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Abstract

Sparse learning models typically combine a smooth loss with a nonsmooth
penalty, such as trace norm. Although recent developments in sparse approxi-
mation have offered promising solution methods, current approaches either apply
only to matrix-norm constrained problems or provide suboptimal convergence
rates. In this paper, we propose a boosting method for regularized learning that
guarantees ε accuracy withinO(1/ε) iterations. Performance is further accelerated
by interlacing boosting with fixed-rank local optimization—exploiting a simpler
local objective than previous work. The proposed method yields state-of-the-art
performance on large-scale problems. We also demonstrate an application to la-
tent multiview learning for which we provide the first efficient weak-oracle.

1 Introduction
Our focus in this paper is on unsupervised learning problems such as matrix factorization or latent
subspace identification. Automatically uncovering latent factors that reveal important structure in
data is a longstanding goal of machine learning research. Such an analysis not only provides un-
derstanding, it can also facilitate subsequent data storage, retrieval and processing. We focus in
particular on coding or dictionary learning problems, where one seeks to decompose a data matrix
X into an approximate factorization X̂ = UV that minimizes reconstruction error while satisfying
other properties like low rank or sparsity in the factors. Since imposing a bound on the rank or
number of non-zero elements generally makes the problem intractable, such constraints are usually
replaced by carefully designed regularizers that promote low rank or sparse solutions [1–3].

Interestingly, for a variety of dictionary constraints and regularizers, the problem is equivalent to
a matrix-norm regularized problem on the reconstruction matrix X̂ [1, 4]. One intensively studied
example is the trace norm, which corresponds to bounding the Euclidean norm of the code vectors in
U while penalizing V via its L21 norm. To solve trace norm regularized problems, variational meth-
ods that optimize over U and V only guarantee local optimality, while proximal gradient algorithms
that operate on X̂ [5, 6] can achieve an ε accurate (global) solutions inO(1/

√
ε) iterations, but these

require singular value thresholding [7] at each iteration, preventing application to large problems.

Recently, remarkable promise has been demonstrated for sparse approximation methods. [8] con-
verts the trace norm problem into an optimization over positive semidefinite (PSD) matrices, then
solves the problem via greedy sparse approximation [9, 10]. [11] further generalizes the algorithm
from trace norm to gauge functions [12], dispensing with the PSD conversion. However, these
schemes turn the regularization into a constraint. Despite their theoretical equivalence, many practi-
cal applications require the solution to the regularized problem, e.g. when nested in another problem.

In this paper, we optimize the regularized objective directly by reformulating the problem in the
framework of `1 penalized boosting [13, 14], allowing it to be solved with a generalized procedure
developed in Section 2. Each iteration of this procedure calls an oracle to find a weak hypothesis
∗Xinhua Zhang is now working at Machine Learning Group of National ICT Australia (NICTA).
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(typically a rank-one matrix) yielding the steepest local reduction of the (unregularized) loss. The
associated weight is then determined by accounting for the `1 regularization. Our first key contri-
bution is to establish that, when the loss is convex and smooth, the procedure finds an ε accurate
solution within O(1/ε) iterations, and furthermore that the rate can be improved to O(log(1/ε))
when the loss is also strongly convex. To the best of our knowledge, these are the first O(1/ε) ob-
jective value rates that have been rigorously established for `1 regularized boosting. [15] considered
a similar boosting approach, but required totally corrective updates. In addition, their rates char-
acterize the diminishment of the gradient, and are O(1/ε2) as opposed to O(1/ε) established here.
[9–11, 16–18] establish similar rates, but only for the constrained version of the problem.

We also show in Section 3 how the empirical performance of `1 penalized boosting can be greatly im-
proved by introducing an auxiliary rank-constrained local-optimization within each iteration. Inter-
lacing rank constrained optimization with sparse updates has been shown effective in semi-definite
programming [19–21]. [22] applied the idea to trace norm optimization by factoring the reconstruc-
tion matrix into two orthonormal matrices and a positive semi-definite matrix. Unfortunately, this
strategy creates a very difficult constrained optimization problem, compelling [22] to resort to man-
ifold techniques. Instead, we use a simpler variational representation of matrix norms that leads to
a new local objective that is both unconstrained and smooth. This allows the application of much
simpler and much more efficient solvers to greatly accelerate the overall optimization.

Underlying standard sparse approximation methods is an oracle that efficiently selects a weak hy-
pothesis (using boosting terminology). Unfortunately these oracle problems are extremely challeng-
ing except in limited cases [3, 11]. Our next major contribution, in Section 4, is to formulate an
efficient oracle for latent multiview factorization models [2, 4], based on a positive semi-definite
relaxation that we prove incurs no gap.

Finally, we point out that our focus in this paper is on the optimization of convex problems that relax
the “hard” rank constraint. We do not explicitly minimize the rank, which is different from [23].
Notation We use γK to denote the gauge induced by set K; ‖·‖∗ to denote the dual norm of ‖·‖;
and ‖·‖F , ‖·‖tr and ‖·‖sp to denote the Frobenius norm, trace norm and spectral norm respectively.
‖X‖R,1 denotes the row-wise norm

∑
i ‖Xi:‖R, while 〈X,Y 〉 := tr(X ′Y ) denotes the inner prod-

uct. The notation X < 0 will denote positive semi-definite; X:i and Xi: stands for the i-th column
and i-th row of matrix X; and diag {ci} denotes a diagonal matrix with the (i, i)-th entry ci.

2 The Boosting Framework with `1 Regularization
Consider a coding problem where one is presented an n×mmatrix Z, whose columns correspond to
m training examples. Our goal is to learn an n×k dictionary matrix U , consisting of k basis vectors,
and a k ×m coefficient matrix V , such that UV approximates Z under some loss L(UV ). We sup-
press the dependence on the data Z throughout the paper. To remove the scaling invariance between
U and V , it is customary to restrict the bases, i.e. columns of U , to the unit ball of some norm ‖·‖C .
Unfortunately, for a fixed k, this coding problem is known to be computationally tractable only for
the squared loss. To retain tractability for a variety of convex losses, a popular and successful recent
approach has been to avoid any “hard” constraint on the number of bases, i.e. k, and instead impose
regularizers on the matrix V that encourage a low rank or sparse solution.

To be more specific, the following optimization problem lies at the heart of many sparse learning
models [e.g. 1, 3, 4, 24]:

min
U :‖U:i‖C≤1

min
Ṽ

L(UṼ ) + λ‖Ṽ ‖R,1, (1)

where λ > 0 specifies the tradeoff between loss and regularization. The ‖·‖R norm in the block R-1
norm provides the flexibility of promoting useful structures in the solution, e.g. `1 norm for sparse
solutions, `2 norm for low rank solutions, and block structured norms for group sparsity. To solve
(1), we first reparameterize the rows of Ṽ by Ṽi: = σiVi:, where σi ≥ 0 and ‖Vi:‖R ≤ 1. Now (1)
can be reformulated by introducing the reconstruction matrix X := UṼ :

(1) = min
X

L(X) + λ min
U,Ṽ :‖U:i‖C≤1,UṼ=X

‖Ṽ ‖R,1 = min
X

L(X) + λ min
σ,U,V :σ≥0,UΣV=X

∑
i

σi, (2)

where Σ = diag{σi} and we omitted the norm constraints on U and V in the last minimization. (2)
is illuminating in two folds. First it reveals that the regularizer essentially seeks a rank-one decom-
position of the reconstruction matrix X , and penalizes the `1 norm of the combination coefficients
as a proxy of the “rank”. Secondly, the regularizer in (2) is now expressed precisely in the form of
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Algorithm 1: The vanilla boosting algorithm.
Require: The weak hypothesis set A in (3).

1: Set X0 = 0, s0 = 0.
2: for k = 1, 2, . . . do
3: Hk ← argmin

H∈A
〈∇L(Xk−1), H〉.

4: (ak, bk)←
argmin
a≥0,b≥0

L(aXk−1+bHk) + λ(ask+b).

5: σ
(k)
i ← akσ

(k−1)
i , A(k)

i ← A
(k−1)
i , ∀ i < k

σ
(k)
k ← bk, A(k)

k ← Hk.

6: Xk ←
∑k
i=1 σ

(k)
i A

(k)
i = akXk−1+bkHk,

sk ←
∑k
i=1 σ

(k)
i = aksk−1 + bk.

7: end for

Algorithm 2: Boosting with local search.
Require: A set of weak hypotheses A.

1: Set X0 = 0, U0 = V0 = Λ0 = [ ], s0 = 0.
2: for k = 1, 2, . . . do
3: (uk,vk)← argmin

uv′∈A
〈∇L(Xk−1),uv′〉.

4: (ak, bk)←
argmin
a≥0,b≥0

L(aXk−1+bukv
′
k)+λ(ask+b).

5: Uinit ← (Ûk−1

√
akΛk−1,

√
bkuk),

Vinit ← (
√
akΛk−1V̂k−1,

√
bkvk)′.

6: Locally optimize g(U, V ) with initial
value (Uinit, Vinit). Get a solution (Uk,Vk).

7: Xk←UkVk, Λk←diag{‖U:i‖C‖Vi:‖R},
sk ← 1

2

∑k
i=1(‖U:i‖2C + ‖Vi:‖2R).

8: end for

the gauge function γK induced by the convex hull K of the set1

A = {uv′ : ‖u‖C ≤ 1, ‖v‖R ≤ 1}. (3)

Since K is convex and symmetric (−K = K), the gauge function γK is in fact a norm, hence the
support function of A defines the dual norm ||| · ||| (see e.g. [25, Proposition V.3.2.1]):
|||Λ||| := max

X∈A
tr(X ′Λ) = max

u,v:‖u‖C≤1,‖v‖R≤1
u′Λv = max

u:‖u‖C≤1
‖Λ′u‖∗R = max

v:‖v‖R≤1
‖Λv‖∗C , (4)

and the gauge function γK is simply its dual norm ||| · |||∗. For example, when ‖ · ‖R = ‖ · ‖C = ‖ · ‖2,
we have ||| · ||| = ‖ · ‖sp, so the regularizer (as the dual norm) becomes ‖ · ‖tr. Another special
case of this result was found in [4, Theorem 1], where again ‖ · ‖R = ‖ · ‖2 but ‖ · ‖C is more
complicated than ‖ · ‖2. Note that the original proofs in [1, 4] are somewhat involved. Moreover,
this gauge function framework is flexible enough to subsume a number of structurally regularized
problems [11, 12], and it is certainly possible to devise other ‖ · ‖R and ‖ · ‖C norms that would
induce interesting matrix norms.

The gauge function framework also allows us to develop an efficient boosting algorithm for (2), by
resorting to the following equivalent problem:
{σ∗i , A∗i } := argmin

σi≥0,Ai∈A
f({σi, Ai}), where f({σi, Ai}) := L

(∑
i

σiAi

)
+ λ

∑
i

σi. (5)

The optimal solution X∗ of (2) can be easily recovered as
∑
iσ
∗
iA
∗
i . Note that in the boosting

terminology, A corresponds to the set of weak hypotheses.

2.1 The boosting algorithm
To solve (5) we propose the boosting strategy presented in Algorithm 1. At each iteration, a weak
hypothesis Hk that yields the most rapid local decrease of the loss L is selected. Then Hk is com-
bined with the previous ensemble by tuning its weights to optimize the regularized objective. Note
that in step 5 all the weak hypotheses selected in the previous steps are scaled by the same value.

As the `1 regularizer requires the sum of all the weights, we introduce a variable sk that recursively
updates this sum in step 6. In addition, Xk is used only in step 3 and 4, which do not require its
explicit expansion in terms of elements of A. Therefore this expansion of Xk does not need to be
explicitly maintained and step 5 is included only for conceptual clarity.

2.2 Rates of convergence
We prove the convergence rate of Algorithm 1, under the standard assumption:
Assumption 1 L is bounded from below and has bounded sub-level sets. The problem (5) admits
at least one minimizer. L is differentiable and satisfies the following inequality for all η ∈ [0, 1] and
A,B in the sub-level set of f(0): L((1− η)A+ ηB) ≤ L(A) + η 〈B −A,∇L(A)〉+ CLη

2

2 . Here
CL > 0 is a finite constant that depends only on L.

1Recall that the gauge function γK is defined as γK(X) := inf{
∑
i σi :

∑
i σiAi =X, Ai∈K, σi ≥ 0}.
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Theorem 1 (Rates of convergence) Under Assumption 1, Algorithm 1 finds an ε accurate solution
to (5) in O(1/ε) steps. More precisely, denoting f∗ as the minimum of (5), then

f({σ(k)
i , A

(k)
i })− f

∗ ≤ 4CL
k + 2

. (6)

The proof is given in Appendix A. Note that the rate is independent of the regularization constant λ.

In the proof we fix the variable a in step 4 of Algorithm 1 to be simply 2
k+2 ; it should be clear that

setting a by line search will only accelerate the covergence. An even more aggressive scheme is the
totally corrective update [15], which in step 4 finds the weights for all A(k)

i ’s selected so far:

min
σi≥0

L

(
k∑
i=1

σiA
(k)
i

)
+ λ

k∑
i=1

σi. (7)

But in this case we will have to explicitly maintain the expansion of Xt in terms of the A(k)
i ’s.

For boosting without regularization, the 1/ε rate of convergence is known to be optimal [26]. We
conjecture that 1/ε is also a lower bound for regularized boosting.

If the loss L is furthermore strongly convex, then the convergence rate can be tightened to linear.
Theorem 2 Suppose Assumption 1 holds and L is furthermore strongly convex with modulus µ. Let
{σ∗i , A∗i } be a minimzer of (5) and denote f∗ := f({σ∗i , A∗i }), s∗ :=

∑
i σ
∗
i . Then the totally

corrective algorithm converges at least linearly. More precisely

f({σ(k)
i , A

(k)
i })− f

∗ ≤
(

1−min

{
1

2
,

2µ(s∗)2

m2CL

})k
(f({0,0})− f∗), (8)

where m is the number of non-zeros in {σ∗i }. (The proof is given in Appendix B.)

Extensions Our proof technique allows the regularizer to be generalized to the form h(γK(X)),
where h is a convex non-decreasing function over [0,∞). In (5), this replaces

∑
i σi with h(

∑
i σi).

By taking h(x) as an indicator h(x) = {0 if x ≤ 1;∞ otherwise}, all of our rates can be straight-
forwardly translated into the constrained setting.

3 Local Optimization with Fixed Rank
In Algorithm 1, Xk is determined by searching in the conic hull of Xk−1 and Hk.2 Suppose there
exists some auxiliary procedure that allowsXk to be further improved somehow into Yk (e.g. by local
greedy search), then the overall optimization can benefit from it. The only challenge, nevertheless,
is how to restore the “context” from Yk, especially the bases Ai and their weights σi.

In particular, suppose we have an auxiliary function g and the following procedure is feasible:

1. Initialization: given an ensemble {σi, Ai}, there exists a S such that g(S) ≤ f({σi, Ai}).

2. Local optimization: some (local) optimizer can find a T such that g(T ) ≤ g(S).

3. Recovery: one can recover an ensemble {βi, Bi : βi ≥ 0, Bi ∈ A} such that g(T ) ≥ f({βi, Bi}).

Then obviously the new ensemble {βi, Bi} improves upon {σi, Ai}. This local search scheme can
be easily embedded into Algorithm 1 as follows. After step 5, initialize S by {σ(k)

i , A
(k)
i }. Perform

local optimization and recover {βi, Bi}. Then replace step 6 by Xk =
∑
i βiBi and sk =

∑
i βi.

All rates of convergence will directly carry over. However, the major challenge here is the potentially
expensive step of recovery because little assumption or constraint is made on T .

Fortunately, a careful examination of Algorithm 1 reveals that a complete recovery of {βi, Bi} is not
required. Indeed, only two “sufficient statistics” are needed: Xk and sk, and therefore it suffices to
recover them only. Next we will show how this can be accomplished efficiently in (2) . Two simple
propositions will play a key role. Both proofs can be found in Appendix C.

Proposition 1 For the gauge γK induced by K, the convex hull of A in (3), we have

γK(X) = min
U,V :UV=X

1

2

∑
i

(
‖U:i‖2C + ‖Vi:‖2R

)
. (9)

2 This does not mean Xk is a minimizer of L(X) + λγK(X) in that cone, because the bases are not
optimized simultaneously. Incidently, this also shows why working with (5) turns out to be more convenient.
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If ‖·‖R = ‖·‖C = ‖ · ‖2, then γK becomes the trace norm (as we saw before), and
∑
i(‖U:i‖2C +

‖Vi:‖2R) is simply ‖U‖2F + ‖V ‖2F . Then Proposition 1 is a well-known variational form of the trace
norm [27]. This motivates us to choose the auxiliary function as

g(U, V ) = L(UV ) +
λ

2

∑
i

(
‖U:i‖2C + ‖Vi:‖2R

)
. (10)

Proposition 2 For any U ∈Rm×k and V∈Rk×n, there exist σi≥0, ui∈Rm, and vi∈Rn such that

UV =

k∑
i=1

σiuiv
′
i, ‖ui‖C ≤ 1, ‖vi‖R ≤ 1,

k∑
i=1

σi =
1

2

k∑
i=1

(
‖U:i‖2C + ‖Vi:‖2R

)
. (11)

Now we can specify concrete details for local optimization in the context of matrix norms:

1. Initialize: given {σi ≥ 0,uiv
′
i ∈ A}ki=1, set (Uinit, Vinit) to satisfy g(Uinit, Vinit) = f({σi,uiv′i}):

Uinit = (
√
σ1u1, . . . ,

√
σkuk), and Vinit = (

√
σ1v1, . . . ,

√
σkvk)′. (12)

2. Locally optimize g(U, V ) with initialization (Uinit, Vinit), to obtain a solution (U∗, V ∗).

3. Recovery: use Proposition 2 to (conceptually) recover {βi, ûi, v̂i} from (U∗, V ∗).

The key advantage of this procedure is that Proposition 2 allows Xk and sk to be computed directly
from (U∗, V ∗), keeping the recovery completely implicit:

Xk =

k∑
i=1

βiûiv̂
′
i = U∗V ∗, and sk =

k∑
i=1

σi =
1

2

k∑
i=1

(
‖U∗:i‖

2
C + ‖V ∗i: ‖

2
R

)
. (13)

In addition, Proposition 2 ensures that locally improving the solution does not incur an increment
in the number of weak hypotheses. Using the same trick, the (Uinit, Vinit) in (12) for the (k + 1)-th
iteration can also be formulated in terms of (U∗, V ∗). Different from the local optimization for
trace norm in [21] which naturally works on the original objective, our scheme requires a nontrivial
(variational) reformulation of the objective based on Propositions 1 and 2.

The final algorithm is summarized in Algorithm 2, where Û and V̂ in step 5 denote the column-wise
and row-wise normalized versions of U and V , respectively. Compared to the local optimization
in [22], which is hampered by orthogonal and PSD constraints, our (local) objective in (10) is un-
constrained and smooth for many instances of ‖·‖C and ‖·‖R. This is plausible because no other
constraints (besides the norm constraint), such as orthogonality, are imposed on U and V in Propo-
sition 2. Thus the local optimization we face, albeit non-convex in general, is more amenable to
efficient solvers such as L-BFGS.

Remark Consider if one performs totally corrective update as in (7). Then all of the coefficients
and weak hypotheses from (U∗, V ∗) have to be considered, which can be computationally expen-
sive. For example, in the case of trace norm, this leads to a full SVD on U∗V ∗. Although U∗ and V ∗
usually have low rank, which can be exploited to ameliorate the complexity, it is clearly preferable
to completely eliminate the recovery step, as in Algorithm 2.

4 Latent Generative Model with Multiple Views
Underlying most boosting algorithms is an oracle that identifies the steepest descent weak hypothesis
(step 3 of Algorithm 1). Approximate solutions often suffice [8, 9]. When ‖·‖R and ‖·‖C are both
Euclidean norms, this oracle can be efficiently computed via the leading left and right singular vector
pair. However, for most other interesting cases like low rank tensors, such an oracle is intractable
[28]. In this section we discover that for an important problem of multiview learning, the oracle can
be surprisingly solved in polynomial time, yielding an efficient computational strategy.

Multiview learning analyzes multi-modal data, such as heterogeneous descriptions of text, image and
video, by exploiting the implicit conditional independence structure. In this case, beyond a single
dictionary U and coefficient matrix V that model a single view Z(1), multiple dictionaries U (k) are
needed to reconstruct multiple views Z(k), while keeping the latent representation V shared across
all views. Formally the problem in multiview factorization is to optimize [2, 4]:

min
U(1):‖U(1)

:i ‖C≤1

. . . min
U(k):‖U(k)

:i ‖C≤1

min
V

k∑
t=1

Lt(U
(t)V ) + λ ‖V ‖R,1 . (14)
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We can easily re-express the problem as an equivalent “single” view formulation (1) by stacking all
{U (t)} into the rows of a big matrix U , with a new column norm ‖U:i‖C := max

t=1...k
‖U (t)

:i ‖C . Then

the constraints on U (t) in (14) can be equivalently written as ‖U:i‖C ≤ 1, and Algorithm 2 can be
directly applied with two specializations. First the auxiliary function g(U, V ) in (10) becomes

g(U, V )=L(UV )+
λ

2

∑
i

((
max
t=1...k

‖U (t)
:i ‖C

)2

+‖Vi:‖2R

)
=L(UV )+

λ

2

∑
i

(
max
t=1...k

‖U (t)
:i ‖

2
C+‖Vi:‖2R

)
which can be locally optimized. The only challenge left is the oracle problem in (4), which takes the
following form when all norms are Euclidean:

max
‖u‖C≤1,‖v‖≤1

u′Λv = max
‖u‖C≤1

‖Λ′u‖2 = max
u:∀t,‖ut‖≤1

∥∥∥∥∑
t

Λ′tut

∥∥∥∥2

. (15)

[4] considered the case where k = 2 and showed that exact solutions to (15) can be found efficiently.
But their derivation does not seem to extend to k > 2. Fortunately there is still an interesting and
tractable scenario. Consider multilabel classification with a small number of classes, and U (1) and
U (2) are two views of features (e.g. image and text). Then each class label corresponds to a view and
the corresponding ut is univariate. Since there must be an optimal solution on the extreme points
of the feasible region, we can enumerate {−1, 1} for ut (t ≥ 3) and for each assignment solve a
subproblem of the following form that instantiates (15) (c is a constant vector)

(QP ) max
u1,u2

‖Λ′1u1 + Λ′2u2 + c‖2 , s.t. ‖u1‖ ≤ 1, ‖u2‖ ≤ 1. (16)

Due to inhomogeneity, the technique in [4] is not applicable. Rewrite (16) in matrix form
(QP ) min

z
〈M0, zz

′〉 s.t. 〈M1, zz
′〉 ≤ 0 〈M2, zz

′〉 ≤ 0 〈I00, zz
′〉 = 1, (17)

where z=

(
r
u1

u2

)
, M0 =−

(
0 c′Λ′1 c′Λ′2

Λ1c Λ1Λ′1 Λ1Λ′2
Λ2c Λ2Λ′1 Λ2Λ′2

)
, M1=

(−1
I

0

)
, M2=

(−1
0

I

)
,

and I00 is a zero matrix with only the (1, 1)-th entry being 1. Let X = zz′, a semi-definite program-
ming relaxation for (QP ) can be obtained by dropping the rank-one constraint:

(SP ) min
X
〈M0, X〉 , s.t. 〈M1, X〉 ≤ 0, 〈M2, X〉 ≤ 0, 〈I00, X〉 = 1, X � 0. (18)

Its dual problem, which is also the Lagrange dual of (QP ), can be written as
(SD) max

y0,y1,y2
y0, s.t. Z := M0 − y0I00 + y1M1 + y2M2 � 0, y1 ≥ 0, y2 ≥ 0. (19)

(SD) is a convex problem that can be solved efficiently by, e.g., cutting plane methods. (SP ) is
also a convex semidefinite program (SDP) amenable for standard SDP solvers. However further
recovering the solution to (QP ) is not straightforward, because there may be a gap between the
optimal values of (SP ) and (QP ). The gap is zero (i.e. strong duality between (QP ) and (SD))
only if the rank-one constraint that (SP ) dropped from (QP ) is automatically satisfied, i.e. if (SP )
has a rank-one optimal solution.

Fortunately, as one of our main results, we prove that strong duality always holds for the particular
problem originating from (16). Our proof utilizes some recent development in optimization [29],
and is relegated to Appendix D.

5 Experimental Results
We compared our Algorithm 2 with three state-of-the-art solvers for trace norm regularized objec-
tives: MMBS3 [22], DHM [15], and JS [8]. JS was proposed for solving the constrained problem:
minX L(X) s.t. ‖X‖tr ≤ η, which makes it hard to be compared with solvers for penalized prob-
lems: minX L(X) + λ ‖X‖tr. As a workaround, we first chose a λ, and found the optimal solution
X∗ for the penalized problem. Then we set η = ‖X∗‖tr and finally solved the constrained problem
by JS. In this case, it is only fair to compare how fast L(X) (loss) is decreased by various solvers,
rather than L(X) + λ ‖X‖∗ (objective). DHM is sensitive to the estimate of the Lipschitz constant
H of the gradient of L. We manually tuned H for a small value such that DHM still converges.
Since the code for MMBS is specialized to matrix completion, it was used only in this comparison.
Traditional solvers such as proximal methods [6] were not included because they are much slower.

3 http://www.montefiore.ulg.ac.be/ mishra/softwares/traceNorm.html
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Figure 1: MovieLens100k.
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Figure 2: MovieLens1M.
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Figure 3: MovieLens10M.

Comparison 1: Matrix completion We first compared all methods on a matrix completion prob-
lem, using the standard datasets MovieLens100k, MovieLens1M, and MovieLens10M [6, 8, 21],
which are sized 943× 1682, 6040× 3706, and 69878× 10677 respectively (#user× #movie). They
contain 105, 106 and 107 movie ratings valued from 1 to 5, and the task is to predict the rating for
a user on a movie. The training set was constructed by randomly selecting 50% ratings for each
user, and the prediction is made on the rest 50% ratings. In Figure 1 to 3, we show how fast various
algorithms drive down the training objective, training loss L (squared Euclidean distance), and the
normalized mean absolute error (NMAE) on the test data [see, e.g., 6, 8]. We tuned the λ to optimize
the test NMAE.

From Figure 1(a), 2(a), 3(a), it is clear that it takes much less amount of CPU time for our method to
reduce the objective value (solid line) and the loss L (dashed line). This implies that local search and
partially corrective updates in our method are very effective. Not surprisingly MMBS is the closest
to ours in terms of performance because it also adopts local optimization. However it is still slower
because their local search is conducted on a constrained manifold. In contrast, our local search
objective is entirely unconstrained and smooth, which we manage to solve efficiently by L-BFGS.4

JS, though applied indirectly, is faster than DHM in reducing the loss. We observed that DHM kept
running coordinate descent with a constant step size, while the totally corrective update was rarely
taken. We tried accelerating it by using a smaller value of the estimate of the Lipschitz constant H ,
but it leads to divergence after a rapid decrease of the objective for the first few iterations. A hybrid
approach might be useful.

We also studied the evolution of the NMAE performance on the test data. For this we compared the
matrix reconstruction after each iteration against the ground truth. As plotted in Figure 1(b), 2(b),
3(b), our approach achieves comparable (or better) NMAE in much less time than all other methods.

Comparison 2: multitask and multiclass learning Secondly, we tested on a multiclass classifi-
cation problem with synthetic dataset. Following [15], we generated a dataset of D = 250 features
and C = 100 classes. Each class c has 10 training examples and 10 test examples drawn inde-
pendently and identically from a class-specific multivariate Gaussian N (µc,Σc). µc ∈ R250 has
the last 200 coordinates being 0, and the top 50 coordinates were chosen uniformly random from
{−1, 1}. The (i, j)-th element of Σc is 22(0.5)|i−j|. The task is to predict the class membership of
a given example. We used the logistic loss for a model matrix W ∈ RD×C . In particular, for each

4 http://www.cs.ubc.ca/˜pcarbo/lbfgsb-for-matlab.html
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training example xi with label
yi ∈ {1, .., C}, we defined an
individual loss Li(W ) as

Li(W ) = − log p(yi|xi;W ),

where for any class c,

p(c|xi;W )=Z−1
i exp(W ′:cxi),

Zi=
∑
c

exp(W ′:cxi).

Then L(W ) is defined as the
average of Li(W ) over the
whole training set. We found
that λ = 0.01 yielded the
lowest test classification er-
ror; the corresponding results
are given in Figure 4. Clearly,
the intermediate models out-
put by our scheme achieve
comparable (or better) train-
ing objective and test error in
orders of magnitude less time
than those generated by DHM
and JS.
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Figure 4: Multiclass classifica-
tion with synthetic datset.

10
0

10
2

10
1

10
2

10
3

10
4

School multitask, λ = 0.1

Running time (seconds)

O
bj

ec
tiv

e 
an

d 
lo

ss
 (

tr
ai

ni
ng

)

 

 

Ours−obj
Ours−loss
DHM−obj
DHM−loss
JS−loss

(a) Objective & loss vs time (loglog)

10
0

10
2

0

200

400

600

800

1000
School Multitask, λ = 0.1

Running time (seconds)

T
es

t r
eg

re
ss

io
n 

er
ro

r

 

 

Ours
DHM
JS

(b) Test error vs time (semilogx)

Figure 5: Multitask learning for
school dataset.

We also applied the solvers to a multitask learning problem with
the school dataset [24]. The task is to predict the score of
15362 students from 139 secondary schools based on a number
of school-specific and student-specific attributes. Each school is
considered as a task for which a predictor is learned. We used the
first random split of training and testing data provided by [24] 5,
and set λ so as to achieve the lowest test squared error. Again,
as shown in Figure 5 our approach is much faster than DHM and
JS in finding the optimal solution for training objective and test
error. As the problem requires a large λ, the trace norm penalty
is small, making the loss close to the objective.

10
2

10
3

10
0

10
1

10
2

Multiview Flickr, λ=0.001

Running time (seconds)

O
bj

ec
tiv

e 
an

d 
lo

ss
 (

tr
ai

ni
ng

)

 

 

Ours−obj
Ours−loss
Alt−obj
Alt−loss

Figure 6: Multiview training.

Comparison 3: Multiview learning Finally we perform an initial test on our global optimization
technique for learning latent models with multiple views. We used the Flickr dataset from NUS-
WIDE [30]. Its first view is a 634 dimensional low-level feature, and the second view consists of
1000 dimensional tags. The class labels correspond to the type of animals and we randomly chose 5
types with 20 examples in each type. The task is to train the model in (14) with λ = 10−3. We used
squared loss for the first view, and logistic loss for the other views.

We compared our method with a local optimization approach to solving (14). The local method first
fixes all U (t) and minimizes V , which is a convex problem that can be solved by FISTA [31]. Then
it fixes V and optimizes U (t), which is again convex. We let Alt refer to the scheme that alternates
these updates to convergence. From Figure 6 it is clear that Alt is trapped by a locally optimal
solution, which is inferior to a globally optimal solution that our method is guaranteed to find. Our
method also reduces both the objective and the loss slightly faster than Alt.

6 Conclusion and Outlook
We have proposed a new boosting algorithm for a wide range of matrix norm regularized prob-
lems. It is closely related to generalized conditional gradient method [32]. We established O(1/ε)
rates of convergence, and showed its empirical advantage over state-of-the-art solvers on large scale
problems. We also applied the method to a novel problem, latent multiview learning, for which
we designed a new efficient oracle. We plan to study randomized boosting with `1 regularization
[33–35], and to extend the framework to more general nonlinear regularization [3].

5http://ttic.uchicago.edu/˜argyriou/code/mtl_feat/school_splits.tar
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Supplementary Material

A Proof of Theorem 1

In this section we prove the O(1/ε) convergence rate of the boosting Algorithm 1.

Theorem 1 (Rate of convergence) Under Assumption 1, Algorithm 1 finds an ε accurate solution
to (5) in O(1/ε) number of steps. More precisely, denoting f∗ as the minimum of (5), then

f({σ(k)
i , A

(k)
i })− f

∗ ≤ 4CL
k + 2

.

Proof: Denoting s∗ =
∑
i σ
∗
i , where recall that {Ai, σi} is some optimal solution to (5). Our proof

is based upon the following observation:

f∗ = min
Ai∈A,σi≥0

L

(∑
i

σiAi

)
+ λ

∑
i

σi

= min
Y ∈s∗K

L(Y ) + λs∗, (20)

where K is the convex hull of the set A.

Let sk :=
∑
i σ

(k)
i . We prove Theorem 1 for a “weaker” version of Algorithm 1, where ak is set to

some constant 1− ηk. The following chain of inequalities consists the main part of our proof.

f(Xk) = L(Xk) + λsk

(Definition of Xk, sk) = min
ρ≥0

L ((1− ηk)Xk−1 + ρηkHk) + λ(1− ηk)sk−1 + λρηk (21)

≤ L((1− ηk)Xk−1 + ηk(s∗Hk)) + λ(1− ηk)sk−1 + λs∗ηk

(Assumption 1) ≤ f(Xk−1) + ηk 〈s∗Hk −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(22)

(Definition of Hk) ≤ min
Y ∈s∗·A

f(Xk−1) + ηk 〈Y −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(Linearity) ≤ min
Y ∈s∗·K

f(Xk−1) + ηk 〈Y −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(23)

(Convexity of L) ≤ min
Y ∈s∗·K

f(Xk−1) + ηk(L(Y )− L(Xk−1)) +
CL
2
η2
k − ληksk−1 + ληks

∗

(Rearrangement) = (1− ηk)f(Xk−1) + ηk min
Y ∈s∗·K

(
L(Y ) + λs∗

)
+
CL
2
η2
k

(Observation (20)) = (1− ηk)f(Xk−1) + ηkf
∗ +

CL
2
η2
k,

hence
f(Xk)− f∗ ≤ (1− ηk)(f(Xk−1)− f∗) +

CL
2
η2
k.

Setting ηk = 2
k+2 , and an easy induction argument establishes that

f(Xk)− f∗ ≤ 4CL
k + 2

.

The proof, although completely elementary, does harness several interesting ideas. Note first that in,
say, the analysis of the ordinary gradient algorithm, one usually upper bounds the convex function
L by its quadratic expansion

L(Y ) ≤ L(X) + 〈Y −X,∇L(X)〉+
ĈL
2
‖Y −X‖2,
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and then tries to minimize the quadratic upper bound; while in contrast, our analysis above takes
perhaps a surprisingly loose step: upper bound L by the linear function

L(y) ≤ L(x) + 〈Y −X,∇L(X)〉+
CL
2
.

The (huge) gain, of course, is the possibility of inequality (23), which allows us to select the next
update by optimizing over the (potentially much simpler) set A, instead of the convex hull K.

The next key ingredient in the proof is our observation (20), which is completely trivial, yet after
combining it with the one dimensional line search over ρ ≥ 0 (or b in Algorithm 1), Algorithm 1
behaves as if it knew the unknown but fixed constant s∗.

Some remarks regarding to Theorem 1 are in order.

• If the loss function L is only Lipchitz continuous, then one can apply the “smoothing” trick
[36] to get O( 1

ε2 ) convergence rate for algorithm 1.

• Our result heavily builds on previous work [37, 38], however, it seems that our treatment is
slightly more general. For instance, the `1 norm regularizer

∑
i σi can be readily replaced

by h(
∑
i σi), where h : R+ 7→ R is some convex function. Essentially the same proof

would still go through. Take h as the indicator of some convex set recovers most previous
results, which all consider the constrained problem instead of the arguably more natural
regularized problem6.

• The line search step in Algorithm 1 need not be solved exactly. We can derive essentially
the same rate as long as the error decays at the rate O( 1

k ).

• The step size ηk = O( 1
k ) is optimal, among constant ones, in the following sense. We

usually prefer large step sizes since they often than not result in faster convergence; on
the other hand, Algorithm 1 needs to be able to reset any σi to 0, which requires that the
discount factor

∏∞
k=1(1−ηk) = 0. It is not hard to show that the latter condition is satisfied

iff
∑∞
k=1 ηk =∞, hence the near optimality of the step size O( 1

k ).

B Proof of Theorem 2

In this section, under an additional assumption, we improve the convergence rate in Theorem 1 by
considering the totally corrective algorithm in (7).

Recall that strong convexity (with modulus µ) of L implies that

L(Y ) ≥ L(X) + 〈Y −X,∇L(X)〉+
µ

2
‖L−X‖2. (24)

Note that the constant µ depends on the choice of the norm ‖ · ‖. In the proof we fix the norm to be
essentially `1.

Theorem 2 Suppose Assumption 1 holds and L is furthermore strongly convex with modulus µ. Let
{A∗i , σ∗i } be a minimzer of (5) and denote f∗ := f({A∗i , σ∗i }), s∗ :=

∑
i σ
∗
i . Then the totally

corrective algorithm converges at least linearly. More precisely

f({σ(k)
i , A

(k)
i })− f

∗ ≤
(

1−min

{
1

2
,

2µ(s∗)2

m2CL

})k
(f({0,0})− f∗),

where m is the number of non-zeros in {σ∗i }.

Our proof is essentially in the same spirit as that of [16, Theorem 2.8], see also [17, Theorem 2]. It
is a pleasant surprise that the latter proof extends without much difficulty to the regularized problem
considered here.

Proof: In the proof we will use f(Xk) to denote L(Xk) +λ
∑
i σ

(k)
i where Xk :=

∑k
i=1 σ

(k)
i A

(k)
i .

6[39] proposed an algorithm similar as our totally corrective version in (7) for the regularized problem, but
the rate proven there, O( 1

ε2
), is worse than the one presented in our Theorem 1.
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Let us record the optimality condition in (7): ∀ τ ∈ Rk+, the following holds

k∑
i=1

(〈A(k)
i ,∇L(Xk)〉+ λ)(τi − σ(k)

i ) ≥ 0, (25)

where σ(k)
i denotes the optimal solution in (7).

Take 0 ≤ η ≤ 1 whose value will be optimized later. Let sk :=
∑k
i=1 σ

(k)
i . From Assumption 1 we

have

f((1− η)Xk + ηs∗Hk+1) = L((1− η)Xk + ηs∗Hk+1) + (1− η)λsk + ηλs∗

≤ f(Xk) + η 〈s∗Hk+1 −Xk,∇L(Xk)〉+
CL
2
η2 + ηλ(s∗ − sk).

(26)

We need to define two index sets I and J , where I contains the indexes of the elements in {A∗i } but
not in {A(k)

i } while J contains the indexes of the elements in both {A∗i } and {A(k)
i }. Note that we

can assume that I is nonempty since otherwise the current totally corrective step will find an optimal
solution.

Define r =
∑
i∈I σ

∗
i , and by the definition of Hk+1,

r 〈s∗Hk+1,∇L(Xk)〉 ≤
∑
i∈I

s∗σ∗i 〈Ai,∇L(Xk)〉

=
∑
i∈I

(s∗σ∗i − (s∗ − r)σ(k)
i ) 〈Ai,∇L(Xk)〉

≤
∑
i∈J

(s∗σ∗i − (s∗ − r)σ(k)
i ) 〈Ai,∇L(Xk)〉+ λ(s∗ − r)(s∗ − sk)

= s∗(〈X∗ −Xk,∇L(Xk)〉+ λ(s∗ − sk))− λr(s∗ − sk) + r 〈Xk,∇L(Xk)〉

≤ s∗(f∗ − f(Xk)− µ

2
‖σ∗ − σ(k)‖21)− λr(s∗ − sk) + r 〈Xk,∇L(Xk)〉 ,

(27)

where the last inequality follows from the strong convexity assumption, and the second inequality
follows from the optimality of σ(k). Indeed, if J − I = ∅, then s∗ = r, hence we in fact have an
equality. Assume otherwise, then the inequality follows from the optimality condition (25).

Now apply (27) to (26), we get

f((1− η)Xk + ηs∗Hk+1) ≤ f(Xk) + η
r 〈s∗Hk+1,∇L(Xk)〉 − r 〈Xk,∇L(Xk)〉

r
+
CL
2
η2 + ηλ(s∗ − sk)

≤ f(Xk)− η
s∗(f(Xk)− f∗ + µ

2 ‖σ
∗ − σ(k)‖21)

r
+
CL
2
η2.

Apparently f(Xk+1) ≤ minη∈[0,1] f((1− η)Xk + ηs∗Hk+1), hence

f(Xk+1)− f∗ ≤ f(Xk)− f∗ − η
s∗(f(Xk)− f∗ + µ

2 ‖σ
∗ − σ(k)‖21)

r
+
CL
2
η2.

Minimizing η on the right-hand side yields

f(Xk+1)− f∗ ≤ f(Xk)− f∗ −min

{
s∗δ

2r
,
δ2(s∗)2

2r2CL

}
,

where δ := f(Xk)− f∗ + µ
2 ‖σ

∗ − σ(k)‖21 ≥ 0. It is easy to see that

s∗δ

2r
≥ 1

2
(f(Xk)− f∗).
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On the other hand,

δ2(s∗)2

2r2CL
≥ 2µ(f(Xk)− f∗)(s∗)2‖σ∗ − σ(k)‖21

r2CL
≥

2µ(f(Xk)− f∗)(s∗)2
∑
i∈I(σ

∗
i )2

CL(
∑
i∈I σ

∗
i )2

(28)

≥ 2µ(f(Xk)− f∗)(s∗)2

CL|I|2
≥ 2µ(f(Xk)− f∗)(s∗)2

CLm2
=

2µ(s∗)2

CLm2
(f(Xk)− f∗),

where recall that m is the number of nonzeros entries in {σ∗i }.
Combining the above two estimates completes the proof:

f(Xk+1)− f∗ ≤
(

1−min

{
1

2
,

2µ(s∗)2

CLm2

})
(f(Xk)− f∗).

C Proof of Proposition 1 and 2

Recall that K is the convex hull of A.

Proposition 1 γK(X) = min
U,V :UV=X

1
2

∑
i(‖U:i‖2C + ‖Vi:‖2R) = min

U,V :UV=X

∑
i ‖U:i‖C ‖Vi:‖R.

Proof: This proof is similar in spirit to [40]. For any UV = X , we can write

X =
∑
i

‖U:i‖C ‖Vi:‖R
U:i

‖U:i‖C
Vi:
‖Vi:‖R

. (29)

So by the definition of gauge function,

γK(X) ≤
∑
i

‖U:i‖C ‖Vi:‖R ≤
1

2

∑
i

(
‖U:i‖2C + ‖Vi:‖2R

)
. (30)

To attain equality, by the the definition of the gauge γK, there exist σi, Û , and V̂ which satisfy

‖Û:i‖C = ‖V̂i:‖R = 1,
∑
i

σiÛ:iV̂i: = X, γK(X) =
∑
i

σi, σi ≥ 0. (31)

Then define U:i =
√
σiÛ:i and Vi: =

√
σiV̂i:. It is easy to verify that UV = X and

1
2 (‖U:i‖2C + ‖Vi:‖2R) =

∑
i ‖U:i‖C ‖Vi:‖R =

∑
i σi = γK(X).

Proposition 2 For any U ∈ Rm×k, V ∈ Rk×n, there exist αi ≥ 0, ‖α‖0 ≤ k and ui, vi such that

UV =
∑
i

αiuiv
′
i, ‖ui‖C ≤ 1, ‖vi‖R ≤ 1,

∑
i

αi =
1

2

∑
i

(‖U:i‖2C + ‖Vi:‖2R).

Proof: Denote ai = ‖U:i‖C and bi = ‖Vi:‖R. Then

UV =
∑
i

aibi
U:i

ai

Vi:
bi

=
∑
i

1

2
(a2
i + b2i )︸ ︷︷ ︸
:=αi

√
aibi

1
2 (a2

i + b2i )

U:i

ai︸ ︷︷ ︸
:=ui

√
aibi

1
2 (a2

i + b2i )

Vi:
bi︸ ︷︷ ︸

:=v′i

. (32)

Clearly ‖ui‖C ≤ 1, ‖vi‖R ≤ 1, and
∑
i αi = 1

2

∑
i(‖U:i‖2C + ‖Vi:‖2R).
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D Proof of the strong duality

The goal of this note is to solve the following problem:

(QP ) max
x,y
‖Ax +By + c‖ , s.t. ‖x‖ ≤ 1, ‖y‖ ≤ 1. (33)

Here c is a non-zero vector, and all the norms are Euclidean. Let x ∈ Rm, y ∈ Rn, c ∈ Rt,
A ∈ Rt×m and B ∈ Rt×n.

The problem is not convex in this form, because it is maximizing a positive semi-definite quadratic.
To find a global solution, we first reformulate it. Define

z =

(
r
x
y

)
, b =

(
A′c
B′c

)
(34)

Q = −
(
A′A A′B
B′A B′B

)
, M0 =

(
0 −b′
−b Q

)
(35)

M1 =

( −1 01×m 01×n
0m×1 Im×m 0m×n
0n×1 0n×m 0n×n

)
(36)

M2 =

( −1 01×m 01×n
0m×1 0m×m 0m×n
0n×1 0n×m In×n

)
. (37)

Then the problem (QP ) can be rewritten as

(QP ) max
z

z′M0z (38)

s.t. z′M1z ≤ 0 (39)

z′M2z ≤ 0 (40)

r2 = 1. (41)

Denote the inner product between matrices X and Y as X • Y := trX ′Y . Then we can further
rewrite (QP ) as:

(QP ) min
z

M0 • (zz′) (42)

s.t. M1 • (zz′) ≤ 0 (43)

M2 • (zz′) ≤ 0 (44)

I00 • (zz′) = 1, (45)

where I00 =

(
1 01×(m+n)

0(m+n)×1 0(m+n)×(m+n)

)
. Then a natural SDP relaxation of (QP ) is

(SP ) min
X

M0 •X (46)

s.t. M1 •X ≤ 0 (47)
M2 •X ≤ 0 (48)
I00 •X = 1, (49)

X � 0. (50)

Note (SP ) is a convex problem, but there may be a gap between the optimal values of (SP ) and
(QP ) because (SP ) dropped the rank-one constraint on X . The dual problem of (SP ) is

(SD) max
y0,y1,y2

y0 (51)

s.t. Z := M0 − y0I00 + y1M1 + y2M2 � 0 (52)
y1 ≥ 0, y2 ≥ 0. (53)

With slight abuse of notation, we denote as QP , SP , and SD the optimal objective value of the re-
spective problems. We may also write QP (A,B, c) to make explicit their dependence on (A,B, c).
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Clearly SP = SD since the Slater’s condition is always met. However, QP ≥ SP because (SP )
does not necessarily admit a rank-one optimal solution. The key conclusion of this note is to rule
out this possibility, and show that

QP (A,B, c) = SP (A,B, c) for all A,B, c, (strong duality). (54)

So there must be a rank-one optimal solution to (SP ), based on which we can easily recover an
optimal z for (QP ).

Generalization Note the b in (34) is determined by A, B and c and does not have full freedom.
In this note we will prove a stronger result by dropping this constraint and consider for general
unconstrained b. Accordingly, we will show a slightly more general relationship:

QP (A,B,b) = SP (A,B,b) for all A,B,b, (strong duality). (55)

Besides proving (55), two computational issues need to be resolved. First, given the optimal {yi}
for (SD), how to recover the optimal (x,y) for (QP ). The details are given in Section D.1.3.
Second, how to solve (SD). We propose using the cutting plane method. Note there are only
three variables in (SD), and the only tricky part is the positive semi-definite constraint (52). For
low dimensional convex optimization, it is quite easy to approximate this (nontrivial) constraint by
cutting planes, which relies on the oracle: given an assignment of {yi}, find a maximal violator of
(52), i.e. argminu:‖u‖=1 u

′Zu (≤ 0). The solution is simply the eigenvector corresponding to the
least algebraically eigenvalue.

Notation The set of all n-by-n symmetric matrices is denoted as Sn×n, and the set of all n-by-n
positive semi-definite matrices is denoted as Sn×n+ . det(A) is the determinant of a matrixA. Denote
the kernel (null space) of a linear map A as Ker(A), and the range of A as Im(A) (the span of the
column space of A).

D.1 Strong Duality

This section proves the strong duality. Our idea is similar to [41]. We first define a set of Properties
(called Property I) over the optimal solutions of (SP ) and (SD). Next we show that if Property I
does not hold, then strong duality is guaranteed. Finally we show that in our case, Property I can
never be met.

D.1.1 Property I

Let X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) be a pair of optimal solutions for (SP ) and (SD), respectively. The KKT
condition states

X̂Ẑ = 0 (56)

ŷiMi • X̂ = 0, i ∈ {1, 2} . (57)

We define a Property I in the same spirit as [41].

Definition 1 We say the optimal pair X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) has Property I if:

1. M1 • X̂ = 0 and M2 • X̂ = 0.

2. rank(Ẑ) = m+ n− 1.

3. rank(X̂) = 2, and P3: there is a rank-one decomposition of X̂ , X̂ = x1x
′
1 + x2x

′
2, such

that M1 • xix′i = 0 (i = 1, 2), and (M2 • x1x
′
1)(M2 • x2x

′
2) < 0.

The concept of rank-one decomposition is available in subsection D.2. It is simple to symmetrize
the item 3 of Property I (i.e. swap the role of M1 and M2), but this is not needed for our purposes.
Our key result is to use the Property I to characterize the case of strong duality.

Theorem 3 If (SP ) and (SD) have a pair of optimal solution X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) which do not
satisfy Property I, then strong duality holds, i.e. SP = QP and (SP ) has a rank-one optimal
solution.
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Proof: Assume Property I does not hold, and we enumerate four exhaustive (but not mutually
exclusive) possibilities.

Case 1: M1 • X̂ 6= 0 orM2 • X̂ 6= 0. Without loss of generality, supposeM2 • X̂ 6= 0. Then ŷ2 = 0
by KKT condition (57). So when solving (SD), we can equivalently clamp y2 to 0 and optimize
only in y0 and y1. This corresponds to solving (SP ) by ignoring the constraint (48). By [42], all
extreme points of the new feasible region of (SP ) has rank 1, and so (SP ) must have an optimal
solution with rank 1.

Case 2: M1 • X̂ = M2 • X̂ = 0 and rank(X̂) 6= 2. Let r = rank(X̂). Obviously r > 0 since
I00X̂ = 1. If r = 1, then (SP ) already has a rank-one solution and (QP ) is solved. So we only need
to consider the case r ≥ 3. By Proposition 6 with δ1 = δ2 = 0, there is a rank-one decomposition
of X̂ satisfying

X̂ = x1x
′
1 + x2x

′
2 + . . .+ xrx

′
r (58)

M1 • xix′i = 0, for i = 1, . . . , r (59)

M2 • xix′i = 0, for i = 1, . . . , r − 2. (60)

By Proposition 3, we have Z(x1x
′
1) = 0. Let x1 = (t1,u

′
1,v
′
1)′. Then

(59) ⇒ −s2
1 + ‖u1‖2 = 0 (61)

(60) ⇒ −s2
1 + ‖v1‖2 = 0. (62)

So if s1 = 0 then u1 = v1 = 0, which means x1 = 0. Contradiction. So s1 6= 0 and we can
easily see that X̂1 := x1x

′
1/s

2
1 satisfies the KKT conditions (56) and (57), together with I00X̂1 = 1.

Hence x1x
′
1/s

2
1 is a rank-one optimal solution to (SP ) and x1/s1 is an optimal solution to (QP ).

Case 3: M1 • X̂ = M2 • X̂ = 0, rank(X̂) = 2, but P3 does not hold. By Proposition 4, there must
be a rank-one decomposition X̂ = x1x

′
1 + x2x

′
2 such that

M1 • (x1x
′
1) = M1 • (x2x

′
2) = 0. (63)

So the failure of P3 implies

M2 • x1x
′
1 = M2 • x2x

′
2 = 0, (64)

because M2 •x1x
′
1 +M2 •x2x

′
2 = M2 • X̂ = 0. Using exactly the same argument as in Case 2, we

conclude that s1, the first element of x1, is non-zero, and x1x
′
1/s

2
1 is a rank-one optimal solution to

(SP ). Obviously, x2x
′
2/s

2
2 is also a rank-one solution to (SP ), where s2 is the first element of x2.

Case 4: M1•X̂ = M2•X̂ = 0, rank(X̂) = 2,M1•(x1x
′
1) = M1•(x2x

′
2) = 0, (M2•x1x

′
1)(M2•

x2x
′
2) < 0, and rank(Ẑ) 6= m+ n− 1. By Sylvester’s inequality,

rank(Ẑ) + rank(X̂)− (m+ n+ 1) ≤ rank(ẐX̂). (65)

Now rank(X̂) = 2 and ẐX̂ = 0, so rank(Ẑ) ≤ m + n − 1. Therefore in this particular case
rank(Ẑ) ≤ m+ n− 2. So by 0.4.5(d) of [43],

rank(X̂ + Ẑ) ≤ rank(X̂) + rank(Ẑ) (66)
≤ 2 + (m+ n− 2) = m+ n. (67)

Thus there must be a y 6= 0 such that (X̂ + Ẑ)y = 0, and

y′X̂y + y′Ẑy = y′(X̂ + Ẑ)y = 0. (68)

Since both X̂ and Ẑ are positive semi-definite, we conclude that y ∈ Ker(X̂)∩Ker(Ẑ). Now define

X := X̂ + yy′ = x1x
′
1 + x2x

′
2 + yy′. (69)

Obviously rank(X) = 3 and ẐX = 0. Since

M1 • (x1x
′
1) = M1 • (x2x

′
2) = 0 (70)

(M2 • x1x
′
1)(M2 • x2x

′
2) < 0, (71)
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so by Proposition 5 with δ1 = δ2 = 0, there must be an x such that X is rank-one decomposable at
x and

M1 • xx′ = 0, M2 • xx′ = 0. (72)

Since ẐX = 0, Proposition 3 implies Ẑx = 0 and so Ẑ • xx′ = 0. Based on the satisfaction of
the KKT conditions (56) and (57), we conclude that xx′/s2 is a rank-one optimal solution to (SP ),
where s is the first element of x. s must be non-zero because of (72) and the same argument as in
Case 2.

D.1.2 Strong Duality

Let us denote (A,B,b) collectively as Γ := (A,B,b), and define a “Frobenius” norm on Γ as
‖Γ‖2 := ‖A‖2F + ‖B‖2F + ‖b‖2. Ideally we wish to show that for any Γ, the Property I does not
hold for some solutions to (SP ) and (SD), hence strong duality holds (Theorem 3). However, this
is hard. So we resort to the argument of ε-perturbation.

Before proceeding, we first make a very simple rewriting of (QP ). Let p = max {t,m, n}. By
padding zeros if necessary, we can expand A and B into p-by-p dimensional matrices, and c into an
p dimensional vector. Let x and y be p dimensional too. Obviously, the optimal values of (QP ) and
(SP ) in this new problem are the same as those in the original problem, respectively. Therefore,
henceforth we will only consider square matrices A and B. For notational convenience, we just call
all t, m, and n as n.

Of key importance is the Danskin’s theorem.

Lemma 1 (Danskin) Suppose f : Z × Ω 7→ R is a continuous function, where Z ⊆ Rn is a
compact set and Ω ⊆ Rm is an open set. For any z, ∇ωf(z, ω) exists and is continuous. Then the
marginal function

φ(ω) := max
z∈Z

f(z, ω) (73)

is continuous.

Note that Danskin’s theorem does not require convexity. Let the z in Lemma 1 correspond to
(x′,y′)′ in (QP ), ω to Γ, Z to {x : ‖x‖ ≤ 1} × {y : ‖y‖ ≤ 1}, and Ω to the whole Euclidean
space. Then Lemma 1 implies that QP (Γ) is continuous in Γ. Similarly, SP (Γ) is continuous.

The continuity at Γ means that for any ε > 0, there exists δ > 0, such that for all Γ̂ in the δ
neighborhood of Γ:

Bδ(Γ) :=
{

Γ̂ :
∥∥∥Γ̂− Γ

∥∥∥ < δ
}
, (74)

we have ∣∣∣QP (Γ̂)−QP (Γ)
∣∣∣ < ε, (75)∣∣∣SP (Γ̂)− SP (Γ)
∣∣∣ < ε. (76)

Our key result will be the following theorem.

Theorem 4 For any Γ and δ > 0, there exists Γδ ∈ Bδ(Γ) such that strong duality holds at Γδ:

QP (Γδ) = SP (Γδ). (77)

Using Theorem 4, we can easily prove strong duality.

Corollary 1 QP (Γ) = SP (Γ) for all Γ.

Proof: It suffices to show that for any ε > 0,

|QP (Γ)− SP (Γ)| < 2ε. (78)
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By continuity of QP and SP , there exists a δ > 0, such that (75) and (76) hold for all Γ̂ ∈ Bδ(Γ).
By Theorem 4, there exists Γδ ∈ Bδ(Γ) such that (77) holds. Combining it with (75) and (76) (with
Γ̂ = Γδ), we obtain (78).

Finally we prove Theorem 4.

Proof: Clearly Bδ/2(A,B,b) contains invertible matrices for any A, B, and δ > 0. Arbitrarily
pick two such matrices and call them Aδ and Bδ . By Theorem 3, to establish (77) it suffices to
show that the corresponding (SP ) and (SD) problems at (Aδ, Bδ) have a pair of optimal solutions
X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) which do not satisfy Property I. We will focus on the second condition:
rank(Ẑ) = 2n− 1.

If rank(Ẑ) 6= 2n − 1, then by Theorem 3 strong duality holds at Γδ := (Aδ, Bδ,b). Otherwise
suppose rank(Ẑ) = 2n− 1. Noting (52), we have

Ẑ = M0 − ŷ0I00 + ŷ1M1 + ŷ2M2 =

(
−ŷ0 − ŷ1 − ŷ2 −b′

−b R

)
, (79)

where R =

(
ŷ1I −A′δAδ −A′δBδ
−B′δAδ ŷ2I −B′δBδ

)
. (80)

Note that for any given y1 and y2, (SD) maximizes y0 subject to Ẑ � 0. By Proposition 7, we
know that

2n− 1 = rank(Ẑ) = rank(R). (81)

Denote P = ŷ1I − A′δAδ and Q = ŷ2I − B′δBδ . Then by Proposition 8, we have rank(P ) +
rank(Q) = 2n− 1 or 2n. Now we discuss three cases.

Case 1: rank(P ) = n and rank(Q) = n−1. By Schur complement, we haveQ � B′δAδP−1A′δBδ .
So by Exercise 4.3.14 of [43],

λmin(Q) ≥ λmin(B′δAδP
−1A′δBδ), (82)

where λmin stands for the smallest eigenvalue. SinceAδ andBδ are both invertible,B′δAδP
−1A′δBδ

must be positive definite and its smallest eigenvalue is strictly positive. But rank(Q) = n − 1,
meaning the minimum eigenvalue of Q is 0. So contraction with (82).

Case 2: rank(P ) = n− 1 and rank(Q) = n. Same argument as for Case 1.

Case 3: rank(P ) = rank(Q) = n. Since rank(R) = 2n−1,Rmust have an eigen-vector u0 whose
corresponding eigen-value is 0. In fact u0 is unique up to negation. By Proposition 7, b ∈ Im(R),
so b′u0 = 0. Now perturb the b in Z in the direction of u0:

Ẑ(t) =

(
−ŷ0(t)− ŷ1(t)− ŷ2(t) −b′ − tu′0

−b− tu0 R(t)

)
, t ∈ R, (83)

where ŷi(t) are the optimal solutions for SD(Aδ, Bδ,b+ tu0) and R(t) uses ŷi(t). Denote P (t) =

ŷ1(t)I−A′δAδ and Q(t) = ŷ2(t)I−B′δBδ . If there exists t ∈ (−δ/2, δ/2) such that rank(Ẑ(t)) 6=
2n−1, then (Aδ, Bδ,b+tu0) is the Γδ in Theorem 4. Otherwise, rank(Ẑ(t)) = 2n−1 for all |t| <
δ/2 and by the same argument as in Case 1 and 2, we conclude that rank(P (t)) = rank(Q(t)) = n,
∀ t. Since rank(R(t)) = rank(Ẑ(t)) = 2n − 1, R(t) must have an eigen-vector u(t) whose
corresponding eigen-value is 0. Clearly u(t) is unique up to the sign, and we can set u(0) = u0. By
Proposition 7, b + tu0 must be in the range of R(t). If we can show that u(t) = (1 + ct)u0 + o(t)
where limt→0 o(t)/t = 0 and c ∈ R is independent of t, then

0 = (b + tu0)′u(t) = (b + tu0)′((1 + ct)u0 + o(t)) = t+ ct2 + b′o(t) + tu′0o(t). (84)

Dividing both sides by t and driving t to 0, we get 0 = 1 + 0 + 0 + 0. Contradiction.

To show u(t) = (1 + ct)u0 + o(t), we need to analyze the gradient of u(t) at t = 0. First we
show ŷi(t) is differentiable in t at t = 0 for i = 1, 2. Since rank(P (t)) = rank(Q(t)) = n and
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rank(R(t)) = 2n − 1, we have 0 = det(R(t)) = det(P (t)) · det(Q(t) − B′δAδP (t)−1A′δBδ). In
conjunction with Schur complement, we get

ŷ2(t) = λmax

(
B′δBδ +B′δAδ(ŷ1(t)I −A′δAδ)−1A′δBδ

)
, (85)

ŷ1(t) = λmax

(
A′δAδ +A′δBδ(ŷ2(t)I −B′δBδ)−1B′δAδ

)
. (86)

So a larger ŷ1(t) implies a smaller ŷ2(t) and a smaller ŷ1(t) implies a larger ŷ2(t). By Proposition
7,

(ŷ1(t), ŷ2(t)) = argmin
y1,y2

y1 + y2 + (b + tu0)′
(
y1I −A′δAδ −A′δBδ
−B′δAδ y2I −B′δBδ

)†
(b + tu0). (87)

In general, pseudo-inverse is not even continuous. However, since we know that rank(R(t)) =
2n − 1 (constant rank), so the pseudo-inverse is differentiable in R(t) [44]. So ŷ1(t) and ŷ2(t) are
differentiable in t at t = 0.

By Theorem 1 of [45], we know there exists a choice of the sign for u(t) which satisfies

∂u(t)

∂t

∣∣∣∣
t=0

= u0

∑
ij

Aij
∂Rij(t)

∂t

∣∣∣∣
t=0

, where A = −R(0)† (88)

= u0

(
ŷ′1(0)

n∑
i=1

Aii + ŷ′2(0)

2n∑
i=n+1

Aii

)
. (89)

Setting c := ŷ′1(0)
∑n
i=1Aii + ŷ′2(0)

∑2n
i=n+1Aii yields u(t) = (1 + ct)u0 + o(t).

D.1.3 Recovering the optimal solution

With the guarantee of strong duality, an algorithm is needed to recover a rank-one optimal solution
to (SP ) when given an optimal dual solution Ẑ to (SD). By the KKT condition, all we need is two
vectors x and y satisfying:

z′Ẑz = 0, ‖x‖ ≤ 1, ‖y‖ ≤ 1, (90)

where z = (1,x′,y′)′. Note this is a necessary and sufficient condition for optimal x and y.
Since Ẑ is positive semi-definite, z must be in the null space of Ẑ. Suppose Ker(Ẑ) is spanned
by (g1, . . . ,gk). Let

G = (g1, . . . ,gk) =

(
G0

GX
GY

)
. (91)

Then it suffices to find α ∈ Rk such that |G0α| = 1, ‖GXα‖ = 1, and ‖GY ‖α = 1. To this end,
we only need to find α satisfying

α′(G′XGX −G′0G0)α = 0 (92)

α′(G′YGY −G′0G0)α = 0 (93)
G0α 6= 0, (94)

and then scale it properly. In the sequel, we will first find α which satisfies the first two conditions
and then show how to satisfy the last one. Denote S̃ = G′XGX −G′0G0 and T̃ = G′YGY −G′0G0.
Let their algebraically smallest eigenvalues be sX and sY , and define s = 1 −min(sX , sY ). Then
S := S̃ + sI and T := T̃ + sI must be positive definite, and α only needs to satisfy

α′Sα = sα′α (95)

α′Tα = sα′α (96)
G0α 6= 0. (97)

19



Denote α̂ = α/ ‖α‖, then it is equivalent to

α̂′Sα̂ = s (98)

α̂′T α̂ = s (99)
G0α̂ 6= 0. (100)

Because both S and T are positive semidefinite, by [43, Corollary 4.6.12] there exists a nonsin-
gular matrix R such that RSR′ = I and RTR′ is real diagonal. In fact this R can be con-
structed analytically. Let S have eigen-decomposition S = UDU ′ where D is diagonal. Denote
H = U

√
DU ′ and let HTH have eigen-decomposition HTH = V ΛV ′. Then R can be simply

chose as R = V ′H−1 = V UD−1/2U ′. Let RTR′ be diag {σi}. Denote β = Rα̂, then β only
needs to satisfy

β′β = s (101)

β′Σβ = s (102)

G0R
−1β 6= 0. (103)

It is easy to find a β which satisfies the first two constraints, because it is guaranteed that there exists
a β which satisfies all the three conditions. Once we get such a β, suppose G0R

−1β = 0. Then
we can flip the sign of one of its nonzero components. If its product with G0R

−1 is still 0, then it
means the corresponding entry in G0R

−1 is 0. But G0R
−1 cannot be straight 0 because that would

imply G0 is a zero vector which violates the assumption that G is the basis of Ker(Ẑ). Therefore
we can always find a β which satisfies (101) to (103).

D.2 Preliminaries in Matrix Analysis

D.2.1 Matrix Rank-one decomposition

Let X be a n-by-n positive semi-definite matrix with rank(X) = r. Then a set of r vectors
{x1, . . . ,xr} in Rn is called a rank-one decomposition of X if X =

∑r
i=1 xix

′
i.

It is noteworthy that the xi’s are not necessarily orthogonal to each other (x′ixj = 0 for i 6= j), but
they must be linearly independent. This leads to the following useful result.

Proposition 3 Suppose ZX = 0 and {x1, . . . ,xr} is a rank-one decomposition of X . Then Zxi =
0, ∀ i.

Proof: Denote yi := Zxi. Suppose otherwise y1 6= 0. Since ZX = 0, we have

0 = X ′Z ′y1 =

r∑
i=1

xix
′
iZ
′y1 =

r∑
i=1

(y′iy1)xi. (104)

Since y1 6= 0, this violates the linear independence of x1, . . . ,xr.

X is called rank-one decomposable at a vector x1 if there exist other r − 1 vectors x2, . . . ,xr such
that X =

∑r
i=1 xix

′
i.

The following three theorems play an important role in our proof.

Proposition 4 (Corollary 4 of [46]) Suppose X ∈ Sn×n+ with rank(X) = r. Z ∈ Sn×n and
Z • X ≥ 0. Then there must be a rank-one decomposition of X = x1x

′
1 + . . . + xrx

′
r such that

Z • (xix
′
i) = Z •X/r for all i = 1, . . . , r.

Proposition 5 (Lemma 3.3 of [41]) Suppose X ∈ Sn×n+ with rank r ≥ 3. A1, A2 ∈ Sn×n. Let
{x1, . . . ,xr} be a rank-one decomposition of X . If

A1 • x1x
′
1 = A1 • x2x

′
2 = δ1 (105)

(A2 • x1x
′
1 − δ2)(A2 • x2x

′
2 − δ2) < 0, (106)

then there is a vector y ∈ Rn such that X is rank-one decomposable at y and

A1 • yy′ = δ1, A2 • yy′ = δ2. (107)
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Proposition 6 (Theorem 3.4 of [41]) Suppose X ∈ Sn×n+ with rank r ≥ 3. A1, A2 ∈ Sn×n. If

A1 •X = δ1, A2 •X = δ2, (108)

then X has a rank-one decomposition {x1, . . . ,xr} such that

A1 • xix′i = δ1/r for i = 1, . . . , r, (109)

A2 • xix′i = δ2/r for i = 1, . . . , r − 2. (110)

D.2.2 Bounding the rank of block matrices

Proposition 7 Let X ∈ Sn×n+ and b ∈ im(X). Define

Y (c) =

(
c b′

b X

)
, c ∈ R. (111)

Suppose Y (c) � 0 and rank(X) = r. Then

rank(Y (c)) ∈ {r, r + 1}. (112)

Furthermore, if c∗ is the minimum value such that Y (c) � 0:

c∗ = arginf
c:Y (c)�0

c, (113)

then we have rank(Y (c∗)) = r.

Finally, if b /∈ im(X), then Y (c) � 0 cannot hold for any c ∈ R.

Proof: Since adding rows and columns to a matrix will not decrease its rank, so obviously
rank(Y (c)) ≥ rank(X) = r. To show rank(Y (c)) ≤ r + 1, let the eigenvalues of X and Y (c) be
λ1, . . . , λn and λ̂1, . . . , λ̂n+1, both in increasing order. Then by Theorem 4.3.8 of [43], we have

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ . . . λ̂n ≤ λn ≤ λ̂n+1. (114)

Since rank(X) = r and X ∈ Sn×n+ , so λ1 = . . . = λn−r = 0. As Y (c) � 0, we have

0 ≤ λ̂1 ≤ . . . ≤ λ̂n−r ≤ 0. (115)

Therefore rank(Y (c)) ≤ (n+ 1)− (n− r) = r + 1.

As for the second part, we can actually compute c∗ explicitly. Y (c) � 0 if and only if
(α,u′)Y (c)(α,u′)′ ≥ 0 for all α ∈ R and u ∈ Rn, i.e.

cα2 + 2αb′u + u′Xu ≥ 0, ∀ α ∈ R,u ∈ Rn. (116)

If α = 0, this must hold true since X � 0. Otherwise,

c∗ = max
α6=0,u

−u′Xu− 2αb′u

α2
(117)

= max
z
−z′Xz− 2b′z (118)

=

{
b′X†b if b ∈ im(X)

∞ if b /∈ im(X)
, (119)

where X† is the pseudo-inverse of X . To prove rank(Y (c∗)) = r, it suffices to show that
Ker(Y (c∗)) = n− r + 1. Towards this end first note

Y (c∗)

(
−1
X†b

)
=

(
b′X†b b′

b X

)(
−1
X†b

)
(120)

=

(
0

−b +XX†b

)
= 0. (121)

where the last step also used b ∈ im(X). Hence
(
−1
X†b

)
∈ Ker(Y (c∗)).
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Furthermore, rank(X) = r implies there are n − r linearly independent vectors u1, . . . ,un−r ∈
Ker(X). As b ∈ im(X), so b′ui = 0 for all i. Therefore

Y (c∗)

(
0
ui

)
=

(
c∗ b′

b X

)(
0
ui

)
=

(
b′ui
Xui

)
= 0. (122)

Clearly
(
−1
X†b

)
,

(
0
u1

)
, . . . ,

(
0

un−r

)
are linearly independent, so Ker(Y (c∗)) ≥ n−r+1,

i.e. rank(Y (c∗)) ≤ r.

Finally, it is obvious from (119) that no c ∈ R makes Y (c) � 0 if b /∈ im(X).

Proposition 8 Let P , Q, R be n-by-n matrices, and

Z =

(
P R
R′ Q

)
. (123)

Suppose Z � 0 and rank(Z) = 2n − 1. Denote r = rank(P ) and s = rank(Q). Then r + s ∈
{2n− 1, 2n}.

Proof: Let Ker(P ) be spanned by u1, . . . ,un−r, and Ker(Q) be spanned by v1, . . . ,vn−s. Denote

ûi =

(
ui
0

)
and v̂i =

(
0
vi

)
. Then

û′iZûi = u′iPu
′
i = 0. (124)

Since Z � 0, so ûi ∈ Ker(Z). Similarly v̂i ∈ Ker(Z). Clearly û1, . . . , ûn−r, v̂1, . . . , v̂n−s are
linearly independent, therefore

2n− 1 = rank(Z) ≤ 2n− (n− r)− (n− s) = r + s. (125)
So r + s ∈ {2n− 1, 2n}.
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