, t)}ks,t=1 ∈ Rk×k

ri(s, t) =


Corr(xi − xs, xi − xt) if s, t 6= i

Corr(xi, xi − xs) or Corr(xi, xi − xt) if s 6= i = t or t 6= i = s resp.

1 if s = t = i

ai = {ai(j)}j 6=i ∈ Rk−1

Ri = {ri(s, t)}s,t 6=i ∈ R(k−1)×(k−1)

αi,j = {αi,j(t)}t6=i,j ∈ Rk−2

Ri,j = {ri,j(s, t)}s,t 6=i,j ∈ R(k−2)×(k−2)

ai(j) =
θj−θi√

Var(xi−xj)
i 6= j by definition

ri(s, t) = Corr(xi − xs, xi − xt) s, t 6= i by definition

ri,j(s, t) = partial correlation between xi − xs and xi − xt given xi − xj
αi,j(t) = ai(t)−ai(j)·ri(j,t)√

1−ri(j,t)2
i 6= j 6= t 6= i by definition

φ1(a) = standard normal p.d.f. evaluated at a

Φ0(·; ·) = 1.

αs,ti =
{
αs,ti (p)

}
p 6=i,s,t

∈ Rk−3 i, s, t mutually different by def

Rs,t
i =

{
rs,ti (p, q)

}
p,q 6=i,s,t

∈ R(k−3)×(k−3) i, s, t mutually different by def

rs,ti (p, q) = partial correlation between xi − xp and xi − xq given xi − xs and xi − xt
αs,ti (p) =

ai(p)−βi,t(p,s)ai(s)−βi,s(p,t)ai(t)√
1−ri(p,s)2

√
1−ri,s(p,t)2

i, s, t, p mutually different by def

βi,j(s, t) = ri(s,t)−ri(s,j)ri(t,j)
1−ri(t,j)2 i, j, s, t mutually different by def

Φ−1(·; ·) = 0 if k = 2.
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Appendix C

Detailed Result of Empirical

Optimal Threshold

In Section 3.3.3, we showed six examples of how ẼxpFs(l(θ)) and F-score(l(θ),y∗) vary

as functions of θ. In this appendix, we show the same result for all the 101 classes in

the group topics.
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Figure C.1: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.
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Figure C.2: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.
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Figure C.3: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.
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Figure C.4: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.
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Figure C.5: Example curves of ẼxpFs(l(θ)) (blue) and F-score(l(θ),y∗) (red) v.s. θ.
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Appendix D

Modeling Hierarchies in Labels

Hierarchy is often modeled as a tree composed of all possible labels, and extension

to forest is immediate. The root is the most general class and by going down to the

leaves, the labels become more and more specific. It encodes the fact that if a child

label is relevant, then its parent label must be relevant as well (but not vice versa). In

the sequel, we will use the word “node” and ”label” interchangeably. Another example

relationship is co-occurrence, where two labels must be relevant or irrelevant at the

same time. Both forms can be unified in the framework of propositional logic. Using

lc ∈ {1, 0} to represent whether label c is relevant, the tree hierarchy encodes lp → lc

if class c is a child of class p, and co-occurrence can be denoted by la ⇔ lb. Clearly

propositional logic can model more general relations like la ∧ ¬lb → lc.

In the simplest case, the relations are provided as prior information. A more com-

plicated task is to induce relations from the data, and associate them with some confi-

dence. This will be similar to association rule mining. Here we assume that a hierarchy

of classes is available a priori in terms of a tree, whose connotation is:

Every data point is associated with a (possibly empty) set of labels. Whenever an

instance is labeled with a certain label c, it must also be labeled with all the nodes on

the path from the root down to c.

This is exactly the setting used in (Rousu et al., 2006), which utilizes the hierarchy

mainly through the definition of loss function: if the node c is misclassified, then further

mistakes made in the subtree rooted at c are not penalized. Formally, suppose the true

label on a tree is y and the predicted label is l, then the so-called H-loss defined by

Rousu et al. (2006) is:

lH(l,y) =
∑
c

ac · δ(lc 6= yc ∧ lh = yh ∀h ∈ ancestor of c).

where the summation goes through all the classes, and ac ∈ [0, 1] downscales the loss

when going deeper in the tree.

Inference can be performed on directed trees, and the conditional probability p(lc|lp)
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is important where lp is the parent node and lc is the child node. By definition, p(lc =

1|lp = 0) = 0 and p(lc = 0|lp = 0) = 1 so we only need to learn p(lc|lp = 1). Similar

to the marginal probability models, we also assume a linear model for p(lc|lp = 1),

and its weights are updated only when the ground truth satisfies lp = 1. However,

as the marginals and the conditionals are learned separately, their consistency is not

guaranteed, i.e.

p(lc) 6=
∑
lp

p(lc|lp) · p(lp).

To solve this problem, we may resort to undirected trees, where we learn a linear model

for the node and edge potentials. However, all the factors in undirected graphical

models are globally coupled and learning becomes hard.

So we would rather patch the directed tree model in two different ways:

1. Learn the model of marginal only for the root label in the tree. The rest non-root

nodes will be inferred only via the conditionals (edges). This will immediately

rule out over-parametrization and inconsistency.

2. Still learn the marginals of all nodes and conditionals on all edges, but treat these

probabilities as node and edge potentials of the undirected graph, and samples

can be drawn easily from this undirected tree.

The second approach might be better because it uses more information, and enforces

consistency between different parts of the models learned separately. And this approach

is also general enough to model propositional logic. For each proposition such as lp → lc

and la ⇔ lb, we introduce a factor with linear parametrization, and the resulting factor

graph can be loopy.



Appendix E

Statistical Estimation and

Concentration of Measure

Parameter estimation is one of the key problems in statistics. Given an unknown

distribution F , we wish to estimate a parameter of F : θ = θ(F ), e.g., moments,

quantiles, and Gini differences. To this end, suppose we have observations (a stochastic

process) X1, X2, . . . obtained from certain statistical experiment, and then a statistic

g(X1, X2, . . .)
1 is applied as an estimator of θ.

When Xi are independently and identically distributed (iid) according to F , the

behavior of the statistics has been well studied. However, the iid assumption is often

unrealistic in practice and the non-iid setting is of particular interest in Chapter 4. This

appendix will first list some desirable statistical properties of estimators, then state the

properties of U-statistics under iid observations. Finally, we will briefly survey some

fairly recent results on U-statistics under non-iid observations.

E.1 Desirable statistical properties of estimators

In this section, we describe some general intuitions on what makes a good estimator.

We will emphasize the intuition, and more rigorous statements will be given in the

subsequent sections under more specific settings. We assume X := (X1, X2, . . .) is

the random variables of observation from a stochastic process related to F but not

necessarily iid, and g(X) is an estimator.

Unbiasedness. It is natural to desire that the estimator g(X) be centered around

the true parameter θ. g(X) is said to be an unbiased estimator of θ if

Bias(g(X), θ) := E[g(X)− θ] = 0.

1Most literature use the symbol h for statistics. We use g here in order to avoid confusion with the
kernel function of U-statistics later.
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Mean square error. The mean square error of an estimator g(X) is defined by

MSE(g(X), θ) := E
[
(g(X)− θ)2

]
= Var(g(X)) + Bias(g(X), θ)2.

The lower the MSE, the better. Incidently, this shows the bias-variance tradeoff, which

is related to a similar issue in statistical machine learning.

Consistency. A sequence of estimators gn(X) are consistent for θ if gn(X)
P→ θ as

n→∞, i.e.,

lim
n→∞

Pr (|gn(X)− θ| > ε) = 0 for all ε > 0. (E.1)

Here and henceforth, the symbol Pr means the implicit probability measure is clear from

the context. Same is true when discussing convergence of random variables. Note that

consistency does not imply unbiasedness since it allows Bias(gn(X), θ)→ 0 as n→∞.

An example is BUGBUG (HSIC b). When gn is based on n observations X1, . . . , Xn,

consistency simply means that the estimation approaches the true parameter with

more observations. This is often formulated as the law of large numbers (LLN), whose

simplest form says when we have more and more iid observations, the average of the

observations converges to the mean (θ = µ) of the distribution. Loosely speaking, it

has two forms: letting gn(X) = X̄n := 1
n

∑n
i=1Xi,

weak law of large numbers (WLLN): X̄n
P→ θ as n→∞;

strong law of large numbers (SLLN): X̄n
a.s.→ θ as n→∞.

The Borel-Cantelli lemma allows one to convert a sufficiently rapidly converging WLLN

into a SLLN.

Mode of convergence. The consistency Eq (E.1) is defined in terms of convergence

in probability (
P→ ). Stronger modes such as converging almost surely (

a.s.→ ) and in

moment/mean (
Lp→ ), or weaker modes like converging in distribution (

D→ ) are also

useful. All these modes will be used later.

Concentration of measure and rate of convergence. When the sequence of

estimators gn(X) are consistent (i.e., Eq (E.1)), it is furthermore desirable that a)

the probability mass of gn(X) concentrates tightly around θ, and b) the concentration

tightens fast with the growth of n, or the number of observations. These are typically

characterized by two kinds of bounds: uniform bounds and asymptotic bounds which

are defined by converging in probability and in distribution, respectively. Two typical
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forms are:

uniform bounds: Pr {|gn(X)− θ| > ε} ≤ c exp(−ηnε2) for all ε > 0;

asymptotic bounds:
√
n(gn(X)− θ) D→ N (0, σ), as n→∞,

where c, η, σ are some constants. The asymptotic bounds are also known as central

limit theorem (CLT).

In practice, computational efficiency is also an important issue.

In the next two sections, we will specialize the discussion to a common class of

parameters: U-parameters. They can be estimated by U-statistics which are applied

in Chapter 4. Before branching to U-statistics with iid and non-iid observations, we

first give the (common) definition of U-parameters.

Definition 76 (U-parameters) (Hoeffding, 1963) θ = θ(F ) is a U-parameter of dis-

tribution F if there is a measurable function h : Rd → R, called the kernel, so that

θ(F ) = θh(F ) =

∫
Rd
hdF (d) for all F for which the integral is defined,

where F (d) is the product measure F × . . .× F on Rd. The positive integer d is called

the order of the kernel.

For example, when d = 1 and h(x) = x, θh(F ) is the mean of F . When d = 2 and

h(x1, x2) = |x1 − x2|α, θh(F ) is the generalized Gini difference of F .

U-parameter is often called an estimable parameter, in the sense that a parameter

can be estimated in an unbiased matter if, and only if, it is a U-statistics (Lehmann,

1983). For simplicity, we assume that the kernel h is symmetric, i.e., invariant to the

permutation of its arguments. This is enough for our use in Chapter 4.

E.2 U-Statistics for iid observations

In this section, assume we have a sequence of observations (X1, X2, . . . , Xn) drawn iid

from a distribution F . For convenience, let Xj
i := (Xi, Xi+1, . . . , Xj). We now define

the U-statistics which can be used to estimate the corresponding U-parameter.

Definition 77 (U-statistics) (Hoeffding, 1963) Given a U-parameter θh where h is

symmetric, the U-statistic for θh based on a sequence X1, . . . , Xn is defined by

Unh := Uh(X1, . . . , Xn) =

 n

d

−1∑
{h(Xi1 , . . . , Xid) : 1 ≤ i1 < i2 < . . . < id ≤ n} .
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Closely related is a V-statistic for θh and {Xi}ni=1:

V n
h := Vh(X1, . . . , Xn) = n−d

∑
{h(Xi1 , . . . , Xid) : 1 ≤ ij ≤ n for all j} .

U-statistics have a number of desirable properties under iid observations, and we

list a few important ones below.

Theorem 78 (Unbiasedness) The U-statistic Unh is an unbiased estimator of θh:

EXn
1

[Unh ] = θh, for all n.

Theorem 79 (Minimality of variance) (Serfling, 1980) Unh has the lowest variance

among all unbiased estimators of θh (for a fixed n).

Theorem 80 (Concentration of measure, a.k.a. Hoeffding) (Hoeffding, 1963) If

h is of order d and h ∈ [a, b], then

Pr
{
Unh − EXn

1
[Unh ] ≥ ε

}
≤ exp

(
−2 bn/dc ε2

(b− a)2

)
for all ε > 0.

We can further characterize the variance of U-statistics, based on which an asymp-

totic bound on the concentration of measure can be established (Serfling, 1980).

Assume EXd
1
[h(Xd

1 )2] is finite. For any t ∈ [1, d], define

ht(X
t
1) := EXd

t+1
[h(Xd

1 )], (E.2)

i.e., expecting out the tail d− t variables Xd
t+1. Define ζ0 = 0 and

ζt := VarXt
1
[ht(X

t
1)] ∈ R.

Then

Theorem 81 (Variance of U-statistics) (Serfling, 1980, pp. 183)

Var[Unh ] =

 n

d

−1
d∑
t=1

 d

t

 n− d
d− t

 ζt.

Now we can state the asymptotic bound, which branches into two cases depending

on whether ζ1 = 0 or not.

Theorem 82 (CLT 1) (Serfling, 1980, pp. 192) If E[h2] < ∞ and ζ1 > 0, then Unh
converges in distribution to a Gaussian with mean θh and variance d2ζ1/n:

√
n(Unh − θh)

D→ N (0, d2ζ1) as n→∞.
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Theorem 83 (CLT 1) (Serfling, 1980, pp. 194) If E[h2] <∞ and ζ1 = 0 < ζ2, then

n(Unh − θh)
D→ d(d− 1)

2

∞∑
i=1

λi(χ
2
i (1)− 1),

where χ2
i (1) are iid χ2(1) random variables, and λi are the eigenvalues of∫

R
(h2(x1, x2)− θh)Φi(x1)dF (x2) = λiΦi(x1).

Φi are the corresponding eigen-functions.

E.3 Statistics for non-iid observations

In reality, the iid assumption almost never holds. So it is crucial to study the non-iid

setting, which motivates Chapter 4.

Let (Ωn,F ,P)2 be a probability space and {Xi}ni=1 be its associated real valued

stochastic process. If the process is stationary3, we will also assume that the probability

space of X1 to be (Ω,A, P ).

This section again focuses on U-statistics. The definition of U-parameter in Defini-

tion 76 keeps intact. The U-statistics, however, needs to be generalized using stochastic

process.

Definition 84 (U-statistics with stochastic process) Given a U-parameter θh where

h is symmetric, the U-statistic for θh based on the sequence X1, . . . , Xn is

Unh = Uh(X1, . . . , Xn) =

 n

d

−1∑
{h(Xi1 , . . . , Xid) : 1 ≤ i1 < i2 < . . . < id ≤ n} .

To state the convergence and concentration results, some definitions pertaining to

stochastic process is necessary. Intuitively, a stochastic process is “nice” if it is close

to iid, where “closeness” is characterized by concepts such as stationarity, ergodicity,

and in particular quantified by mixing coefficients.

Definition 85 (Ergodic stationary process) A real valued ergodic stationary pro-

cess (ESP) with sample space (Ω,A, P ) is a stochastic sequence (X1, X2, . . .) of form

2Ωn means Ω to the power of n, and P is not necessarily a product measure.
3Stationary means if Ft1,...,tk is a distribution function of the the joint distribution Xt1 , . . . , Xtk ,

then for all k and all τ ∈ Z, we have Ft1,...,tk = Ft1+τ,...,tk+τ .



196 Statistical Estimation and Concentration of Measure

Xk = f ◦T k where T is an ergodic4, probability preserving transformation5 of the prob-

ability space (Ω,A, P ), and f : Ω → R is a measurable function. The marginal of the

ESP is the distribution of X1, and the ESP is called integrable if X1 is integrable, and

bounded if X1 is essentially bounded.

An important characterization of the mixing property for stochastic processes is

the absolute regularity.

Definition 86 (Absolute regularity) A process {Xi}∞i=1 is called absolutely regular

(also known as weak Bernoulli) if limk→∞ βk = 0 where

βk := 2 sup
n

E
B∈An1

[
sup

A∈A∞n+k
|P (A|B)− P (A)|

]
. (E.3)

Here Amn := σ(Xn, . . . , Xm) for n ≤ m, i.e., the σ-algebra generated by {Xi}mi=n6.

Intuitively, absolute regularity implies that for any two possible states of the system

(realizations of the random variable), when given a sufficient amount of time between

the two states, the occurrence of the states is independent. Different notions of mixing

can be derived from different ways of characterizing independence, e.g.:

strong mixing : αk = sup
n

sup
A∈An1

sup
B∈A∞n+k

|P (A ∩B)− P (A)P (B)| → 0 as k →∞

uniformly mixing : φk = sup
n

sup
A∈An1

sup
B∈A∞n+k

|P (B|A)− P (B)| → 0 as k →∞

ψ-mixing : ψk = sup
n

sup
A∈An1

sup
B∈A∞n+k

∣∣∣∣ P (A ∩B)

P (A)P (B)
− 1

∣∣∣∣→ 0 as k →∞.

It is clear that ψk ≥ φk ≥ βk ≥ αk. Under some mild regularity conditions, SLLN and

WLLN can be proved for non-iid observations.

Theorem 87 (SLLN for U-statistics) (Aaronson et al., 1996) Let {Xi}ni=1 be an

ESP with marginal F , and let h : Rd → R be a measurable function bounded by an

F -integrable product7. If any of the following three conditions hold:

1. F is discrete;

4Ergodic transformation means P (T−1(A)4A) = 0 for some A ∈ A only if P (A) = 0 or P (A) = 1.
Here 4 stands for symmetric difference: A4B := (A\B) ∪ (B\A).

5A transformation T : Ω → Ω is called probability preserving if for any set A ∈ A, P (T−1A) =
P (A).

6The σ-algebra generated by a family of real valued random variables {Xi}i∈I is defined to be
the smallest σ-algebra for which all Xi are measurable, i.e., the smallest σ-algebra that contains{
X−1
i (B) : i ∈ I, B ∈ B (the Borel σ-algebra)

}
.

7Meaning that there exist measurable functions fi : R → R with
∫
|fi| dF < ∞, such that

|h(x1, . . . , xd)| ≤
∏d
i=1 fi(xi).
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2. h is continuous at F (d) almost every point;

3. {Xi}ni=1 is absolutely regular.

then

Unh
a.s.→ θh(F ), as n→∞.

Theorem 88 (WLLN for U-statistics) (Borovkova et al., 1999, Thm 1) Let {Xi}ni=1

be a ESP with marginal F , and let h : Rd → R be a measurable function and F (d)-a.e.

continuous. Suppose moreover that the family of random variables {h(Xi1 , . . . , Xid) :

ij ≥ 1 for all 1 ≤ j ≤ d} is uniformly integrable. Then

Unh
P→ θh as n→∞.

In particular this holds, if supi1,...,id E
[
|h(Xi1 , . . . , Xid)|1+δ

]
<∞ for some δ > 0.

Theorem 89 (LLN in moment for U-statistics) (Borovkova et al., 1999, Thm 2)

Let {Xi}ni=1 be a stationary and absolutely regular process with marginal F , and let

h : Rd → R be a measurable function. Suppose moreover that the family of random

variables {h(Xi1 , . . . , Xid) : ij ≥ 1 for all 1 ≤ j ≤ d} is uniformly integrable. Then

Unh
L1→ θh as n→∞.

and hence also in probability.

Theorem 90 (CLT for U-statistics) (Borovkova et al., 2001, Thm 7) Let {Xi}ni=1

be an absolutely regular process with mixing coefficients βk, and let h be a bounded 1-

continuous8 kernel. Suppose the sequences {βk}k≥1, {αk}k≥1 and {φ(αk)}k≥1
9 satisfy

the following summability condition:

∞∑
k=1

k2(βk + αk + φ(αk)) <∞.

Then the series

σ2 = Var(h1(X0))2 + 2
∞∑
k=1

Cov(h1(X0), h1(Xk))

8Definition of p-continuity (Borovkova et al., 2001, Def 2.13): Let {Xi}ni=1 be a stationary stochastic
process. A measurable function g : RI → R is called p-continuous if there exists a function φ : (0,∞)→

(0,∞) with φ(ε) = o(1) as ε → 0 such that E
[∣∣g(ξI1 , ξI2)− g(ξI1 , ξ

′
I2)
∣∣p 1{∥∥∥ξI2−ξ′I2∥∥∥≤ε}

]
≤ φ(ε) holds

for all disjoint index sets I1 and I2 with I1 ∪ I2 = I and for all random vectors ξI1 , ξI2 , ξ′I2 such that
(ξI1 , ξI2) has distribution PXI1

,XI2
or PXI1

× PXI2
and ξ′I2 has the same distribution as XI2 . In our

case, the cardinality of I only needs to be d.
9This φ is from the definition of 1-continuity of h.
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converges absolutely and

√
n(Unh − θh)

D→ N (0, 4σ2), as n→∞.

Here, h1 is defined by Eq (E.2).

It is noteworthy that there is a large amount of literature on the concentration of

measures for iid and non-iid processes. Many more results can be found from, e.g.,

(Ledoux, 2001; Lugosi, 2006), and http://www.stats.org.uk/law-of-large-numbers for an

online literature collection of LLN.

E.4 Mixing coefficients using Markov properties

Most results in the previous sections on non-iid process provide global characterization

of the stochastic process and the estimators, while more useful insights may be derived

by studying the Markov properties of the process (e.g., first order Markov chain). To

this end, we need some mixing coefficients which:

1. Can be decomposed onto the structure of the process, which yields more refined

characterization and tighter bounds.

2. Can be used to bound the concentration of measure.

The η-mixing coefficient introduced by Kontorovich (2007) is a powerful tool for

these two purposes. The main result of concentration is as follows. Let {Xi}1≤i≤n
(Xi ∈ Ω) be a stochastic process defined on the probability space (Ωn,F ,P), and

f : Ωn → R be a function satisfying some Lipschitz condition. Then we have

Pr {|f − Ef | > ε} ≤ 2 exp

(
− ε2

2 ‖f‖2Lip,w ‖4nw‖22

)
, (E.4)

where:

1. Pr is with respect to P.

2. ‖f‖Lip,w is the Lipschitz constant of f with respect to the weighted Hamming

metric dw: dw(x,y) :=
∑n

i=1wiδ(xi 6= yi), where w ∈ Rn with all wi ≥ 0.

Lipschitz constant means that |f(x)− f(y)| ≤ ‖f‖Lip,w · dw(x,y) for any x,y.

3. 4n is the n-by-n η-mixing matrix, which is the focus of following discussion.
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The utility of Eq E.4 relies on bounding ‖f‖Lip,w and ‖4n‖2. Restricting w to

normalized Hamming (i.e.,
∑n

i=1wi = 1 with wi ≥ 0), we have

‖4nw‖22 ≤ n · max
1≤i≤n

(4nw)2
i ≤ n ‖4n‖2∞ .

So the major challenge becomes controlling the quantity ‖4n‖∞, and Kontorovich

(2007) showed that by using the the Markov property of the process, ‖4n‖∞ can be

tightly bounded.

E.4.1 Bounds on ‖4n‖∞ using Markov property

This section collects several important results from (Kontorovich, 2007, Chapter 4).

We start with the definition of 4n.

Definition 91 (η-mixing matrix) (Kontorovich, 2007, Section 3.2.1) Let (Ωn,F ,P)

be a probability space and {Xi}ni=1 be its associated real valued stochastic process. For

1 ≤ i ≤ j ≤ n and x ∈ Ωi, let L(Xn
j |Xi

1 = x) be the law of Xn
j conditioned on Xi

1 = x.

For y ∈ Ωi−1 and w,w′ ∈ Ω, define

ηij(y, w,w
′) :=

∥∥L(Xn
j |Xi

1 = [yw])− L(Xn
j |Xi

1 = [yw′])
∥∥

TV
,

η̄ij := max
y∈Ωi−1

max
w,w′∈Ω

ηij(y, w, w
′),

where ‖·− :‖TV is the total variation distance of two probability measures p and q on

(Ω,A) defined by ‖p− q‖TV := supA∈A |p(A)− q(A)|. Finally, 4n = 4n(P) is defined

as the upper-triangular matrix with (4n)ii = 1 and (4n)ij = η̄ij for 1 ≤ i < j ≤ n.

The key interesting property of ‖4n‖∞ (or η̄ij) is that its upper bound can be much

tightened by utilizing the Markov properties (conditional independence) of the process

(if any). Results below are all directly quoted from (Kontorovich, 2007, Chapter 4).

Markov chains

Let µ be an inhomogeneous Markov measure on Ωn, induced by the kernels p0 and

pi(·|·), 1 ≤ i ≤ n. Thus

µ(x) = p0(x1)

n−1∏
i=1

pi(xi+1|xi).

Define the ith contraction coefficient:

θi = max
y,y′∈Ω

∥∥pi(·|y)− pi(·|y′)
∥∥

TV
; (E.5)
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then

η̄ij ≤ θiθi+1 . . . θj−1. (E.6)

Undirected Markov chains

For any graph G = (V,E), where |V | = n and the maximal cliques have size 2 (are

edges), we can define a measure on Ωn as follows

µ(x) = P(X = x) =

∏
(i,j)∈E ψij(xi, xj)∑

x′∈Ωn
∏

(i,j)∈E ψij(x
′
i, x
′
j)
.

for some ψij ≥ 0. We can relate the induced Markov transition kernel pi(·|·) to the

random field measure µ by:

pi(x|y) =

∑
vi−1
1

∑
zni+2

µ[vyxz]∑
x′∈Ω

∑
vi−1
1

∑
zni+2

µ[vyx′z]
, x, y ∈ Ω

Then one can bound the ith contraction coefficient θi of the Markov chain:

θi = max
y,y′∈Ω

1

2

∑
x∈Ω

|pi(x|y)− pi(x|y)| ≤ Ri − ri
Ri + ri

,

where Ri := maxx,y∈Ω ψi,i+1(x, y) and ri := minx,y∈Ω ψi,i+1(x, y). Eq (E.6) still applies.

Hidden Markov chains

Consider two finite sets Ω̂ (the hidden state space) and Ω (the observed state space).

Let (Ω̂n, µ) be a probability space, where µ is a Markov measure with transition kernels

pi(·|·). Thus for x̂ ∈ Ω̂n, we have:

µ(x̂) = p0(x̂1)
n−1∏
k=1

pk(x̂k+1|x̂k).

Suppose (Ω̂× Ω, ν) is a probability space whose measure ν is defined by

µ(x̂, x) = µ(x̂)

n∏
l=1

ql(xl|x̂l),

where ql(·|x̂l) is a probability measure on Ω for each x̂ ∈ Ω̂ and 1 ≤ l ≤ n. On this prod-

uct space, we define the random process (X̂i, Xi)1≤i≤n, which is clearly Markov. The

marginal projection of (X̂i, Xi) onto Xi results in a random process on the probability
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space (Ωn, ρ), where

ρ(x) = P(X = x) =
∑
x̂∈Ω̂n

ν(x̂, x).

The process (Xi)1≤i≤n with measure ρ is called hidden Markov process, which need

not be Markov to any order. Define the kth contraction coefficient θk by

θk = sup
x̂,x̂′∈Ω̂

∥∥pk(·|x̂)− pk(·|x̂′)
∥∥

TV
.

Then for the hidden Markov process (Xi)1≤i≤n, we have

η̄ij ≤ θiθi+1 . . . θj−1, for 1 ≤ i < j ≤ n.

Markov tree

If Ω is a finite set, a Markov tree measure µ is defined on Ωn by a tree T = (V,E) and

transition kernels p0, {pij(·|·)}(i,j)∈E . Take V = [n] := {1, . . . , n}. The topology of T

and the transition kernels determine the measure µ on Ωn:

µ(x) = p0(x1)
∏

(i,j)∈E

pij(xj |xi). (E.7)

A measure on Ωn satisfying Eq (E.7) for some tree T and {pij} is said to be compatible

with tree T ; a measure is a Markov tree measure if it is compatible with some tree.

Suppose {Xi}i∈N, (Xi ∈ Ω) is a stochastic process defined on (ΩN,P). If for each

n > 0 there is a tree T (n) = ([n], E(n)) and a Markov tree measure µn compatible with

T (n) such that for all x ∈ Ωn we have

P {Xn
1 = x} = µn(x),

then we call X a Markov tree process.

For all (u, v) ∈ E, define (u, v)-contraction coefficient θuv by

θuv = max
y,y′∈Ω

∥∥puv(·|y)− puv(·|y′)
∥∥

TV
.

Suppose max(u,v)∈E θuv ≤ θ < 1 for some θ and the width10 of the tree T is at most

L11. Then for the Markov tree process X we have

η̄ij ≤
(
1− (1− θ)L

)b(j−i)/Lc
, for all 1 ≤ i < j ≤ n.

10The width of a tree is defined as the greatest number of nodes in each level/depth.
11In theory, the root of the tree can be arbitrarily chosen, which does affect the width. However,

the sharpest bound is attained when the choice of root minimizes the width.
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E.5 Concentration of measure with function space

So far, we have characterized random processes by using only one fixed function. How-

ever, machine learning often involves optimization over a space of functions, and hence

it is crucial to study the concentration properties in conjunction with function spaces.

This section will motivate the very fundamentals for iid observations, and the non-iid

case is far from well studied in machine learning.

Suppose the instance space is X and the label space is Y = {−1, 1}. We are given a

sequence of labeled instances (Xi, Yi)1≤i≤n which are assumed to be iid for now. Let P

be a distribution of Zi = (Xi, Yi). Let G be a space of functions g : X → Y from which

we search for an optimal classifier. The selection criteria is to minimize the expected

risk:

R(g) = P {g(X) 6= Y } , (E.8)

which can be estimated by the empirical risk

R̄n(g) =
1

n

n∑
i=1

δ(f(Xi) 6= Yi). (E.9)

Treating δ(g(Xi) 6= Yi) as a function f : X × Y → {0, 1} of Zi = (Xi, Yi), i.e.,

f(Zi) = δ(g(Xi) 6= Yi), then Eq (E.8) and Eq (E.9) can be rewritten as

R(f) = E [f(Z)] and R̄n(f) =
1

n

n∑
i=1

f(Zi). (E.10)

and suppose the corresponding space of f is F . Our goal is to minimize R(f) with

respect to f . But in practice, this can only be accomplished approximately via minimiz-

ing the empirical risk. Let f∗n be the function (classifier/hypothesis) which minimizes

the empirical risk

f∗n = arginf
f∈F

R̄n(f).

A natural question to ask is how much R̄n(f∗n) deviates from R(f∗n). So we study

its upper bound (uniform deviation)

ψ(Zn1 ) = sup
f∈F

∣∣R(f)− R̄n(f)
∣∣ = max

{
sup
f∈F

{
R(f)− R̄n(f)

}
︸ ︷︷ ︸

ψ+(Zn1 )

, sup
f∈F

{
R̄n(f)−R(f)

}
︸ ︷︷ ︸

ψ−(Zn1 )

}
.

We first bound ψ+(Zn1 ), and ψ−(Zn1 ) can be bounded similarly. A standard pro-

cedure which is also taken by Bousquet et al. (2005) is to invoke the McDiarmid’s
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inequality noticing that Zi causes at most 1/n change in ψ+(Zn1 ):

P
{∣∣ψ+(Zn1 )− EZn1 [ψ+(Zn1 )]

∣∣ > ε
}
≤ exp

(
−2nε2)

)
, (E.11)

i.e., with probability at least 1− δ we have

∣∣ψ+(Zn1 )− EZn1 [ψ+(Zn1 )]
∣∣ ≤√ log(1/δ)

2n
. (E.12)

So the problem becomes bounding EZn1 [ψ+(Zn1 )], which can be done by using Rademacher

averages as in (Bousquet et al., 2005).

E.5.1 Rademacher averages

Define n iid binary random variables {σi}ni=1, where each σi has Pr(σi = 1) = Pr(σi =

−1) = 0.5. Then a simple application of Jensen’s inequality yields

EZn1 [ψ+(Zn1 )] = EZn1

[
sup
f∈F

{
E [f(Z)]− 1

n

n∑
i=1

f(Zi)

}]
≤ 2 EZn1

:=Rn(F ,Zn1 )︷ ︸︸ ︷
Eσn1

[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
︸ ︷︷ ︸

:=Rn(F)

,

(E.13)

where Rn(F , Zn1 ) and Rn(F) are the empirical Rademacher average and (population)

Rademacher average respectively (Mendelson, 2003).

Notice that in Rn(F , Zn1 ), the change of Zi again causes at most 1/n variation, so

McDiarmid’s inequality can be applied again. Combining with Eq. (E.12), we conclude

that with probability at least 1− δ:

ψ+(Zn1 ) ≤ 2 Rn(F) +

√
log(1/δ)

2n
and ψ+(Zn1 ) ≤ 2 Rn(F , Zn1 ) +

√
2 log(2/δ)

n
.

As for ψ−(Zn1 ), Eq. (E.12) keeps intact (except changing ψ+(Zn1 ) to ψ−(Zn1 )). It

is also not hard to show that Eq. (E.13) still holds for ψ−(Zn1 ). Since 0 ≤ ψ(Zn1 ) =

max {ψ+(Zn1 ), ψ−(Zn1 )}, we conclude that with probability at least 1− δ:

ψ(Zn1 ) ≤ 2 Rn(F) +

√
log(2/δ)

2n
, (E.14)

ψ(Zn1 ) ≤ 2 Rn(F , Zn1 ) +

√
2 log(4/δ)

n
. (E.15)

The bound in Eq. (E.14) uses Rn(F) which depends solely on the function class

F , and can be bounded via the VC-dimension of F . Bound in Eq. (E.15) is data

dependent, which could be tighter than that in Eq. (E.14) if the samples are “typical”.
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It is interesting to examine Rn(F , Zn1 ) in more depth. First of all, it is independent

of Yi because

σif(Zi) = σiδ(g(Xi) 6= Yi) = δ(g(Xi) 6= σiYi) +
σi − 1

2
,

therefore

Rn(F , Zn1 ) = Eσn1

[
sup
f∈F

1

n

∑
i

δ(g(Xi) 6= σiYi)

]
− 1

2
(E.16)

= Eσn1

[
sup
f∈F

1

n

∑
i

δ(g(Xi) = σiYi)

]
− 1

2
. (E.17)

In effect, σi flips the sign of Yi. The expectation over all σn1 ∈ {−1, 1}n enumerates

all the possible labelings of X1, . . . , Xn. Secondly, Eq. (E.16) shows that for each

labeling one looks for the classifier g which maximizes the classification error. On the

other hand, Eq. (E.17) shows that for each labeling one looks for the classifier g which

maximizes the accuracy. These two interpretations look contradictory, but indeed they

both characterize the complexity of the function space F . Obviously, F ⊆ F ′ implies

Rn(F , Zn1 ) ≤ Rn(F ′, Zn1 ). Therefore, although a larger F lends more possibility in

reducing the empirical risk, the Rademacher average grows and Eq. (E.14) and (E.15)

show the higher risk that the empirical risk deviates from the true expected risk.

In general, f does not need to be restricted to the form of δ(g(Xi) 6= Yi), and it

can map from any space to R.
∑n

i=1 σif(Zi) measures how well the vector/direction

(σ1, . . . , σn) aligns with (f(Z1), . . . , f(Zn)). This alignment is similar to our discussion

in Section BUGBUG. More details can be found in (Bartlett & Mendelson, 2002).

E.5.2 Extension to non-iid observations

Unfortunately, little has been about the deviation ψ(Zn1 ) = supf∈F
∣∣R(f)− R̄n(f)

∣∣
when the process (samples) is non-iid. First, the analog of Eq. (E.11) can be simply

derived from Eq. (E.4):

P {ψ+(Zn1 )− Eψ+(Zn1 ) > ε} ≤ exp

(
− nε2

4 ‖4n‖2∞

)
.

Now the key difficulty is to generalize Eq. (E.13) to the non-iid case, i.e., some kind

of tailoring the definition of Rademacher average to the non-iid process. This is still

an open question. Once this can be done, the bounds in Eq. (E.14) and (E.15) carry

over directly.



Appendix F

Proof for Proposition 44

In this appendix, we give the detailed proof of why the function defined by Eq. (4.13)

is not in the RKHS of k. For self-containedness, we copy to here the definitions in

Proposition 44.

Consider a simple three node chain on R3 with cliques {{Z1, Z2} , {Z2, Z3}},

Z1 Z2 Z3

and let the kernel on the cliques be Gaussian:

kij((zi, zj), (z
′
i, z
′
j)) = exp(−(zi − z′i)2 − (zj − z′j)2) for {i, j} = {1, 2} or {2, 3} ,

and the joint kernel be k12 + k23:

k(z, z′) = k12((z1, z2), (z′1, z
′
2)) + k23((z2, z3), (z′2, z

′
3)).

Pick two functions f12 ∈ H12, f23 ∈ H23, and define f by

f12(x1, x2) := 0,

f23(x2, x3) := k23(0, (z2, z3)) = exp(−z2
2 − z2

3),

f(z) = f(z1, z2, z3) := f12(x1, x2) + f23(x2, x3) = exp(−z2
2 − z2

3).

We show in the rest of the appendix that f is not in H. To this end, we need the

following lemma which will be proved in Section F.3 later.

Lemma 92 Let k be a Gaussian kernel on R2 with RKHS H. If f ∈ H and f(x, y) is

independent of x for all y, then f = 0.

F.1 Finite linear combination

We first show that f(z) is not in the linear span of {k((a, b, c), z) : a, b, c ∈ R}. Other-

wise suppose that f(z) =
∑n

i=1 αik((ai, bi, ci), z), αi ∈ R. Then

205
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f(z) =
n∑
i=1

αik((ai, bi, ci), z) =
n∑
i=1

αik12((ai, bi), (z1, z2))︸ ︷︷ ︸
:=f12(z1,z2)∈H12

+
n∑
i=1

αik23((bi, ci), (z2, z3))︸ ︷︷ ︸
:=f23(z2,z3)∈H23

Since both f(z) and f23 are independent of z1, so is f12. By Lemma 92, we must

have f12 = 0, i.e.,

n∑
i=1

αik12((ai, bi), (z1, z2)) = 0 ∀z1, z2 (F.1)

n∑
i=1

αik23((bi, ci), (z2, z3)) = exp(−z2
2 − z2

3) ∀z2, z3 (F.2)

Integrating out z1, z2 on both sides of Eq. (F.1) throughout R2, we derive
∑

i ai = 0.

Integrating out z2, z3 on both sides of Eq. (F.2) throughout R2, we derive
∑

i ai 6= 0.

Contradiction.

F.2 Limit of linear combination

Next, we need to show that including the limit point of the linear span does not solve

the problem either. Suppose there is a sequence of functions in H:{
fn :=

Nn∑
i=1

αni k((ani , b
n
i , c

n
i ), ·)

}
n∈N

such that fn
H→ f . We rewrite

fn(z1, z2, z3) =

Nn∑
i=1

αni k((ani , b
n
i , c

n
i ), (z1, z2, z3))

=

Nn∑
i=1

αni k12((ani , b
n
i ), (z1, z2))︸ ︷︷ ︸

:=fn12(z1,z2)∈H12

+

Nn∑
i=1

αni k23((bni , c
n
i ), (z2, z3))︸ ︷︷ ︸

:=fn23(z2,z3)∈H23

It is easy to check that ‖fn‖2 = ‖fn12‖2 + ‖fn23‖2. As {‖fn‖}n is bounded, so is

{‖fn12‖}n. Hence {fn12}n must have a cluster point f∗12 ∈ H12, and a subsequence {fnk12 }k
that converges to it. Without loss of generality, we assume that this subsequence is

{fn12}n itself. Similarly, we can assume that {fn23}n converges to f∗23 ∈ H23. In the

limit, we have f∗12(z1, z2) + f∗23(z2, z3) = f(z1, z2, z3). By Lemma 92, we must have
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f∗12 = 0 and f∗23 = exp(−z2
2 − z2

3). In conjunction with Proposition 13, we obtain

uniform convergence

n∑
i=1

αni k12((ani , b
n
i ), (z1, z2))⇒ 0 as n→∞, (F.3)

n∑
i=1

αni k23((bni , c
n
i ), (z2, z3))⇒ exp(−z2

2 − z2
3) as n→∞. (F.4)

Uniform convergence allows us to integrate both sides of Eq. (F.3) and (F.4) through-

out R2, which yields limn→∞
∑n

i=1 α
n
i = 0 and limn→∞

∑n
i=1 α

n
i 6= 0 respectively.

Contradiction.

F.3 Proof of Lemma 92

Finally, we turn to prove Lemma 92. Our proof relies on an important theorem on the

orthonormal basis of real Gaussian RKHS (Steinwart & Christmann, 2008, Theorem

4.42). It requires that the kernel be defined on a domain which contains an open set,

and this is of course true for R2. Applying to our special case, the theorem says for all

f in H, there must exist a double-indexed array b = {bi,j ∈ R}i,j∈N0
, such that

f(z1, z2) =
∑
i,j∈N0

bi,j

√
2i+j

i! · j!z
i
1z
j
2 exp

(
−z2

1 − z2
2

)
, (F.5)

‖b‖22 :=
∑
i,j∈N0

b2i,j <∞, (F.6)

‖f‖H = ‖b‖2 . (F.7)

Denoting ai :=
√

2i

i! , Eq. (F.5) gives:

f(z1, z2) · exp(z2
2) =

∑
i,j∈N0

bi,jaiajz
i
1z
j
2

∞∑
k=0

(−1)kz2k
1

k!

=
∑

i,j,k∈N0

bi,jaiaj
(−1)k

k!
zi+2k

1 zj2,

Since the left hand side is independent of z1, the identity theorem for the power series

on the right hand side implies that the coefficient of zp1z
q
2 be 0 for any p ≥ 1 and q ≥ 0.

This means that for all j ∈ N0, we have:

z0
1z
j
2: coefficient is c0,j := b0,ja0aj ,

z1
1z
j
2: coefficient is c1,j := b1,ja1aj = 0
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z2
1z
j
2: coefficient is b2,ja2aj − b0,ja0aj = 0, hence c2,j := b2,ja2aj = b0,ja0aj = c0,j .

z3
1z
j
2: coefficient is b3,ja3aj − b1,ja1aj = 0, hence c3,j := b3,ja3aj = 0

z4
1z
j
2: coefficient is b4,ja4aj− b2,ja2aj + 1

2b0,ja0aj = 0, hence c4,j := b4,ja4aj = 1
2c0,j .

Letting ck,j := bk,jakaj , we will prove by induction that ck,j = 0 if k is odd, and

c2k,j = 1
k!c0,j for all k ≥ 0.

Suppose c2i−1,j = 0 holds for i = 1, 2, . . . , k. Then we check the coefficient of

z2k+1
1 zj2:

coefficient = b2k+1,ja2k+1aj − b2k−1,ja2k−1aj +
1

2!
b2k−3,ja2k−3aj −

1

3!
b2k−5,ja2k−5aj + . . .

= c2k+1,j − c2k−1,j +
1

2!
c2k−3,j −

1

3!
c2k−5,j + . . .

= 0.

So c2k+1,j = 0.

Now we prove the result for c2k,j . Suppose c2i,j = 1
i!c0,j for all i ≤ k. Then we

check the coefficient of z2k+2
1 zj2:

coefficient = b2k+2,ja2k+2aj − b2k,ja2kaj +
1

2!
b2k−2,ja2k−2aj −

1

3!
b2k−4,ja2k−4aj + . . .

= c2k+2,j − c2k,j +
1

2!
c2k−2,j −

1

3!
c2k−4,j + . . .

= 0.

Hence

c2k+2,j = c2k,j −
1

2!
c2k−2,j +

1

3!
c2k−4,j − . . .

= c0,j ·
(

1

1!

1

k!
− 1

2!

1

(k − 1)!
+

1

3!

1

(k − 2)!
− . . .

)
=
−c0,j

(k + 1)!
·
k+1∑
i=1

(−1)i
(
k + 1

i

)
=

c0,j

(k + 1)!
,

where the last step is based on the binomial expansion of (1 − 1)k+1. Now we check

the square norm of f : ‖f‖2H =
∑

i,j b
2
i,j . First fix j ∈ N0, we have

∑
i∈N0

b2i,j =
c2

0,j

a2
j

∞∑
i=0

(2i)!

(i!)222i
. (F.8)

Unfortunately, the series diverges, which can be seen by using exactly the same ar-

gument in the proof of (Steinwart & Christmann, 2008, Theorem 4.42): denote αi :=
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(2i)!
(i!)222i

, then

αi+1

αi
=

2i+ 1

2i+ 2
>

i

i+ 1
,

for all i ≥ 1. So iαi is an increasing positive sequence, and therefore there exists a

positive constant C such that αi ≥ C
i for all i ≥ 1. Hence

∑∞
i=0 αi = ∞. Since

‖f‖ < ∞ and 0 < aj < ∞ for fixed j, Eq. (F.8) requires that c0,j = 0 for all j ∈ N0,

which means bi,j = 0 for all i, j ∈ N0. So f = 0.
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Appendix G

Incomplete Cholesky

Decomposition for HSIC-Struct

With T observations and a ω × ω mixing matrix M , a näıve implementation of (4.27)

costs O(T 2ω2) computations and O(T 2) memory to obtain K?. This is beyond normal

capacity in computation and storage when T is large (e.g., 67000 in our experiment).

We resort to a low rank approximation of kernel matrix K? via incomplete Cholesky

decomposition Bach & Jordan (2002), i.e. approximating K? by PP> where matrix

P is T × D with D � T . At each iteration d (1 ≤ d ≤ D), one column of K? is

needed which costs O(Tω2), and the update of P costs O(Td). So the total cost is

O(TDω2 + TD2) for computation and O(TD) for storage. The short Matlab routine

for incomplete Cholesky decomposition is given below:

Input:

Kstar : a n-by-n positive semi-definite matrix (we will only

query a small fraction of its elements)

max_d : the maximum rank of the approximating matrix P

tol : the approximation tolerance

Output:

A matrix P (n-by-d) such that PP’ approximates K.

Either d = max_d, or the approximation error is below tol.

d = 0;

I = [];

n = size(Kstar, 1); % Kstar matrix is sized n-by-n

*buf = the diagonal of Kstar (n-by-1 vector);

sum_buf = sum(buf);

[nu, I(j+1)] = max(buf);

P = zeros(1, n);
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while (sum_buf > tol && d < max_d)

d = d + 1;

nu = nu^(0.5);

* K_col = the I(j)-th column of Kstar;

P(:, d) = ( K_col - P * P( I(d), : )’ ) ./ nu;

buf = buf - P(:, d).^ 2;

[nu, I(d+1)] = max(buf);

sum_buf = sum(buf);

end

In the two steps marked with (?), we either need a column or a diagonal of the

matrix. For K? = K ?M (K convolved with M), each element K?
st only depends on

ω × ω values in K. This locality property of the convolution operation is critical for

our efficient approximation algorithm to work.



Appendix H

Detailed proof for Theorem 57

For self-containedness, we repeat the notation used by Teo et al. (2010):

at ∈ ∂wRemp(wt−1)

bt = Remp(wt−1)− 〈wt−1, at〉
At = (a1, . . . , at)

b̄t = (b1, . . . , bt)

Rcp
t (w) = max

1≤i≤t
〈w, ai〉+ bi

Jt(w) = λΩ(w) +Rcp
t (w)

J∗t (α) = λΩ∗(−λ−1A>t α)− b̄tα
wt = argmin

w
Jt(w)

αt = argmin
α∈∆t

J∗t (α).

Note the dual connection is wt = −λ−1Atαt.

In line search BMRM, the inner optimization problem

J∗t (α) = λΩ(−λ−1Atα)− b̄tα,

is subject to α = α(η) =
(
ηα>t−1, 1− η

)>
with η ∈ [0, 1]. Let ηt = argmin J∗t (α(η)),

and αt = α(ηt). With some abuse of notation, we write J∗t (η) = J∗t (α(η)).

H.1 Example Dataset and Initial Few Steps

Consider the following training examples in 1-d space. Let xi ∈ R be features and

yi ∈ {−1, 1} be labels. Pick (x1, y1) = (1, 1), (x2, y2) = (−1,−1), (x3, y3) = (1
2 , 1), and
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(x4, y4) = (−1
2 ,−1). Set λ = 1

16 . Then the objective function of SVM is:

J(w) =
1

32
w2 +

1

2
[1− w]+ +

1

2

[
1− w

2

]
+
. (H.1)

First we confirm that the optimal solution is w∗ = 2. This can be seen by checking

the subgradient of J(w) at w∗ = 2:

∂J(2) =
1

16
2− 1

2

1

2
[0, 1] ⇒ 0 ∈ ∂J(2).

And J(w∗) = 1
8 . Now the dual connection is wt = −16Atαt, and J∗t (α) = 8 ‖Atα‖2 −

b̄tα.

Let w0 = 0. We now do a few iterations.

Step 1 A1 = a1 =
(
−3

4

)
, b̄1 = b1 = 1, α1 = 1, w1 = −16−3

4 1 = 12.

Step 2 a2 = 0, A2 =
(
−3

4 , 0
)
, b2 = 0, b̄2 = (1, 0). Let α = (η, 1− η)>. Then

J∗2 (η) = 8

(
−3

4
η

)2

− η =
9

2
η2 − η

⇒ η2 = argmin
η∈[0,1]

J∗2 (η) =
1

9
, α2 =

(
1

9
,
8

9

)
, w2 = −16

−3

4

1

9
=

4

3
∈ (1, 2).

Step 3 a3 = −1
4 , A3 =

(
−3

4 , 0,−1
4

)
, b3 = 1

2 , b̄3 = (1, 0, 1
2). Let α =

(
1
9η,

8
9η, 1− η

)>
.

Then

J∗3 (η) = 8

(
−3

4

1

9
η − 1

4
(1− η)

)2

− 1

9
η − 1

2
(1− η) =

2

9
η2 − 5

18
η

⇒ η3 = argmin
η∈[0,1]

J∗3 (η) =
5

8
, α3 =

(
5

72
,
5

9
,
3

8

)>
, w3 = −16

(−3

4

5

72
+
−1

4

3

8

)
=

7

3
> 2.

Step 4 a4 = 0, A4 =
(
−3

4 , 0,−1
4 , 0
)
, b4 = 0, b̄4 = (1, 0, 1

2 , 0). Let α =
(

5
72η,

5
9η,

3
8η, 1− η

)>
.

Then

J∗4 (η) = 8

(
−3

4

5

72
η − 1

4

3

8
η

)2

− 5

72
η − 1

2

3

8
η =

49

288
η2 − 37

144
η

⇒ η4 = argmin
η∈[0,1]

J∗4 (η) =
37

49
, α4 =

(
185

3528
,
185

441
,
111

392
,
12

49

)>
,

w4 = −16

(−3

4

185

3528
+
−1

4

111

392

)
=

37

21
∈ (1, 2).
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Step 5 a5 = −1
4 , b5 = 1.

In general, if wt−1 ∈ (1, 2), then at = −1
4 , and bt = 1. If wt−1 > 2, then at = 0,

and bt = 0. As we have seen, wt ∈ (1, 2) for t being even, and wt > 2 for t being odd.

We will show that this is true indeed: wt oscillates around 2 and approaches 2 in both

directions.

H.2 Asymptotic Rates

Theorem 93 gives recursive formulae of wt and αt,1 (the first element of αt).

Theorem 93 (Theorem 59 in text) For k ≥ 1, we have

w2k+1 = 2
w3

2k−1 + 12α2k−1,1w
2
2k−1 + 16w2k−1α

2
2k−1,1 − 64α3

2k−1,1

w2k−1 (w2k−1 + 4α2k−1,1)2 > 2, (H.2)

α2k+1,1 =
w2

2k−1 + 16α2
2k−1,1

(w2k−1 + 4α2k−1,1)2α2k−1,1, (H.3)

w2k = 2− 8α2k−1,1

w2k−1
∈ (1, 2). (H.4)

(H.2) and (H.3) provide recursive formulae to compute w2k+1 and α2k+1,1 based on

w2k−1 and α2k−1,1, and (H.4) gives w2k.

The proof will be given in the section H.3. By (H.2) and (H.4), we have:

2− w2k = 8
α2k−1,1

w2k−1
(H.5)

w2k+1 − 2 = 8
α2k−1,1(w2k−1 − 4α2k−1,1)

w2k−1(w2k−1 + 4α2k−1,1)
. (H.6)

BMRM guarantees

lim
k→∞

wk = 2, hence lim
k→∞

α2k−1,1 = 0.

We will show in Theorem 94 that α2k−1,1 tends to 0 at the rate of 1/k, and hence

by (H.5) and (H.6), |2− wk| approaches 0 at the same rate. This further implies, as

will be shown in Theorem 95, that J(wk)− J(w∗) goes to 0 at the rate of 1/k as well.

Theorem 94 (Theorem 58 in text) limk→∞ kα2k−1,1 = 1
4 . Hence by (H.5) and

(H.6), we have limk→∞ k |2− wk| = 2.
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Proof The proof is based on (H.3). Let βk = 1/α2k−1,1, then limk→∞ βk =∞ because

limk→∞ α2k−1,1 = 0. Now

lim
k→∞

kα2k−1,1 =

(
lim
k→∞

1

kα2k−1,1

)−1

=

(
lim
k→∞

βk
k

)−1

=

(
lim
k→∞

βk+1 − βk
)−1

,

where the last step is by the discrete version of L’Hospital’s rule1.

limk→∞ βk+1 − βk can be computed by plugging definition βk = 1/α2k−1,1 into

(H.3), which gives:

1

βk+1
=

w2
2k + 16 1

β2
k(

w2k + 4 1
βk

)2

1

βk
⇒ βk+1 − βk = 8

w2kβ
2
k

w2
2kβ

2
k + 16

= 8
w2k

w2
2k + 16

β2
k

.

Since limk→∞wk = 2 and limk→∞ βk =∞, so

lim
k→∞

kα2k−1,1 =

(
lim
k→∞

βk+1 − βk
)−1

=
1

4
.

Theorem 95 (Theorem 57 in text) limk→∞ k(J(wk)− J(w∗)) = 1
4 .

Proof Let εk = 2− wk, then limk→∞ k |εk| = 2 by Theorem 94.

If εk > 0, then J(wk)− J(w∗) = 1
32(2− εk)2 + 1

2
εk
2 − 1

8 = 1
8εk + 1

32ε
2
k = 1

8 |εk|+ 1
32ε

2
k.

If εk ≤ 0, then J(wk)− J(w∗) = 1
32(2− εk)2 − 1

8 = −1
8εk + 1

32ε
2
k = 1

8 |εk|+ 1
32ε

2
k.

Combining these two cases, we conclude limk→∞ k(J(wk)− J(w∗)) = 1
4 .

H.3 Proof of Theorem 93

We prove Theorem 93 by induction. Obviously, Theorem 93 holds for k = 1. Suppose

Theorem 93 holds for indices up to some k − 1 (k ≥ 2). Let p = 2k − 1 (p ≥ 3). Then

Ap =

(
−3

4
, 0,−1

4
, . . . , 0,−1

4

)
, b̄p =

(
1, 0,

1

2
, . . . , 0,

1

2

)
.

1http://hermes.aei.mpg.de/arxiv/05/04/034/article.xhtml
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So

wp = −16Apαp = (−16)

(
−3

4
αp,1 −

1

4
αp,3 −

1

4
αp,5 − . . .−

1

4
αp,p−2 −

1

4
αp,p

)
⇒ αp,3 + . . .+ αp,p−2 + αp,p =

wp
4
− 3αp,1.

So

b̄pαp = αp,1 +
1

2
αp,3 +

1

2
αp,5 + . . .+

1

2
αp,p−2 +

1

2
αp,p =

1

8
wp −

1

2
αp,1

Since wp > 2, so ap+1 = 0, bp+1 = 0. So Ap+1 = (Ap, 0), b̄p+1 =
(
b̄p, 0

)
. Let

αp+1 = (ηαp, 1− η), then J∗p+1(η) = 8η2(A>p αp)
2 − ηb̄pαp. So

ηp+1 =
b̄pαp

16 (Apαp)
2 =

2wp − 8αp,1
w2
p

, (H.7)

wp+1 = −16Apαpηp+1 = wpηp+1 = 2− 8αp,1
wp

< 2.

Since α2,1 = 1
9 , p ≥ 3, and αk,1 ≥ αk+1,1 due to the update rule of ls-bmrm, we have

8αp,1 ≤
8

9
< 2 < wp, (H.8)

hence wp+1 > 1.

Next step, since wp+1 ∈ (1, 2), so ap+2 = −1
4 , bp+2 = 1

2 , Ap+2 =
(
Ap, 0,−1

4

)
,

b̄p+1 =
(
b̄p, 0,

1
2

)
. Let αp+2(η) = (ηηp+1αt, η(1− ηp+1), 1− η). Then

Ap+2αp+2 = ηηp+1Apαp −
1

4
(1− η), b̄p+2αp+2 = ηηp+1b̄pαp +

1

2
(1− η).

So

J∗p+2(η) = 8(Ap+2αp+2)2 − b̄p+2αp+2

=
1

2

(
4ηp+1Apαp + 1

)2
η2 −

(
4ηp+1Apαp + ηp+1b̄pαp +

1

2

)
η + const,

where the const means terms independent of η. So

ηp+2 = argmin
η∈[0,1]

J∗p+2(η) =
4ηp+1Apαp + ηp+1b̄pαp + 1

2(
4ηp+1Apαp + 1

)2
η2
p+1

=
w2
p + 16α2

p,1

(wp + 4αp,1)2 . (H.9)
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and

wp+2 = −16Ap+2αp+2 = −16ηp+2ηp+1Apαp + 4(1− ηp+2)

= 2
w3
p + 12αp,1w

2
p + 16wpα

2
p,1 − 64α3

p,1

wp (wp + 4αp,1)2 ,

where the last step is by plugging (H.7) and (H.9). Now check

wp+2 − 2 =
8αp,1(wp − 4αp,1)

wp(wp + 4αp,1)
> 0,

where the last step is due to (H.8).
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Hiriart-Urruty, J., & Lemaréchal, C. (1993a). Convex Analysis and Minimization Al-

gorithms, I and II, vol. 305 and 306. Springer-Verlag.
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