
ar
X

iv
:1

01
1.

04
72

v1
 [

cs
.L

G
]

 1
 N

ov
 2

01
0

Regularized Risk Minimization by Nesterov’s Accelerated Gradient

Methods: Algorithmic Extensions and Empirical Studies

Xinhua Zhang xinhua.zhang.cs@gmail.com

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

Ankan Saha ankans@cs.uchicago.edu

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

S.V.N. Vishwanathan vishy@stat.purdue.edu

Department of Statistics and Department of Computer Science, Purdue University, IN 47906, USA

Abstract

Nesterov’s accelerated gradient methods
(AGM) have been successfully applied in
many machine learning areas. However,
their empirical performance on training max-
margin models has been inferior to existing
specialized solvers. In this paper, we first ex-
tend AGM to strongly convex and compos-
ite objective functions with Bregman style
prox-functions. Our unifying framework cov-
ers both the∞-memory and 1-memory styles
of AGM, tunes the Lipschiz constant adap-
tively, and bounds the duality gap. Then
we demonstrate various ways to apply this
framework of methods to a wide range of ma-
chine learning problems. Emphasis will be
given on their rate of convergence and how
to efficiently compute the gradient and opti-
mize the models. The experimental results
show that with our extensions AGM outper-
forms state-of-the-art solvers on max-margin
models.

1. Introduction

There has been an explosion of interest in machine
learning over the past decade, much of which has been
fueled by the phenomenal success of binary Support
Vector Machines (SVMs). Driven by numerous appli-
cations, recently, there has been increasing interest in
support vector learning with linear models. At the
heart of SVMs is the following regularized risk mini-
mization (RRM) problem:

min
w

J(w) := λΩ(w)
︸ ︷︷ ︸

regularizer

+ Remp(w)
︸ ︷︷ ︸

empirical risk

(1)

with Ω(w) :=
1

2
‖w‖22 (2)

Remp(w) :=
1

n
max
b∈R

n∑

i=1

[1− yi(〈w,xi〉+ b)]+, (3)

where [x]+ = x if x ≥ 0 and 0 otherwise. Here we
assume access to a training set of n labeled examples
{(xi, yi)}ni=1 where xi ∈ Rp and yi ∈ {−1,+1}, and
use the half square Euclidean norm ‖w‖22 =

∑

i w
2
i as

the regularizer. The parameter λ controls the trade-off
between the empirical risk and the regularizer.

There has been significant research devoted to devel-
oping specialized optimizers which minimize J(w) effi-
ciently. Zhang et al. [1] proved that cutting plane and
bundle methods may require at least O(np/ǫ) compu-
tational efforts to find an ǫ accurate solution to (1),
and they suggested using Nesterov’s accelerated gra-
dient method (AGM) which provably costs O(np/

√
ǫ)

time complexity. In general, AGM takes O(1/
√
ǫ)

times of gradient query to find an ǫ accurate solution
to

min
x∈Q

f(x), (4)

where f is convex and has L-Lipschitz continuous gra-
dient (L-l.c.g), and Q is a closed convex set in the
Euclidean space. AGM is especially suitable for large
scale optimization problems because each iteration it
only requires the gradient of f .

Unfortunately, despite some successful application of
AGM in learning sparse models [2, 3] and game playing

http://arxiv.org/abs/1011.0472v1

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

[4], it does not compare favorably to existing special-
ized optimizers when applied to training large margin
models [5]. It turns out that special structures exist
in those problems, and to make full use of AGM, one
must utilize the computational and statistical proper-
ties of the learning problem by properly reformulating
the objectives and tailoring the optimizers accordingly.

To this end, our first contribution is to show that in
both theory and practice smoothing Remp(w) as in [6]
is advantageous to the primal-dual versions of AGM.
The dual of (1) is

max
α

D(α) =
∑

i

αi −
1

2λ
α⊤Y X⊤XYα, (5)

s.t. α ∈ Q2 :=
{

α ∈ [0, n−1]n :
∑

i

yiαi = 0
}

. (6)

Comparing (4) with (1) and (5), it seems more natural
to apply AGM to (5) because it is smooth. However
in practice, most αi at the optimum will be on the
boundary of [0, n−1]. According to [7], such αi’s are
easy to identify and so the corresponding entries in the
gradient are wasted by AGM. This structure of sup-
port vector is unique for max-margin models, which
will also be manifested in our experiments (Section 6).

In contrast, smoothing Remp has a lot of advantages.
First, it directly optimizes in the primal J , avoiding
the indirect translation from the dual solution to the
primal. Second, the resulting optimization problem
is unconstrained. If Ω is strongly convex, then linear
convergence can be achieved. Third, gradient of the
smoothed R̃emp can often be computed efficiently, and
details will be given in Section 5.4. Fourth, the diam-
eter of the dual space Q2 often grows slowly with n, or
even decreases. This allows using a loose smoothing
parameter. Fifth, in practice most αi at the optimum
are 0, where R̃emp best approximates Remp. There-
fore, the approximation is actually much tighter than
the worst case theoretical bound, and a good solution
for R̃emp is more likely to optimize Remp too. Last but

most important, the smoothed R̃emp themselves are
reasonable risk measures [8], which also deliver good
generalization performance in statistics. Now that it
is much easier to optimize the smoothed objectives, a
model which generalizes well can be quickly obtained
with the homotopy scheme (i.e. anneal the smoothing
parameter).

Using the same idea of smoothing Remp, AGM can be
applied to a much wider variety of RRM problems by
utilizing its composite structure. Given a model ψ of
R̃, if Ω(w) + ψ(w) can be solved efficiently, then [9]
showed that Ω(w) + R̃(w) can be solved in O(1/

√
ǫ)

steps, even if Ω is not differentiable, e.g. L1 norm [10].

Similar approach is applied to the L1,∞ regularizer and
the elastic net [11] regularizer by [12]:

Ω(w) =
γ

2
‖w‖22 + ‖w‖1 =

γ

2

∑

i

w2
i +

∑

i

|wi|. (7)

This Ω is strongly convex with respect to (wrt) the
L2 norm, and similarly in many RRM problems Ω is
strongly convex wrt some norm ‖·‖. For example, the
relative entropy regularizer in boosting [13]:

Ω(w) =
∑

i

wi logwi (8)

is strongly convex wrt L1 norm, and the log determi-
nant of a matrix in [14–16]:

Ω(W) = − log detW (9)

is strongly convex wrt the Frobenius norm. By ex-
ploiting the strong convexity, [17] accelerated the con-
vergence rate from O(1/

√
ǫ) to O(log 1

ǫ
). However,

the prox-function in this case must be strongly con-
vex wrt ‖·‖ too. Existing methods either ignore the
strong convexity in Ω [9], or restrict the norm to L2

[10, 17]. As one major contribution of this paper, we
extend AGM to exploit this strong convexity in the
context of Bregman divergence. In particular, we allow
Ω to be strongly convex wrt a Bregman divergence in-
duced by a smooth convex function d (to be formalized
later), where d is in turn strongly convex wrt certain
norm ‖·‖. By using d as a prox-function, we manage
to achieve linear convergence for a wide range of RRM
problems.

There are two types of first order methods that both
achieve the optimal rate. The first type is the origi-
nal AGM pioneered by Nesterov [6, 17–20], which uses
a sequence of estimation functions (hence we call it
AGM-EF). In particular, it uses the whole past iterates
to progressively build a sequence of estimate functions
which approximate the objective function. The second
type was developed by a number of other researchers
and a unified treatment was given by [9]. Intuitively,
it generalizes the idea of gradient descent by proximal
regularization (hence we call it AGM-PR), which can
be further accelerated by momentum. Therefore, these
two types of methods are different in concept. In addi-
tion, both AGM-EF and AGM-PR a ∞-memory ver-
sion which builds a model of the objective by using
all the past gradients, and a 1-memory version which
approximates that model by a single Bregman diver-
gence.

We choose to base our extensions on AGM-EF, be-
cause compared with AGM-PR it provides much more

2

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

No composite Composite
cvx sc cvx sc

Euclidean
1-memory [19] [19] × ×
∞-memory [6] [17] [17] [17]

Bregman
1-memory [23] × × ×
∞-memory [6] × × ×

Table 1. Summary of AGM-EF. “sc” means strongly con-
vex and “cvx” means just convex. × means novel contri-
bution of this paper. AGM-PR can handle all but sc.

flexibility in adaptively tuning L.1 This is because
the inductive relationship maintained by AGM-EF in-
volves a single iteration, while that for AGM-PR in-
volves two successive steps. The novelty and generality
of our method in the context of existing methods are
summarized in Table 1. We further provide bounds on
the duality gap which amounts to effective termination
criteria. As another important contribution, we derive
linear convergence for the duality gap in the context
of strong convexity. Computationally, at each itera-
tion our method requires only one projection and one
gradient evaluation within the feasible region.2

Outline of the paper. In Section 2, we follow [24,
Section 4.1, Definition 3] to extend the concept of
strong convexity to the context of Bregman divergence.
We show several properties that will play a key role in
the subsequent development of the new algorithms. In
Section 3 and 4, two novel variants of AGM-EF are de-
veloped along the lines of ∞-memory and 1-memory.
They both achieve global linear convergence by utiliz-
ing the Bregman generalized strong convexity in either
Ω or Remp. Section 5 elaborates on how to effectively
apply our method to solve Bregman regularized risk
minimization problems, and many examples of ma-
chine learning models are discussed. Also presented is
the algorithms which efficiently compute the gradient
and solve the model. Experimental results are given in
Section 6, where we show empirically that by smooth-
ing Remp and exploiting the generalized strong con-
vexity in Ω, the L2 and entropic regularized risk min-
imization problems can be solved significantly faster
than the state-of-the-art optimizers.

A ready reckoner of the convex analysis concepts used
in the paper can be found in Appendix A.

1All APM-PR variants with adaptive L, e.g. [9, 10, 21,
22], require the estimate of L grow monotonically through
iterations. And their technique does not extend to asym-
metric Bregman divergence.

2Some AGM algorithms require two projections [6] or
two gradients [17] per iteration, or evaluate the gradient
outside the feasible region [19, Section 2.2.4].

2. Preliminaries

From the optimization perspective, the objectives con-
sidered in this paper have the same form as in [9]. Let
Rp be endowed with a norm ‖·‖. Consider the follow-
ing nonsmooth convex objective:

min
x
J(x) = f(x) + Ψ(x), (10)

where Ψ : Rp 7→ R := (−∞,+∞] and f : Rp 7→ R are
proper, lower semicontinuous (lsc) and convex. As-
sume domΨ is closed, f is differentiable on an open
set containing domΨ, and ∇f is Lipschitz continuous
on domΨ, i.e. there exists L > 0 such that

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ x,y ∈ domΨ.

Some special cases are in order. The first is constrained
smooth optimization, where Ψ is the indicator function
for a nonempty closed convex set Q ⊆ Rp:

Ψ(x) =

{

0 if x ∈ Q
+∞ otherwise

.

Therefore, in the sequel we will always discuss uncon-
strained minimization for J(w), although this is just
a matter of notation. A second example is the L1 reg-
ularization, where

Ψ(x) =

p
∑

i=1

|xi| .

In fact, many machine learning problems are special
cases of (10) and details can be found in Section 5 and
[25, Table 5].

Next, we will present in detail two additional assump-
tions: strong convexity of f and Ψ in the sense of
Bregman divergence, and efficiently solvable ground
optimization problems.

2.1. Extending strong convexity to Bregman

divergence

Let d be a differentiable and σ strongly convex function
with respect to some norm ‖·‖.3 Then we can define
a Bregman divergence:

∆d(x,y) = d(x) − d(y) − 〈∇d(y),x − y〉 .
By the definition of σ-sc, we have

∆d(x,y) ≥
σ

2
‖x− y‖2 , for all x,y.

Furthermore, Bregman divergence can be used to gen-
eralize the concept of strong convexity [24, Definition
3, Chapter 4].

3AGM capitalizes on two properties of the norm: con-
vexity and linearity (‖c · x‖ = |c| ‖x‖).

3

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Definition 1 (Strong convexity for Bregman diver-
gence). A convex function f is said to be λ strongly
convex with respect to d (λ-sc wrt d) with λ ≥ 0 if for
all x and y we have

f(x) ≥ f(y) + 〈g,x− y〉+ λ∆d(x,y) ∀ g ∈ ∂f(y).

If λ > 0, we say f is strictly strongly convex.

For example, with d(x) = 1
2 ‖x‖

2
where the norm is

Euclidean, we recover the conventional strong convex-
ity. Here we allow λ to be 0 for a unified exposition,
and trivially all convex functions are 0-sc wrt any d. It
is noteworthy that Definition 1 preserves some impor-
tant properties of the conventional strong convexity.

Property 1. If f is λ-sc wrt d, then f must be λσ-sc
wrt ‖·‖. Hence for any α ∈ [0, 1] and x,y, we have

f(αx+ (1− α)y) ≤ αf(x) + (1 − α)f(y)

− λσ

2
α(1 − α) ‖x− y‖2 .

Property 2. If αi ≥ 0 and fi is λi-sc wrt d (λi ≥ 0),
then

∑

i αifi is
∑

i αiλi-sc wrt d.

Property 3. d(x) is 1-sc wrt d. So by Property 2,
∆d(x,x0) is also 1-sc wrt d for any fixed x0.

Many problems are constrained to a feasible region Q.
In the sequel we will always assume that Q ⊆ dom d
and Q is closed and convex.

Property 4. Suppose f : Rn 7→ R is proper, lsc, and
λ-sc wrt d and x∗ = argminx f(x). Then

f(x)− f(x∗) ≥ λ∆d(x,x
∗) for all x ∈ dom f.

The proof simply uses the definition of λ-sc and the
optimality condition of x∗: 〈g,x− x∗〉 ≥ 0 for all g ∈
∂f(x∗) and x ∈ dom f .

A direct application of Property 2, 3 and 4 gives a very
important inequality which is also used extensively in
[9, Property 1] and [26, Lemma 6]:

Property 5. Suppose f is proper, lsc, and convex with
range R. Let x∗ = argmaxx f(x)+∆d(x,x0), then for
all x

f(x) + ∆d(x,x0) ≥ f(x∗) + ∆d(x
∗,x0) + ∆d(x,x

∗).

The following property of Bregman divergence plays a
key role in keeping a compact expression of our esti-
mation functions.

Property 6. For all αi ≥ 0 and xi in the interior of
dom d, define

q(x) := 〈s,x〉+
∑

i

αi∆d(x,xi).

Then q(x) can be equivalent expressed as

q(x) = a∆d(x,x
∗) + b,

where a =
∑

i αi, x
∗ = argminx q(x), and b = q(x∗).

Note x∗ is the unconstrained minimizer of q(x).

Proof. By the optimality condition of x∗ we have

〈

s+
∑

i

αi(∇d(x∗)−∇d(xi)),x − x∗
〉

= 0 ∀x. (11)

This equality must be changed to ≥ if x∗ is the min-
imizer of q(x) over a constrained set Q dom d. By
definition,

q(x∗) = 〈s,x∗〉+
∑

i

αi∆d(x
∗,xi).

Subtracting it from the definition of q(x) we get

q(x) = q(x∗) + 〈s,x− x∗〉
+
∑

i

αi(d(x) − d(x∗)− 〈∇d(xi),x− x∗〉)

= q(x∗)−
〈
∑

i

αi(∇d(x∗)−∇d(xi)),x − x∗
〉

+
∑

i

αi(d(x) − d(x∗)− 〈∇d(xi),x− x∗〉)

= q(x∗) +

(
∑

i

αi

)

∆d(x,x
∗). �

Assumption 1. In the objective (10), we will assume
that f is λ1-sc and Ψ is λ2-sc wrt a given d (λ1, λ2 ≥
0). Then f +Ψ is λ-sc, where

λ := λ1 + λ2.

2.2. Assumption on the ground optimization

problem

We assume it is possible to efficiently solve the follow-
ing ground problem:

Assumption 2. Given an arbitrary linear function
〈u,x〉, αi ≥ 0 and xi ∈ domΨ (i ∈ [k] := {1, . . . , k}),
assume the following optimization problem can be
solved efficiently:

min
x
〈u,x〉+ b+

k∑

i=1

αi∆d(x,xi) + Ψ(x). (12)

For different k, we call the assumption BD-k.

In [18] and [19], the 1-memory AGM-EF for general
convex objective assumes BD-1. In [6] and [17], BD-∞
is assumed in the sense that for arbitrary k <∞, (12)

4

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

is assumed to be efficiently solvable. In our later 1-
memory AGM-EF, we will assume BD-2 if λ1 > 0. Al-
though most literature assume BD-1, it is actually not
hard to see that extension to BD-2 does not cause any
real difficulty. In fact, even BD-∞ is feasible as long
as
∑

i αi∇d(xi) can be aggregated efficiently (which is
often true).

As a direct consequence of BD-1, now that the f in
(10) is λ1-sc and L-l.c.g, J(x) can be solved in one
step if L = σλ1. To see this, by definition for all x

f(x) ≤ f(x0) + 〈∇f(x0),x− x0〉+
L

2
‖x− x0‖2 ,

and

f(x) ≥ f(x0) + 〈∇f(x0),x− x0〉+ λ1∆d(x,x0)

≥ f(x0) + 〈∇f(x0),x− x0〉+
λ1σ

2
‖x− x0‖2 .

So clearly L ≥ σλ1. If L = σλ1, then

f(x) ≡ f(x0) + 〈∇f(x0),x− x0〉+ λ1∆d(x,x0).

Hence, f(x) + Ψ(x) exactly satisfies the precondition
of BD-1. Therefore, in the sequel we will assume

L > σλ1.

c := L
σλ1

can be viewed as the condition number.

BD-2 allows us to inductively apply Property 6 to sim-
plify the expression of the following function

qn(x) := a0∆d(x,x0) +
n∑

i=1

[bi + 〈ui,x〉+ ai∆d(x,xi)]

into

qn(x) =

(
n∑

i=0

ai

)

∆d(x,x
∗
n) + qn(x

∗
n), n ≥ 1

where x∗
n = argminx qn(x). Let q0(x) = a0∆d(x,x0).

Then simplify q1(x) into the sum of a constant and a
Bregman divergence by Property 6:

q1(x) = (a0 + a1)∆d(x,x
∗
1) + q1(x

∗
1), (13)

x∗
1 = argmin

x

q0(x) + b1 + 〈u1,x〉+ a1∆d(x,x1),

since x∗
1 can be computed efficiently according to as-

sumption BD-2. Next, q2(x) can be simplified by using
(13) and Property 6 again:

q2(x) = (a0 + a1)∆d(x,x
∗
2) + q2(x

∗
2),

x∗
2 = argmin

x

q1(x) + b2 + 〈u2,x〉+ a2∆d(x,x2).

This incremental scheme is especially useful when the
argmin of all qk(x) is readily available, [e.g. 23, Section
5].

Notations. Lower bold case letters (e.g., x, α) de-
note vectors, xi denotes the i-th component of x, 0
refers to the vector with all zero components, ei is
the i-th coordinate vector (all 0’s except 1 at the i-
th coordinate) and Sn refers to the n dimensional
simplex {x ∈ [0, 1]n :

∑n
i=1 xi = 1}. Unless specified

otherwise, 〈·, ·〉 denotes the Euclidean dot product
〈x,w〉 =

∑

i xiwi. We denote R := R ∪ {∞}, and
[t] := {1, . . . , t}. From now on, we will always fix the
d in the context and omit the subscript d in ∆d.

We follow the definition of norms in [6] which we recap
here. Suppose a finite dimensional real vector space E
(e.g. Rp) is endowed with a norm ‖·‖. The space of
linear functions on E is called the dual space which
we denote as E∗. The norm of E∗ is defined as

‖s‖∗ := max
x∈E:‖x‖=1

〈s,x〉 .

Suppose A is a linear operator from E1 to E∗
2 , and

Ei has norm ‖·‖i for i = 1, 2. Then the norm of A is
defined as

‖A‖ := max
x∈E1,α∈E2,‖x‖1

=‖α‖
2
=1
〈Ax,α〉 . (14)

If we define an adjoint operator A∗ : E2 7→ E∗
1 as

〈A∗α,x〉 := 〈Ax,α〉 , ∀x ∈ E1,α ∈ E2.

Then it can be shown that

‖A∗‖ = max
x∈E1,α∈E2,‖x‖1=‖α‖

2
=1
〈A∗α,x〉

= max
x∈E1,α∈E2,‖x‖1=‖α‖

2
=1
〈Ax,α〉 = ‖A‖ .

The definition of matrix norm in (14) implies that

‖Ax‖∗ ≤ ‖A‖ ‖x‖ ∀ x ∈ E1,

‖A∗α‖∗ ≤ ‖A∗‖ ‖α‖ ∀ α ∈ E2.

To simplify notation we denote

ℓf (x;y, λ1) := f(y) + 〈∇f(y),x − y〉+ λ1∆(x,y).

If f is λ1-sc, then ℓf(x;y, λ1) ≤ f(x) for all y and x.

3. ∞-memory AGM-EF

The ∞-memory version of AGM-EF refers to the
class of algorithms which use in each iteration all the
past gradients ∇f(u1), . . . ,∇f(uk). We present the
method in Algorithm 1.

4One can verify by simple algebra that uk+1 is a convex
combination of zk and xk.

5

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Algorithm 1 ∞-memory AGM-EF (AGM-EF-
∞).

1: Arbitrarily initialize x0 ∈ domΨ. Set z0 ← x0.
2: Set A0 ← 0.
3: ψ0(x)← ∆(x,x0).
4: for k = 0, 1, . . . do
5: Denote as ak+1 the positive root (in a) of

(a+Ak)(λ1a+ λAk + 1) + aλ2Ak = Lσ−1a2.
6: Ak+1 ← Ak + ak+1,

τ1 ← 1 + λAk, τ2 ← λ1ak+1, τ3 ← λ2ak+1
Ak

Ak+1
,

τ ← τ1 + τ2 + τ3.
7: uk+1 ← ak+1τ1zk+(τAk+τ3ak+1)xk

τAk+1−τ2ak+1
. 4

8: ψk+1(x)← ψk(x)+ak+1[Ψ(x)+ℓf(x;uk+1, λ1)].
9: Find zk+1 ← argminx ψk+1(x).

10: xk+1 ← (Akxk + ak+1zk+1) /Ak+1.
11: end for

The main idea of the algorithm is to approximate J(x)
by a sequence of functions ψk that are constructed in
Step 8 of Algorithm 1, and then ensure the following
relationship at all iterations (k ≥ 0):

AkJ(xk) ≤ min
x
ψk(x). (15)

By construction, for all k ≥ 0

ψk(x) = ∆(x,x0) +

k∑

i=1

ai[Ψ(x) + ℓf (x;ui, λ1)]. (16)

Summation from 1 to 0 is assumed to be 0. Now it is
not hard to see that relationship (15) implies rates of
convergence:

Lemma 3. If (15) holds for all k ≥ 1, then for any
x ∈ domΨ, we have

J(xk)− J(x) ≤ A−1
k ∆(x,x0). (17)

Proof. By (16), we have for all k ≥ 1

ψk(x) = ∆(x,x0) +

k∑

i=0

ai[Ψ(x) + ℓf (x;ui, λ1)]

≤ ∆(x,x0) +

k∑

i=0

ai[Ψ(x) + f(x)]

= ∆(x,x0) +AkJ(x).

Combining with (15), we get (17). �

Therefore, the rate of convergence totally depends on
how fast Ak grows. We will show that Algorithm 1
yields Ak ∼ k2 if λ = 0, or Ak ∼ ek if λ > 0. All
updates are also kept efficient. We next prove (15)
and lower bound the growth rate of Ak.

Lemma 4 (Eq (15)). The sequence {xk} generated by
Algorithm 1 satisfy for all k ≥ 0

AkJ(xk) ≤ min
x
ψk(x).

Proof. We prove by induction. First check both sides
are 0 for k = 0. Now suppose (15) holds for some
step k ≥ 0. By (16) and Property 2, ψk must be
(λAk+1)-sc wrt d. So by Property 4 and the fact that
zk minimizes ψk, we have

ψk(zk+1) ≥ ψk(zk) + (λAk + 1)∆(zk+1, zk)

≥ AkJ(xk) + (λAk + 1)∆(zk+1, zk), (18)

where the second inequality is by induction assump-
tion. So

min
x
ψk+1(x) = ψk+1(zk+1)

= ψk(zk+1) + ak+1ℓf(zk+1;uk+1, λ1) + ak+1Ψ(zk+1)

(a)

≥ Akf(xk) +AkΨ(xk) + (1 + λAk)∆(zk+1, zk)

+ ak+1ℓf (zk+1;uk+1, λ1) + ak+1Ψ(zk+1)

(b)

≥ Ak [f(uk+1) + 〈∇f(uk+1),xk − uk+1〉]
+ (1 + λAk)∆(zk+1, zk) +AkΨ(xk) + ak+1Ψ(zk+1)

+ ak+1[f(uk+1) + 〈∇f(uk+1), zk+1 − uk+1〉
+ λ1∆(zk+1,uk+1)]

= Ak+1f(uk+1) +AkΨ(xk) + ak+1Ψ(zk+1)

+ 〈∇f(uk+1), Akxk −Ak+1uk+1 + ak+1zk+1〉
+ τ1∆(zk+1, zk) + τ2∆(zk+1,uk+1)

(c)

≥ Ak+1f(uk+1)

+Ak+1Ψ(xk+1) +
σ

2
τ3 ‖zk+1 − xk‖2

+ 〈∇f(uk+1), Akxk −Ak+1uk+1 + ak+1zk+1〉
+
σ

2
τ1 ‖zk+1 − zk‖2 +

σ

2
τ2 ‖zk+1 − uk+1‖2

(d)

≥ Ak+1Ψ(xk+1) +Ak+1

[

f(uk+1)

+
ak+1

Ak+1

〈

∇f(uk+1), zk+1 −
Ak+1uk+1−Akxk

ak+1

〉

+
σ

2

τ1 + τ2 + τ3
Ak+1

∥
∥
∥
∥
zk+1 −

τ1zk + τ2uk+1 + τ3xk

τ1 + τ2 + τ3

∥
∥
∥
∥

2]

(e)
= Ak+1Ψ(xk+1) +Ak+1

[

f(uk+1)

+
ak+1

Ak+1

〈

∇f(uk+1), zk+1−
Ak+1uk+1−Akxk

ak+1

〉

+
L

2

(
ak+1

Ak+1

)2 ∥
∥
∥
∥
zk+1 −

τ1zk + τ2uk+1 + τ3xk

τ1 + τ2 + τ3

∥
∥
∥
∥

2]

(f)
= Ak+1Ψ(xk+1) +Ak+1

[

f(uk+1)
6

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

+ 〈∇f(uk+1),xk+1 − uk+1〉+
L

2
‖xk+1−uk+1‖2

]

(g)

≥ Ak+1Ψ(xk+1) +Ak+1f(xk+1) = Ak+1J(xk+1).

Here, step (a) is by (18). (b) is by the convexity of f
(at uk+1). (c) is by the λ2-sc of Ψ and Property 1. (d)
is by the convexity and linearity of ‖·‖. (e) is by the
rule of choosing ak+1 in Step 5 of Algorithm 1. (f) is
by the definition of xk+1 and uk+1. (g) is by L-l.c.g
of f . �

Next, we can lower bound the growth rate of Ak.

Lemma 5. Let k ≥ 1. Then

Ak ≥ max

σ

4L
(k + 1)

2
,

σ

L− σλ1

(

1 +

√

σλ

4L

)2k−2

.

Proof. Since A0 = 0, so by solving Step 5 in Algorithm
1, we get A1 = σ

L−σλ1
. Hence the lemma clearly holds

for k = 1. For all k ≥ 1, denote

M = (ak+1 +Ak)(λ1ak+1 + λAk + 1) + ak+1λ2Ak

= Ak+1 + λAkAk+1 + λ1ak+1Ak+1 + λ2ak+1Ak.

By the choice of ak+1 in Step 5 of Algorithm 1, we get

Ak+1 ≤M =
L

σ
(Ak+1 −Ak)

2

=
L

σ

(√

Ak+1 +
√

Ak

)2 (√

Ak+1 −
√

Ak

)2

≤ 4L

σ
Ak+1

(√

Ak+1 −
√

Ak

)2

. (19)

So when λ = 0 we have

Ak ≥
(
k − 1

2

√
σ

L
+
√

A1

)2

=
σ

4L
(k + 1)2.

When λ > 0, we have

λAkAk+1 ≤M ≤
4L

σ
Ak+1

(√

Ak+1 −
√

Ak

)2

where the last step is by (19). So

√

Ak+1 ≥
(

1 +

√

λσ

4L

)
√

Ak,

which directly implies the second term in max. �

Combining Lemma 3, 4 and 5, we derive

Theorem 6. For all k ≥ 1 and x ∈ domΨ,

J(xk)− J(x) ≤ ∆(x,x0)min

{

4L

σ(k + 1)2
,

L− σλ1
σ

(

1 +

√

σλ

4L

)−2k+2}

.

Therefore, as long as one of λ1 and λ2 is strictly pos-
itive such that λ = λ1 + λ2 > 0, J(xk) converges
linearly. When λ1 = 0 and λ2 > 0, ψk contains only
one Bregman divergence making it easier to optimize.

Remark 1. If (18) is replaced by

ψk(zk+1) ≥ ψk(zk) + (λAk + 1)∆(zk+1, zk)

≥ AkJ(xk) + (λAk + 1)
σ

2
‖zk+1 − zk‖2 ,

then it is not hard to see that the proof of Lemma 4
still goes through. So Ψ does not need to be λ2-sc wrt
d, and it suffices to be λ2σ strongly convex wrt ‖·‖. In
practice, checking and satisfying the latter condition
can be much easier. Similar remark can be made later
for AGM-EF-1, and for the ease of exposition we will
still assume Ψ is λ2-sc wrt d.

3.1. Notes on the Computations

The whole algorithm relies on solving zk efficiently,
and it can be dealt with in two ways. First, by (16),
minimizing ψk(x) only requires solving the following
form of problem:

min
x

AkΨ(x) + ∆(x,u0) + λ1

n∑

i=0

ai∆(x,ui)

+

〈
n∑

i=0

ai∇f(ui),x

〉

This is feasible by Assumption 2, and in practice the
gradients of f and d can be aggregated on the fly.

The second method requires making one more assump-
tion, in addition to the usual assumption domΨ ⊆
dom d.

Assumption 7. dom d ⊆ domΨ.

This assumption is often met when d is the entropy
and domΨ is the simplex. It ensures that zk :=
minx∈domΨ ψk(x) is also a solution of the uncon-
strained optimization minx∈dom d ψk(x). Then when
Ψ is affine on its domain, we can apply Property 6
and the subsequent discussion on inductively updating
ψk(x). This scheme is particularly useful in Algorithm
1 because the minimizer zk is already available.

Even if Assumption 7 does not hold and zk is not an
unconstrained minimizer of ψk(x), one can still spend
extra computations to find the unconstrained mini-
mizer and inductively update ψk(x). This idea will be
useful if the gradient aggregation in the first method
is not viable.

3.2. Adaptively tuning the Lipschitz constant

The Algorithm 1 requires the explicit value of L. This
is usually not available, or the global maximum cur-

7

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Algorithm 2 AGM-EF-∞ with adaptive L.

Require: Down scaling factor γd and up scaling fac-
tor γu (γd, γu > 1). An optimistic estimate L̃ ≤ L.

1: Arbitrarily initialize x0 ∈ domΨ. Set z0 ← x0.
2: Set A0 ← 0.
3: ψ0(x)← ∆(x,x0).
4: L0 ← L̃ ∗ γd ∗ γu.
5: for k = 0, 1, . . . do
6: Lk+1 ← Lk/(γd ∗ γu).
7: repeat

8: Lk+1 ← Lk+1 ∗ γu.
9: Assign to ak+1 the positive root (in a) of

(a+Ak)(λ1a+λAk+1)+aλ2Ak = Lk+1σ
−1a2.

10: Do step 6 to 10 of Algorithm 1.
11: until Ak+1J(xk+1) ≤ ψk+1(zk+1).
12: end for

vature is much larger than the local directional cur-
vature. As a result, the steps size 1/L becomes too
conservative. From the proof of Lemma 4, it is clear
that L is used only to ensure (15). So we can probe
smaller values of L. The modified algorithm is given
in Algorithm 2.

The inner “repeat” loop must terminate in a finite
number of steps because Lk grows exponentially and
once Lk ≥ L the “until” condition must be satisfied.
And the number of steps in this inner loop is loga-
rithmic in L, with the final Lk < γuL. Moreover,
this Lk is decayed by a factor of γd before being used
to initialize Lk+1. This is in sharp contrast to AGM-
PR where the estimates of L must grow monotonically
through iterations. Let us formally characterize how
adaptively tuning L leads to faster convergence rates
through faster growth rate of Ak.

Lemma 8. For all k ≥ 1,

Ak ≥ max

{

σ

L1 − σλ1

k∏

i=2

(

1 +

√

σλ

Li

)2

,

σ

4

(√
4

L1
+

k∑

i=2

√
1

Li

)2}

.

Proof. Simply replace the L in (19) by Li+1. �

In practice, we observed that the Lk is often only 10
per cent of the real L and therefore by Lemma 8 the
convergence rate is 10 times faster than using L. More-
over, the Lk in successive iterations are quite close so
the inner loop terminates in only 2-3 steps.

This adaptive scheme relies on the fact that the key

relationship (15) is independent of L and involves func-
tion values only at two points (rather than globally).
In contrast, the algorithm and analysis in [26] keep a
global relationship which explicitly involves L, making
it hard to accommodate adaptive L.

We also tried to adaptively tune λ, but not successful.
This is turns out to be very hard because the proof
uses λ as a a global property (recall the fact that ψk

must be (λAk + 1)-sc wrt d), while L is used only at
uk+1 and xk+1 in Step (g) of the proof of Lemma 4.

3.3. Bounding the Duality Gap

Algorithm 1 does not have a termination criterion, and
a natural criterion will be based on the duality gap.
Furthermore, in some applications like (1) the primal
problem is nonsmooth and AGM-EF-∞ is applied only
to its dual problem which is l.c.g. So it is necessary to
convert the dual iterates at each step into the primal,
and characterize the convergence rate in the primal.
In this subsection, we extend the technique in [2, Sec-
tion 2] to the case of composite objective. Except the
strong convexity, our whole setting and procedure bear
much resemblance to [9], [2, Theorem 2.2], [6, Theo-
rem 3] and [17, Section 6]. We are unaware of any
existing result which shows linear convergence of the
duality gap as we will describe below.

Consider a minimax problem

min
x

max
α∈Q2

φ(x,α) + Ψ(x).

Here Ψ : Rp 7→ R is proper, lower semicontinuous and
λ2-sc wrt d (λ2 ≥ 0). Let Ψ satisfy Assumption 2.
Q2 is a compact convex set in the Euclidean space.
φ : Rp × Q2 7→ R is continuous on domΨ × Q2. For
all fixed α ∈ Q2, φ(·,α) is λ1-sc wrt d (λ1 ≥ 0) and is
differentiable on a open set containing domΨ. For all
fixed x ∈ domΨ, φ(x, ·) is strictly concave. Therefore,
the argmax

α∈Q2
φ(x,α) is unique and we denote it as

α(x).

Let us define

f(x) := max
α∈Q2

φ(x,α). (20)

Then by Denskin’s theorem [27, Theorem B.25], f
must be convex and differentiable on domΨ. We fur-
ther assume that f is L-l.c.g on domΨ. A key strong
convexity property of f is:

Lemma 9. Given all the above assumptions on φ,
f(x) must be λ1-sc. However, the converse is not nec-
essarily true, i.e. f(x) being λ1-sc does not entail that
φ(·,α) is λ1-sc for all fixed α ∈ Q2.

8

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Proof. For any x1,x2 ∈ domΨ, we have

f(x2) = max
α∈Q2

φ(x2,α) ≥ φ(x2,α(x1))

≥ φ(x1,α(x1)) + 〈∇xφ(x1,α(x1)),x2 − x1〉
+ λ1∆(x2,x1)

= f(x1) + 〈∇f(x1),x2 − x1〉+ λ1∆(x2,x1),

where the last step is by Denskin’s theorem. �

We also define a dual objective

J(x) := Ψ(x) + max
α∈Q2

φ(x,α)

D(α) := min
x
{φ(x,α) + Ψ(x)} for α ∈ Q2 (21)

where the argmin in (21) may be not unique and D(α)
may be nonsmooth. Our assumptions above ensure
that for any α ∈ Q2 and any x, the following is true:

D(α) ≤ J(x), and max
α∈Q2

D(α) = min
x
J(x).

When applied to minimize J(x), AGM-EF-∞ (with
or without adaptive L) produces a sequence of
{xk,uk, zk}. It is our goal to design a sequence of
dual variables {αk} based on {xi,ui, zi : i ≤ k} such
that the duality gap

δk := J(xk)−D(αk)

goes to 0 fast. Since

δk ≥ J(xk)− max
α∈Q2

D(α) = J(xk)−min
x
J(x),

so once δk falls below a prescribed tolerance ǫ, xk

is guaranteed to be an ǫ accurate solution of J . In-
deed we will show that the following construction of
αk meets our need:

αk =
1

Ak

k∑

i=1

aiα(ui). (22)

where ai and Ak are also from AGM-EF-∞. (22) can
be equivalently reformulated into a recursion which
allows efficient update of αk:

α1 = α(u1), and αk+1 =
Ak

Ak+1
αk +

ak+1

Ak+1
α(uk+1).

Theorem 10. Suppose a sequence {xk,uk, zk} is pro-
duced when AGM-EF-∞ is applied to minimize J(x)
by treating f as λ1-sc. Then the {αk} defined by (22)
satisfies αk ∈ Q2 and

δk = J(xk)−D(αk) ≤
1

Ak

max
x∈domΨ

∆(x,u0). (23)

Proof. Since ui ∈ domΨ, so α(ui) ∈ Q2. And αk is
a convex combination of α(ui) (i ≤ k), so αk ∈ Q2.
Using the fact that φ(x,α) is λ1-sc in α for all fixed
x, we have

ℓf (x;ui, λ1)

= f(ui) + 〈∇f(ui),x− ui〉+ λ1∆(x,ui)

= φ(ui,α(ui))+〈∇xφ(ui,α(ui)),x − ui〉+λ1∆(x,ui)

≤ φ(x,α(ui)). (24)

Now by using relationship (15) and (16), we have

AkJ(xk)

≤ min
x

{

∆(x,u0) +AkΨ(x) +

k∑

i=1

aiℓf (x;ui, λ1)

}

≤ min
x

∆(x,u0) +AkΨ(x) +

k∑

i=1

aiφ(x,α(ui))

≤ min
x

∆(x,u0) +AkΨ(α) +Akφ

(

x,
1

Ak

k∑

i=1

aiα(ui)

)

≤ max
x∈domΨ

∆(x,u0) +Ak min
x
{Ψ(x) + φ(x,αk)}

= max
x∈domΨ

∆(x,u0) +AkD(αk). �

So δk converges linearly as long as λ1 + λ2 > 0. If
domΨ is unbounded and maxx∈domΨ ∆(x,u0) = ∞,
then the bound in (23) becomes vacuous.

We emphasize that in Theorem 10, AGM-EF-∞ is in-
voked by treating f as λ1-sc, although the real strong
convexity constant λ′1 of f may be greater than λ1.
In this case, the duality gap will decay at a slower
rate than that for the gap of J (by using λ′1 in AGM-
EF-∞). However the strong convexity of Ψ is still fully
utilized in the duality gap, and in many machine learn-
ing problems the strong convexity does come from Ψ
rather than f (i.e. λ1 = λ′1 = 0).

4. 1-memory AGM-EF

Note that AGM-EF-∞ keeps a nonparametric form
(16) of the model ψk(x) whose complexity grows with
iteration. In 1-memory AGM-EF, the model is com-
pressed to a simple parametric form in each itera-
tion. Auslender and Teboulle [28] gave a Bregman
version for unconstrained optimization. [18] provided
an algorithm for constrained problems with Euclidean
distance as the prox-function. However, only [26]
and [9] accommodate both Bregman divergence and
constraints. But their algorithms do not extend to
strongly convex objectives and restrict the estimate
of L to be nondecreasing through iterations. There-
fore, we propose in this section a 1-memory AGM-EF

9

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Algorithm 3 1-memory AGM-EF (AGM-EF-1).

1: Arbitrarily pick u0 ∈ domΨ.
2: Initialize c0 ← L

σ
+ λ2.

3: q0(x)← L
σ
∆(x,u0) + Ψ(x) + ℓf(x;u0, 0).

4: x0 = z0 ← argminx q0(x).
5: for k = 0, 1, . . . do
6: Assign to ak+1 the positive root (in a) of

σ(1 − a)(ck + λ2a) + σλ1a = La2.
7: ck+1 ← (1− ak+1)ck + (λ1 + λ2)ak+1.

τ1 ← (1− ak+1)ck, τ2 ← λ1ak+1,
τ3 ← λ2ak+1(1 − ak+1), τ ← τ1 + τ2 + τ3.

8: uk+1 ← (τ−(τ1+τ2)ak+1)xk+τ1ak+1zk
τ−τ2ak+1

. 5

9: ψk+1(x)← (1 − ak+1)qk(x)
+ak+1[ℓf(x;uk+1, λ1) + Ψ(x)].

10: zk+1 ← argminx ψk+1(x).
11: xk+1 ← (1− ak+1)xk + ak+1zk+1.
12: qk+1(x)← ck+1∆(x, zk+1) + ψk+1(zk+1).
13: end for

which uses Bregman prox-function, and allows con-
straints and non-monotonic adaptive tuning of L.

Arbitrarily pick u0 ∈ domΨ and initialize by

q0(x) :=
L

σ
∆(x,u0) + f(x0) + 〈∇f(u0),x− u0〉+Ψ(x)

x0 = z0 = argmin
x

q0(x)

c0 =
L

σ
+ λ2.

Then for all k ≥ 0, define:

ψk+1(x) = (1−ak+1)qk(x)+ak+1[ℓf(x;uk+1, λ1)+Ψ(x)]

zk+1 = argmin
x

ψk+1(x)

ck+1 = (1− ak+1)ck + λak+1

qk+1(x) = ck+1∆(x, zk+1) + ψk+1(zk+1).

By construction for all k ≥ 0, qk is ck-sc and ψk+1 is
strongly convex with constant (1 − ak+1)ck + λak+1,
i.e. ck+1-sc. Clearly, for all k ≥ 1

min
x
ψk(x) = ψk(zk) = qk(zk) = min

x
qk(x). (25)

But except at x = zk, qk(x) 6= ψk(x) in general. The
only case where qk(x) ≡ ψk(x) is when Ψ(x) is an
affine function on dom d and domd ⊆ domΨ. Then
an inductive application of Property 6 reveals qk(x) ≡
ψk(x). Lemma 5.2 of [23] is exactly this case with
Ψ(x) ≡ 0. However, when domd * domΨ then zk+1

5uk+1 is clearly a convex combination of zk and xk.

actually solves a constrained optimization, and then
(11) must be changed to ≥ which breaks Property 13.

The proof of rate of convergence for Algorithm 3 relies
on the following two relations: for all k ≥ 0 and x ∈
domΨ,

qk+1(x)− J(x) ≤ (1− ak+1)(qk(x)− J(x)) (26)

J(xk) ≤ qk(zk). (27)

From these three inequalities, we get for all x ∈ domΨ,

J(xk)
(27)

≤ qk(zk)
(25)

≤ qk(x)

(26)

≤ J(x) + (q0(x)−J(x)) ·
k∏

i=1

(1− ai). (28)

So the gap J(xk) − J(x) decays at the same rate as
∏k

i=1(1− ai).6 Compared with the ∞-memory AGM-
EF, the additional inequality (26) is now needed be-
cause the models qk here are approximations of the ψk

in (16). Next, we prove the three relations one by one.

Lemma 11 (Eq (26)). For all k ≥ 0 and x, we have

qk+1(x) − J(x) ≤ (1 − ak+1)(qk(x)− J(x)).

Proof. Since zk+1 minimizes ψk+1(x) and ψk+1(x) is
ck+1-sc, so by Property 5 we have

ψk+1(x) ≥ ψk+1(zk+1) + ck+1∆(x, zk+1). (29)

So for all x ∈ Q,

(1− ak+1)qk(x) + ak+1J(x)

≥ (1−ak+1)qk(x)+ak+1[ℓf(x;uk+1, λ1)+Ψ(x)] (30)

= ψk+1(x)

≥ ψk+1(zk+1) + ck+1∆(x, zk+1) (by (29))

= qk+1(x). (31)

�

Lemma 12 (Eq (27)). For all k ≥ 0, J(xk) ≤ qk(zk).

Proof. We prove by induction. First, when k = 0
q0(z0) = J(x0). Now suppose (27) holds for certain
k ≥ 0. Then

qk+1(zk+1) = ψk+1(zk+1)

= (1−ak+1)qk(zk+1)+ak+1[ℓf(zk+1;uk+1, λ1)+Ψ(zk+1)]

(a)

≥ (1− ak+1)[qk(zk) + ck∆(zk+1, zk)]

6The last inequality of (28) does not require q0(x) ≥
J(x). But q0(x) ≥ J(x) can be easily proved by Lemma
15.

10

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

+ ak+1[ℓf (zk+1;uk+1, λ1) + Ψ(zk+1)]

(b)

≥ (1− ak+1)[f(xk) + Ψ(xk) + ck∆(zk+1, zk)]

+ ak+1ℓf (zk+1;uk+1, λ1) + ak+1Ψ(zk+1)

(c)

≥ (1− ak+1)[f(uk+1) + 〈∇f(uk+1),xk − uk+1〉
+
ckσ

2
‖zk+1 − zk‖2] + ak+1[f(uk+1)

+ 〈∇f(uk+1), zk+1 − uk+1〉+
λ1σ

2
‖zk+1 − uk+1‖2]

+ (1 − ak+1)Ψ(xk) + ak+1Ψ(zk+1)

(d)

≥ Ψ(xk+1) + f(uk+1)

+ 〈∇f(uk+1), (1− ak+1)xk + ak+1zk+1 − uk+1〉
+
σ

2
ck(1− ak+1) ‖zk+1 − zk‖2

+
σ

2
λ1ak+1 ‖zk+1 − uk+1‖2

+
σ

2
λ2ak+1(1 − ak+1) ‖zk+1 − xk‖2

(e)

≥ Ψ(xk+1) + f(uk+1)

+ 〈∇f(uk+1), (1− ak+1)xk + ak+1zk+1 − uk+1〉

+
σ

2
(τ1 + τ2 + τ3)

∥
∥
∥
∥
zk+1 −

τ1zk + τ2uk+1 + τ3xk

τ1 + τ2 + τ3

∥
∥
∥
∥

2

(f)
= Ψ(xk+1) + f(uk+1)

+ 〈∇f(uk+1),xk+1 − uk+1〉+
L

2
‖xk+1 − uk+1‖2

(g)

≥ Ψ(xk+1) + f(xk+1) = J(xk+1),

where (a) is because zk minimizes qk and qk is ck-
sc. (b) is by the induction assumption. (c) is by the
convexity of f and σ-sc of d. (d) is by the λ2-sc of Ψ
and Property 1. (e) is by the convexity of norm. (f) is
by the definition of xk+1 and uk+1, and the choice of
ak+1. (g) is by the L-l.c.g of f . �

Noting that c0 ≥ λ by definition, we can bound
∏k

i=1(1−ai) by invoking Lemma 2.2.4 of [19] with the
strong convexity constant being λ and the Lipschitz
constant of the gradient being

L′ :=
L

σ
+ λ2.

It is easy to verify that the condition number L′/λ is
monotonically decreasing in λ2.

Lemma 13. For all k ≥ 1, we have

k∏

i=1

(1−ai) ≤ min

(

1−
√

λ

L′

)k

,
4L′

(2
√
L′ + k

√
c0)2

.

Finally we bound q0(x)− J(x) by

q0(x)− J(x)

=
L

σ
∆(x,u0) + 〈∇f(u0),x− u0〉+ f(u0)− f(x)

≤
(
L

σ
− λ1

)

∆(x,u0). (by λ1-sc of f) (32)

By (28) and the definition c0 = L′, we get

Theorem 14. For all k ≥ 1 and x ∈ domΨ,

J(xk)− J(x)

≤ (q0(x) − J(x))min

(

1−
√

λ

L′

)k

,
4

(2 + k)2

≤
(
L

σ
−λ1

)

∆(x,u0)min

(

1−
√

λ

L′

)k

,
4

(2 + k)2

.

This rate is completely independent of Ψ (except λ2).
Although not needed by the proof, we can further show
that qk(x) ≥ J(x) for all k ≥ 0 and x ∈ domΨ.

Lemma 15. qk(x) ≥ J(x) for all k ≥ 0 and x ∈
domΨ.

Proof. When k = 0,

q0(x)=
L

σ
∆(x,u0)+f(u0)+〈∇f(u0),x−u0〉+Ψ(x)

≥ L

2
‖x− u0‖2 + f(u0) + 〈∇f(u0),x− u0〉+Ψ(x)

≥ f(x) + Ψ(x) = J(x).

Suppose k ≥ 1. By (25), qk(x) ≥ qk(zk). By Lemma
12, qk(zk) ≥ J(xk). So

qk(x) ≥ qk(zk) ≥ J(xk) ≥ J(x). �

4.1. Adaptive L

It is straightforward to incorporate backtracking of L
into the algorithm. We present this variant in Algo-
rithm 4. Suppose at each iteration the inner loop ter-
minates with Lk and define L′

k = Lk/σ + λ2. Noting
c0 = L′

0 and slightly changing the proof, Lemma 13
can be extended as follows:

Lemma 16. For all k ≥ 1, we have

k∏

i=1

(1− ai) ≤min

{
k∏

i=1

(

1−
√

λ

L′
i

)

,

4

L′
0

(

2
√

L′
0

+
k∑

i=1

1
√
L′
i

)−2}

.

Obviously, when L′
i = L′ we recover Lemma 13.

11

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Algorithm 4 AGM-EF-1 with adaptive L.

Require: Down scaling factor γd and up scaling fac-
tor γu (γd, γu > 1). An optimistic estimate L̃ ≤ L.

1: Arbitrarily pick u0 ∈ domΨ. L0 ← L̃/γu.
2: repeat

3: L0 ← L0 ∗ γu.
4: Initialize c0 ← L0

σ
+ λ2.

5: q0(x)← L0

σ
∆(x,u0) + Ψ(x) + ℓf (x;u0, 0).

6: x0 = z0 ← argminx q0(x).
7: until J(x0) ≤ minx q0(x0)
8: for k = 0, 1, . . . do
9: Lk+1 ← Lk/(γd ∗ γu).

10: repeat

11: Lk+1 ← Lk+1 ∗ γu.
12: Assign to ak+1 the positive root (in a) of

σ(1 − a)(ck + λ2a) + σλ1a = Lk+1a
2.

13: Do step 7 to 12 of Algorithm 3.
14: until J(xk+1) ≤ qk+1(zk+1)
15: end for

Furthermore, (32) needs to be changed into

q0(x) − J(x) ≤
(
L0

σ
− λ1

)

∆(x,u0).

So we conclude for all k ≥ 1 and x ∈ domΨ,

J(xk)− J(x) ≤ (L′
0 − λ)∆(x,u0)

·min

{
k∏

i=1

(

1−
√

λ

L′
i

)

,
4

L′
0

(

2
√
L′
0

+
k∑

i=1

1
√
L′
i

)−2}

.

This bound does not involve the true L, and does not
depend on Ψ or the function value of f (which could
be used to hide L).

4.2. Bounding the duality gap

It is also not hard to extend AGM-EF-1 to the same
primal-dual settings as in Section 3.3.

Using (30) and (31), we derive for all x ∈ domΨ:

qk+1(x) ≤(1−ak+1)qk(x)+ak+1[ℓf (x;uk+1, λ1)+Ψ(x)].
(33)

This inequality allows us to express qk in terms of the
linearizations of f at ui. For notational convenience,
define a0 = 1 and

bk(i) := ai

k∏

j=i+1

(1− aj) for all 0 ≤ i ≤ k,

then it is easy to see that
∑k

i=0 bk(i) = 1 for all k ≥ 1.

Lemma 17. For all x ∈ domΨ and k ≥ 1,

qk(x) ≤ bk(0)q0(x) +
k∑

i=1

bk(i)[ℓf (x;ui, λ1) + Ψ(x)]

=
L

σ
bk(0)∆(x,u0)+Ψ(x)+

k∑

i=0

bk(i)ℓf (x;ui, λ1).(34)

Proof. The inequality is obvious by inductively apply-
ing (33). The equality is by the definition of q0(x) and

the fact that
∑k

i=0 bk(i) = 1. �

Go back to the settings of Section 3.3. We minimize
J(x) by AGM-EF-1 and find some dual iterates αk

such that the duality gap J(xk) − D(αk) goes to 0
fast. Similar to (22), we construct

αk =

k∑

i=0

bk(i)α(ui). (35)

Comparing with (22), we can see that both formu-
lae are convex combinations of all the past α(ui) and
higher weights are given to the later α(ui). Compu-
tationally, αk can be efficiently updated by recursion

α0 = α(u0), and αk+1 = (1−ak+1)αk+ak+1α(uk+1).

To be self-contained, we state and prove the counter-
part of Theorem 10 here.

Theorem 18 (Bounds on the duality gap). Suppose a
sequence {xk,uk, zk} is produced when AGM-EF-1 is
applied to minimize J(x) by treating f as λ1-sc. Then
the {αk} defined by (35) satisfies αk ∈ Q2 and

J(xk)−D(αk) ≤
L

σ
bk(0) max

x∈domΨ
∆(x,u0). (36)

Proof. Since α(ui) ∈ Q2 and αk is a convex combi-
nation of them, so αk ∈ Q2. Clearly, (24) still holds.
Denote the right-hand side of (36) asM . Now by using
relationship (34) and Lemma 12, we have

J(xk) ≤ min
x
qk(x)

≤ min
x

{

L

σ
bk(0)∆(x,u0)+Ψ(x)+

k∑

i=0

bk(i)ℓf (x;ui, λ1)

}

≤M +min
x

{

Ψ(x) +

k∑

i=0

bk(i)φ(x,α(ui))

}

≤M +min
x

{

Ψ(x) + φ

(

x,

k∑

i=0

bk(i)α(ui)

)}

≤M +D(αk). �

12

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

5. Application to Regularized Risk

Minimization

Regularized risk minimization (RRM) is extensively
used in machine learning. In this section, we describe
and compare in theory many different ways of training
these models by APM. The objective of RRM with
linear models can be written as

min
w∈Q1

J(w) = Ω(w) + g⋆(Aw), (37)

where Q1 is a closed convex set. Here, Ω(w) corre-
sponds to the regularizer and is assumed to be λ-sc
wrt some prox-function d1 on Q1. d1 is in turn as-
sumed to be σ1-sc wrt a norm ‖·‖ on Q1

7. Aw stands
for the output of a linear model, and g⋆ (the Fenchel
dual of function g) encodes the empirical risk measur-
ing the discrepancy between the correct labels and the
output of the linear model (Aw). Let the domain of g
be Q2, which is also assumed to be closed and convex.

Using the definition of Fenchel dual, the primal objec-
tive (37) can be rewritten as a minimax problem:

min
w∈Q1

max
α∈Q2

L(w,α) := Ω(w) + 〈Aw,α〉 − g(α), (38)

which further leads to the adjoint problem

max
α∈Q2

{

−g(α) + min
w∈Q2

{〈Aw,α〉+Ω(w)}
}

⇔ max
α∈Q2

D(α) := −g(α)− Ω⋆(−A⊤α). (39)

It is well known [e.g. 29, Theorem 3.3.5] that under
some mild constraint qualifications, the primal form
J(w) and the adjoint form D(α) satisfy

J(w) ≥ D(α) and inf
w∈Q1

J(w) = sup
α∈Q2

D(α).

Let us see some examples in machine learning which
have the form (37). Assume we have access to a train-
ing set of n labeled examples {(xi, yi)}ni=1 where xi ∈
Rp and yi ∈ {−1,+1}. Denote Y := diag(y1, . . . , yn)
and X := (x1, . . . ,xn).

Example 1: binary SVMs with bias. The primal
form of the binary linear SVM with bias is:

J(w) =
λ

2
‖w‖2 +min

b∈R

1

n

n∑

i=1

[1− yi(〈xi,w〉+ b)]+ .

7In the sequel, ‖·‖
p
will stand for the Lp norm. Since

each space has a single prescribed norm and the space that
a variable belongs to is clear from the context, we will not
use ‖·‖

1
to represent the norm on Q1.

This can be posed in our framework by setting
Q1 := Rp, A := −Y X⊤, Ω(w) = λ

2 ‖w‖
2
, g⋆(u) =

minb∈R
1
n

∑n
i=1 [1 + ui − yib]+. This g⋆ corresponds to

g(α) =

{

−∑i αi if α ∈ Q2

+∞ otherwise,
(40)

where Q2, the domain of g, is

Q2 =
{

α ∈ [0, n−1]n :
∑

i

yiαi = 0
}

.

Then the adjoint form turns out to be the well known
SVM dual objective:

D(α) =
∑

i

αi−
1

2λ
α⊤Y X⊤XYα, s.t. α ∈ Q2 (41)

Example 2: L1 regularized SVM. The primal
form of the L1 regularized SVM (L1-SVM, [30]) is:

J(w) = λ ‖w‖1 +min
b∈R

1

n

n∑

i=1

[1− yi(〈xi,w〉+ b)]+ .

This can be posed in our framework by using exactly
the same configurations as above, except that now
Ω(w) = λ ‖w‖1. One can show that Ω⋆(v) = 0 if
‖v‖∞ ≤ λ, and ∞ otherwise. The adjoint form is:

D(α) =

{∑

i αi if ‖XYα‖∞ ≤ λ
−∞ otherwise.

s.t. α ∈ Q2.

(42)

Example 3: multivariate scores. Joachims [31]
proposed a max-margin model which directly opti-
mizes the F1 score. Assume there are n+ positive ex-
amples and n− negative examples. F1-score is defined
by using the contingency table: ∆(y′,y) := 2a

2a+b+c
.

Contingency table.

y=1 y=−1
y′=1 a c
y′=−1 b d

b: false negative
c: false positive

b =
∑n

i=1
δ(yi = 1, y′i = −1)

c =
∑n

i=1
δ(yi = −1, y′i = 1)

a = n+ − b
d = n− − c. (n = n+ + n−)

δ(x) = 1 if x is true. Else 0.

The primal objective proposed by Joachims [31] is

J(w) =
λ

2
‖w‖2 (43)

+ max
y′∈{−1,1}n

[

∆(y′,y) +
1

n

n∑

i=1

〈w,xi〉 (y′i − yi)
]

.

13

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

This can be recovered by setting Q1 = Rp, Ω(w) =
λ
2 ‖w‖

2
, and letting A be a 2n-by-p matrix where the

y′-th row is
∑n

i=1 x
⊤
i (y

′
i−yi) for each y′ ∈ {−1,+1}n.

Then g⋆(u) = maxy′

[
∆(y′,y) + 1

n
uy′

]
which is in-

duced by

g(α) =

{

−n
∑

y′ ∆(y′,y)αy′ if α ∈ Q2

+∞ otherwise
. (44)

Here Q2, the domain of g, is

Q2 =

α ∈ [0, n−1]2

n

:
∑

y′

αy′ =
1

n

.

So we get the adjoint form

D(α) = − 1

2λ
α⊤AA⊤α+ n

∑

y′

∆(y′,y)αy′ , α ∈ Q2.

Example 4: Max-margin Markov Networks.

The conditional random fields (CRFs) [32] and max-
margin Markov network (M3

Ns), [33] are also instances
of RRM. First, they both minimize a regularized risk
with a square norm regularizer. Second, they assume
that there is a joint feature map φ which maps (x,y) to
a feature vector in Rp. Third, they assume a label loss
ℓ(y,yi;xi) which quantifies the loss of predicting label
y when the correct label of input xi is yi. Finally,
they assume that the space of labels Y is endowed
with a graphical model structure and that φ(x,y) and
ℓ(y,yi;xi) factorize according to the cliques of this
graphical model. The main difference is in the loss
function employed. CRFs minimize the L2-regularized
logistic loss:

J(w) =
λ

2
‖w‖2 + 1

n

n∑

i=1

log
∑

y∈Y
exp(ℓ(y,yi;xi) (45)

−
〈
w,φ(xi,yi)− φ(xi,y)

〉
),

while the M3
Ns minimize the L2-regularized hinge loss

J(w) =
λ

2
‖w‖2 + 1

n

n∑

i=1

max
y∈Y
{ℓ(y,yi;xi) (46)

−
〈
w,φ(xi,yi)− φ(xi,y)

〉
}.

Clearly, both cases employ Q1 = Rp and Ω(w) =
λ
2 ‖w‖

2
. With shorthand ψi

y := φ(xi,yi) − φ(xi,y)

and ℓiy := ℓ(y,yi;xi), they both use an (n |Y|)-by-p
matrix A whose (i,y)-th row is (−ψi

y)
⊤. For M

3
Ns,

g⋆(u) = 1
n

∑

imaxy
{
ℓiy + uiy

}
and it can be verified

that the corresponding g is

g(α) =

{

−∑i

∑

y
ℓiyα

i
y if α ∈ Q2

+∞ otherwise,
(47)

where Q2, the domain of g, is

Q2 = Sn :=

{

α ∈ [0, 1]n|Y| :
∑

y

αi
y =

1

n
, ∀ i

}

.

Clearly, Q2 is convex and compact. Now the adjoint
form can be written as

D(α)=− 1

2λ
α⊤AA⊤α+

∑

i

∑

y

ℓiyα
i
y, α ∈ Sn. (48)

For CRFs, g⋆(u) = 1
n

∑

i log
∑

y∈Y exp(ℓiy + uiy), and
the corresponding g is

g(α) =

n∑

i=1

∑

y

αi
y(logα

i
y − ℓiy) + logn if α ∈ Q2

+∞ otherwise,

(49)

The domain of g is also Q2 = Sn. Then the adjoint
form is

D(α)=− 1

2λ
α⊤AA⊤α+

n∑

i=1

∑

y

αi
y(logα

i
y−ℓiy) (50)

+ logn, α ∈ Sn.

Example 5: Entropy regularized LPBoost In
[13], the entropy regularized LPBoost needs to mini-
mize

J(w) = λ∆(w,w0) + max
i∈[t]
〈ui,w〉 , (51)

s.t. w ∈ Q1 :=

{

w ∈ [0, ν]n :

n∑

i=1

wi = 1

}

.

Here ν is a constant in [0, 1], w0 ∈ Q1 is the uniform
distribution, and ∆ is the Bregman divergence induced
by the entropy (i.e. ∆ is the relative entropy). ui ∈ Rn

is the so called edge vector. This objective corresponds
to Ω(w) = λ∆(w,w0), A = (u1, . . . ,ut)

⊤, g⋆(s) =
maxi si which is induced by g(α) = 0 if α ∈ Q2 := St,
and ∞ otherwise. Since

Ω⋆(s) = −min
βi≥0

{

λ log
n∑

i=1

w0
i exp

(
si − βi
λ

)

+ ν
n∑

i=1

βi

}

,

so the adjoint form can be written as

D(α) = −min
βi≥0

{

λ log

n∑

i=1

w0
i exp

(
A⊤

:iα+ βi
−λ

)

+ν

n∑

i=1

βi

}

subject to α ∈ Q2 = St. Here A:i denotes the i-th
column of A. Although this form of D(α) is obscure,
the strong convexity of Ω implies that D(α) is l.c.g.
The ν is introduced by [13] to cap the density, and
this cap is removed if ν = ∞. In that case, βi in the
definition of D(α) will all be optimized to 0 and we
recover the well known log-sum-exp formula of D(α).

14

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Example 6: Elastic net Using square loss as an
example of the empirical risk, the primal objective of
elastic net regularization is

J(w) = λ

(

γ ‖w‖1 +
1

2
‖w‖22

)

+
1

n

n∑

i=1

(yi − x⊤
i w)2. (52)

Here the L1 normalizer ‖w‖1 is introduced to promote
the sparsity of the solution. In this case, Ω(w) =

λ
(

γ ‖w‖1 + 1
2 ‖w‖

2
2

)

and it dual is left as an exer-

cise for the reader. An equivalent formulation of (52)
is by moving the regularizer into the constraint:

min
w

J̄(w) =
1

n

n∑

i=1

(yi − x⊤
i w)2

s.t. γ ‖w‖1 +
1

2
‖w‖22 ≤ r.

It can be shown that for any λ > 0 there exists an
r > 0 such that argmin J̄ = argminJ and vice versa.

There are also many regularized risk minimization
problems which optimize over the space of positive
semi-definite matrices, e.g. [2, 14, 34].

Summary From these examples, we can see the fol-
lowing properties of Ω and g which will also be as-
sumed for our general treatment of the objective (37)
and (39). Firstly, the function Ω(w) which serves as
a regularizer is strongly convex. In Example 1, 3, 4,
6, Ω(w) is λ-sc wrt the Euclidean norm. In Exam-
ple 5, f(w) is λ-sc wrt the L1 norm. As a result, Ω⋆

must be 1
λ
-l.c.g on Rp. Secondly, the l.c.g constant

of Ω⋆(−A⊤α) in α also depends on the matrix norm
of A, which in turn depends on the choice of norm
on Q1 and Q2. Thirdly, the g⋆ is not necessarily dif-
ferentiable (e.g., hinge loss), but g is always l.c.g on
Q2. Finally, Q2 is bounded and its diameter can be
well controlled. This is important for translating dual
solutions into the primal.

Our goal is to minimize J(w) over Q1, and we do not
really care about solving the dual D(α) overQ2. How-
ever, since D(α) has favorable smooth properties, we
also often work in the dual as a proxy. To solve J(w)
(and D(α)), there are three main approaches.

Smoothing g⋆ to a fixed level. To handle the non-
smoothness of g⋆, we can smooth it by using the tech-
nique introduced by Nesterov [6]. Then the composite
form, Ω(w) plus the smoothed variant of g⋆(Aw), fits
the form of AGM-EF and can be solved in w (primal),
α (dual) or primal-dual. Given a prescribed accuracy
ǫ, g⋆ only needs to be smoothed to a fixed extent.

Smoothing g⋆ with decreasing smoothness.

[20] introduced a primal-dual method where g⋆ is
smoothed with decreased smoothness (i.e. increased
closeness to g⋆). As a result, it tends to the optimal
solution of D(α) and J(w), instead of just attaining a
prescribed accuracy ǫ.

No smoothing. Given the smoothness of the dual
problem D(α), AGM can be applied to maximize it
and then convert αk into wk by (22) and (35). No
smoothing of g⋆ is needed in this case.

The next three subsections will describe these schemes
in detail, with focus on the rates of convergence and
how each iteration can be performed efficiently. More-
over, we provide intuitions on which scheme is more
suitable. For brevity, we will only use AGM-EF-∞
with fixed L as an example, while similar results can
be straightforwardly derived for AGM-EF-1 and adap-
tive L. In this version of the paper, we illustrate all
these ideas on Example 1 (SVM with bias).

5.1. Smoothing g⋆ to a fixed level

A key technique introduced by Nesterov [6] was to
tightly approximate the nonsmooth part g⋆(Aw) by
a smooth surrogate. The idea of the approach origi-
nates from the Theorem 21 in Appendix A which con-
nects the strong convexity of a function and l.c.g of its
Fenchel dual. g⋆ is not l.c.g because g is not strongly
convex, therefore to make g⋆ smooth a natural idea is
to add to g a strongly convex function d2 on Q2 and
then dualize it:

g⋆µ(u) := (g + µd2)
⋆(u)

= sup
α∈Q2

{〈α,u〉 − g(α)− µ d2(α)} . (53)

Here µ ≥ 0 and d2 is assumed to be σ2-sc wrt a norm
on Q2.

8 By proper centering, d2 can be assumed to
satisfy

min
α∈Q2

d2(α) = 0.

Let us further define

α0 = argmin
α∈Q2

d2(α), D := max
α∈Q2

d2(α).

The main restriction of this approach is that D must
be well bounded. Using the definition in (53) we can
easily characterize the uniform tightness of the ap-
proximation: for all u ∈ Q2

g⋆(u)− µD ≤ g⋆µ(u) ≤ g⋆(u). (54)

8We can also use the more general form of strong convex
as in Definition 1. Here we use the conventional definition
for simplicity.

15

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Furthermore, the l.c.g constant of g⋆µ(Aw) in w wrt
the norm on Q1 can be estimated as follows. By The-
orem 21, g⋆µ is (µσ2)

−1-l.c.g wrt the dual norm on Q2.
So we can apply the chain rule:

∥
∥
∥
∥

∂

∂w
g⋆µ(Aw1)−

∂

∂w
g⋆µ(Aw2)

∥
∥
∥
∥

∗

=
∥
∥A(∇g⋆µ(Aw1)−∇g⋆µ(Aw2)

∥
∥
∗

≤ ‖A‖ 1

µσ2
‖Aw1 −Aw2‖∗ ≤

‖A‖2
µσ2

‖w1 −w2‖ .

That is, g⋆µ(Aw) is l.c.g in w with constant

Lg(µ) ≤
‖A‖2
µσ2

. (55)

Example 1: smoothing the hinge loss. The
hinge loss [1 − w]+ is the dual of g(α) = α for
α ∈ [−1, 0] and ∞ elsewhere. Adding µ

2α
2 to g and

dualize it, we get

g⋆µ(w) =

0 if w ≥ 1
(1−w)2

2µ if w ∈ [1− µ, 1]
1− w − µ

2 if w ≤ 1− µ
.

Some smoothed hinge loss g⋆µ(w) with various µ are
plotted in Figure 1.

Example 2: smoothing max into soft max. In
the entropy regularized LPBoost, g⋆(s) = maxi si and
g(u) = 0 if St and ∞ otherwise.. Then adding prox-
function

∑

i si ln si to g and dualizing it, we get

g⋆µ(s) = µ ln
∑

i

exp

(
si
µ

)

.

When µ→ 0, this soft max recovers max.

With the smoothed g⋆µ in place, we now discuss how to
find an ǫ accurate solution to J(w) by three different
schemes: primal (w), dual (α), and primal-dual.

5.1.1. Solving in the primal w.

We will use g⋆µ to define a new objective function

Jµ(w) := Ω(w) + g⋆µ(Aw) (56)

= Ω(w) + max
α∈Q2

{〈Aw,α〉 − g(α)− µ d2(α)} .

Since Jµ(w) ≤ J(w) for all w, to make sure that an ǫ
accurate solution to Jµ is a 2ǫ accurate solution to J ,
a sufficient condition is that their deviation be upper

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

w

g
⋆ µ
(w

)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6

Figure 1. Smoothing hinge loss with different µ.

bounded everywhere by ǫ, i.e.maxw J(w)−Jµ(w) < ǫ.
By (54), this is guaranteed if µ is small enough

µ ≤ ǫ

D
. (57)

Plugging (57) into (55), we obtain that the l.c.g

constant of g⋆µ(Aw) is at most ‖A‖2D

σ2ǫ
. Let w∗ =

argminw J(w). Bearing in mind that Ω is λ-sc, AGM-
EF-∞ is readily applicable to Jµ(w) and the following
rate of convergence can be inferred from Theorem 6:

Jµ(wk)− Jµ(w∗) ≤ ∆(w∗,u0)min

{

4D ‖A‖2
σ1σ2ǫ(k + 1)2

,

4D ‖A‖2
σ1σ2ǫ

(

1 +

√

σ1σ2λǫ

4D ‖A‖2

)−2k+2}

.

Once Jµ(wk)− Jµ(w∗) ≤ ǫ, we must have

J(wk)− J(w∗) ≤ Jµ(wk) + µD − Jµ(w∗) ≤ 2ǫ.

Therefore, we obtain the following theorem.

Theorem 19. For any given ǫ > 0, setting µ by the
equality in (57) and applying AGM-EF-∞ to Jµ(w),
we can guarantee that wk is a 2ǫ accurate solution of
J(w) as long as

k ≥ min

{

1

ǫ

√

4D ‖A‖2
σ1σ2

∆(w∗,u0), (58)

1+
1

2
ln

(

4D ‖A‖2
σ1σ2ǫ2

∆(w∗,u0)

)/

ln

(

1+

√

σ1σ2λǫ

4D ‖A‖2

)}

.

Note ln(1 + ǫ) ≈ ǫ when ǫ is close to 0, so the denom-
inator in the second term becomes O(

√
ǫ) and overall

the second term is approximately O
(

1√
ǫ
ln 1

ǫ

)

. The
16

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

first term does not depend on λ. Note also that this
bound does not explicitly depend on the diameter of
Q1 which is infinity in many cases. A closer look shows
that ∆(w∗,u0) hides the dependence on λ. With a
small regularization parameter λ, ∆(w∗,u0) may be
large and could approach infinity when λ tends to 0.

Unfortunately, the bound on the duality gap in (23)
does use the diameter of Q1, and it cannot be replaced
by ∆(w∗,u0) as in Theorem 19. Therefore, we do
lose a termination criteria. Fortunately, this problem
in duality gap can be avoided if we optimize in α.
Before describing it in detail, let us illustrate the above
procedure on training the SVM with bias.

Here, choose d1 and d2 as the Euclidean norm square
and the norms on Q1 and Q2 are both Euclidean norm.
Then ‖A‖2 = λmax(A

⊤A) = λmax(XX
⊤) where λmax

stands for the maximum eigenvalue. σ1 = σ2 = 1.
The diameter of Q2 is D ≤ n 1

n2 = 1
n
. For a given ǫ,

set µ = nǫ by (57). Suppose all xi lie in the ball with
Euclidean radius R. Then λmax(XX

⊤) ≤ nR2 and the
second term in (58) is essentially

O

(

ln
1

ǫ

√

4λmax(XX⊤)

λnǫ

)

≤ O
(

2R√
λǫ

ln
1

ǫ

)

.

Solving in the primal is also advantageous in terms of
the condition number. When g⋆ is smoothed by small
µ or when the regularization parameter λ is small, the
condition number c := Lg(µ)/λ becomes very large.
According to Theorem 6, the number of iterations to
find an ǫ accurate solution is the min of

O

log 1

ǫ

log
(

1 +
√

λ
Lg(µ)

)

 and O

(√

Lg(µ)√
ǫ

)

.

So the linear convergence rate depends on c by O(
√
c),

as opposed to O(c) in most linearly converging algo-
rithms, e.g. gradient descent. Second, the min in The-
orem 6 implies that when λ is very small and the ob-
jective is very poorly conditioned, the linear conver-
gence will be automatically superseded by the 1/

√
ǫ

rate which has better “constant”. Some class of algo-
rithms require manual rewiring in such a case, e.g. [25]
and [35].

Finally, it is noteworthy that this method does not
require g be l.c.g.

5.1.2. Solving in the dual α.

Similar to Jµ in (56), we can also define a smoothed
version of D(α):

Dµ(α) := −µd2(α)− g(α) + min
w
{Ω(w) + 〈Aw,α〉}

= −µd2(α)− g(α)− Ω⋆(−A⊤α) (59)

which is to be maximized over α ∈ Q2. So we can
pose −Dµ(α) in the composite form,

f(α) = g(α) + Ω⋆(−A⊤α), and Ψ(α) = µd2(α),

to which AGM-EF-∞ and AGM-EF-1 can be applied.
Since Ω⋆ is 1/λ-l.c.g, f(α) must be l.c.g with constant

Lf =
‖A‖2
λ

+ Lg, (60)

where Lg is the l.c.g constant of g. Ψ is µ-sc. Applying
the primal-dual scheme in Section 3.3 with −Dµ and
−Jµ playing the role of J and D therein respectively,
we get

Jµ(wk)−Dµ(αk) ≤ max
α∈Q2

∆(α,u0) ·min

{

4Lf

σ2(k + 1)2
,

Lf

σ2

(

1 +

√
σ2µ

4Lf

)−2k+2
}

.

Once Jµ(wk)−Dµ(αk) ≤ ǫ, it is ensured that

J(wk)−min
w

J(w) ≤ Jµ(wk) + µD − max
α∈Q2

D(α)

≤ Jµ(wk) + ǫ−D(αk)

≤ Jµ(wk) + ǫ−Dµ(αk) ≤ 2ǫ.

So we conclude the following theorem.

Theorem 20. For any given ǫ > 0, setting µ by the
equality in (57) and applying the primal-dual scheme
in Section 3.3 to −Dµ and −Jµ, we can guarantee that
wk is a 2ǫ accurate solution of J(w) as long as

k ≥ min

{

1√
ǫ

√

4M(‖A‖2 + λLg)

λσ2
− 1, (61)

1 +
1

2

ln
(

4M(‖A‖2+λLg)
λσ2ǫ

)

ln
(

1 +
√

λǫσ2

4D(‖A‖2+λLg)

)

}

.

where M := maxα∈Q2
∆(α,u0).

It is important to note that this scheme requires g be
l.c.g, while solving in the primal does not make such
a requirement.

17

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Let us apply the scheme to SVM with bias, and use
the same choice of norm and prox-function as before.
Now Lg = 0 and M = 1/n. Using the approximation
ln(1 + x) ≈ x when |x| ≪ 1, (61) becomes

k ≥ min

{
2R√
λǫ
− 1, 1 +

R√
λǫ

ln

(
4R2

λǫ

)}

.

As a final note, the way we smooth the empirical risk
is different from [36] which changes hinge loss into
square hinge loss or higher order. Our method has
a smoothing parameter which trades smoothness for
the tightness of the approximation. In contrast, the
square hinge loss is just a heuristic approximation and
no bound is available in optimization for its solution.

5.2. Smoothing g⋆ with decreasing smoothness

A typical primal-dual solver for the objectives in (37)
and (38) is the excessive gap technique [EGT, 20]. One
concrete application is [37] where EGT is used to solve
the above Example 4 (M3

N and CRF). Unfortunately,
EGT forces a fixed way to initialize w0 and α0. This
is very inconvenient for homology and other warm-
start techniques which utilize the closeness of solutions
under small perturbations of the problem parameter
(e.g. λ).

5.3. No smoothing of g⋆

Since we assume g is l.c.g and Ω is λ-sc, so the dual
(39) is l.c.g and AGM-EF-∞ is applicable. Since our
ultimate goal is to minimize J(w) we adopt the primal-
dual scheme in Section 3.3. The l.c.g constant of D is
exactly the Lf in (60). Treating −D and −J as the J
and D therein respectively, we get

J(wk)−D(αk) ≤
4M(‖A‖2 + λLg)

λσ2(k + 1)2
.

When applied to SVM with bias where M = 1/n and
Lg = 0, we get that J(wk)−D(αk) < ǫ for all

k ≥ 2R√
λǫ
− 1.

When comparing the rates, it is important to bear in
mind that machine learning problems usually do not
need a high accuracy solution and so ǫ = 10−2 or 10−3

might suffice. In many cases, λ will be set to very
small such as 10−6. Therefore 1

ǫ
can be much smaller

than 1
λ
. Also, we are currently bounding ‖A‖2 by nR2

which can be very loose in practice. The dependence of
∆(w∗,u0) on λ is not clear either. Finally in practice
when solving in the dual, the box constraints in SVM

can cause considerable waste of gradient computation.
Therefore the rates above just provide limited guid-
ance and the most appropriate optimization strategy
has to be picked empirically.

5.4. Efficient computation of the gradient

So far, we have ignored the computational complexity
per iteration which is dominated by two operations:
computing the gradient and minimizing the model ψk

in AGM-EF-∞ (or qk in AGM-EF-1). We first show
in this subsection that the gradient in all the above
examples can be computed efficiently. Indeed, the gra-
dients needed are ∂

∂w
g⋆µ(Aw) and ∂

∂α
Ω⋆(−A⊤α), with

the former always being more challenging. So we focus
on calculating ∂

∂w
g⋆µ(Aw).

By chain rule, ∂
∂w
g⋆µ(Aw) = A⊤∇g⋆µ(Aw). Using [47,

Theorem X.1.4.4], ∇g⋆µ(u) can be computed by

∇g⋆µ(u) = argmax
α∈Q2

〈u,α〉 − g(α)− µd2(α). (62)

In the case of multivariate score (43) and (44), the
dimension of the domain of g is exponentially high
in the number of training examples, and therefore
it will be intractable to first compute ∇g⋆µ(Aw) and

then pre-multiply it with A⊤ (A has exponentially
many rows). Similar tractability issues appear in
learning with structured outputs as in M

3
N. Below

we present a dynamic programming based algorithm,
which costs O(n2) time and space complexity to cal-
culate A⊤∇g⋆µ(Aw) for

d2(α) =
∑

i

αi lnαi.

In this case, the optimization problem in (62) is

min
α∈Q2

µ
∑

y′

αy′ lnαy′ − n
∑

y′

∆(y′,y)αy′ −
∑

y′

uy′αy′ .

Noting that the y′-th row of A is ϕ⊤
y′ :=

∑

i(y
′
i−yi)x⊤

i ,

we get uy′ = ϕ⊤
y′w =

∑

i(y
′
i − yi)x⊤

i w. Following the
standard procedures (e.g. [37, Lemma 8]), the optimal
solution can be written as

α∗
y′ :=

1

nZ
exp

(

1

µ

∑

i

y′ix
⊤
i w +

n

µ
∆(y′,y)

)

,

where Z :=
∑

y′

exp

(

1

µ

∑

i

y′ix
⊤
i w +

n

µ
∆(y′,y)

)

.

So α∗
y′ can be interpreted as a distribution over y′

18

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

false negative

(0, 0)

y′1 . . . y′k+1y′k y′n+
. . .

1 . . . k − 1 k k + 1 . . . n+

fn = 0

fn = 1

fn = 2

...

fn = n+−1

fn = n+

ck

1
ck

y′k = −1

y′k = 1

kk−1

Figure 2. Path weight interpretation of the normalizer Z

and the marginal distributions p(y′

k).

(normalized to 1
n
rather than 1). Then

∂

∂w
g⋆µ(Aw) =

∑

y′

α∗
y′ϕy′ =

∑

y′

α∗
y′

∑

i

(y′i − yi)xi

= −2
∑

i

yixi

∑

y′∼−yi

α∗
y′

= −2
∑

i

p(y′i = −yi)yixi,

where y′ ∼ −yi means summing up all y′ whose i-
th element y′i equals −yi. So

∑

y′∼−yi
α∗
y′ is exactly

the marginal probability p(y′i = −yi) under the joint
distribution α∗

y′ . Now we show how to compute the
marginal distributions efficiently.

Unlike the inference in graphical models, there is no
clique factorization in y′. Fortunately, {y′i} are cou-
pled only through the loss ∆(y′,y) which in turn de-
pends only on two “sufficient statistics” of y′: false
negative b and false positive c. For simplicity, we some-
times also write ∆(y′,y) as ∆(b, c). Without loss of
generality, assume the positive training examples are
the first n+ ones (y1 = . . . = yn+

= 1), and the neg-
ative examples are the last n − n+ ones (yn++1 =
. . . = yn = −1). Denote y′

+ := (y′1, . . . , y
′
n+

)⊤ and

y′
− := (y′n++1, . . . , y

′
n)

⊤. y′
+ ∼ b represents that y′

+

commits b false negatives, i.e.
∑n+

i=1 δ(y
′
i = −1) = b.

y′
− ∼ c represents that y′

− commits c false negatives,

i.e.
∑n

i=n++1 δ(y
′
i = 1) = c. For simplicity, denote

ck := exp

(
1

µ
x⊤
k w

)

.

Let us first compute the normalizer Z as follows.

Z =

n+∑

b=0

n−∑

c=0

∑

y′

+
∼b

∑

y′

−
∼c

(

1

µ

n∑

i=1

y′ix
⊤
i w+

n

µ
∆(y′,y)

)

=

n+∑

b=0

n−∑

c=0

exp

(
n

µ
∆(b, c)

)
∑

y′

+
∼b

exp

(

1

µ

n+∑

i=1

y′ix
⊤
i w

)

︸ ︷︷ ︸

=:V+(b)

·
∑

y′

−
∼c

exp

1

µ

n∑

i=n++1

y′ix
⊤
i w

︸ ︷︷ ︸

=:V−(c)

Therefore, once we have V+(b) for all b ∈ [n+] and
V−(c) for all c ∈ [n−], then Z can be computed in
n+n− steps. For simplicity we only show to compute
V+(b), and V−(c) can be computed in exactly the same
way.

For each fixed b, V+(b) can be equivalently reformu-
lated by Figure 2. Each node (k, f) represents that y′

has committed f false negatives in the first k exam-
ples:

∑k
i=1 δ(y

′
i = −1) = f . Each node is connected

to two nodes on its right: (k+1, f +1) and (k+1, f).
The former corresponds to y′k+1 = −1, i.e. one more
false negative is committed. So we attach to the di-

agonal edge a weight exp
(

− 1
µ
x⊤
k+1w

)

= c−1
k+1. The

latter means y′k+1 = 1 and the false negative is not
incremented. So the horizontal edge is attached with
weight ck+1. A path from (k, f) to (k′, f ′) (k ≤ k′ and
f ≤ f ′) is a sequence of nodes moving from (k, f) to
(k′, f ′) along the edges of the graph: (k, f0) = (k, f)→
(k+1, f1)→ . . .→ (k+s, fs) = (k′, f ′) where s = k′−k
and fi+1−fi = 0 or 1. The weight of a path is defined
as the product of the weight of all edges on that path.

Clearly V+(b) is equal to the total weight of all paths
from (0, 0) to (n+, b). To compute it, define αk(v)
as the total weight of all paths from (0, 0) to (k, v).
Then it is not hard to see the following recursion for
all k = 1, . . . , n+ and v = 0, 1, . . . , k:

αk(v) =
1

ck
αk−1(v − 1) + ckαk−1(v), (63)

where αk(−1) := 0 and αk(k + 1) := 0 for all k. Al-
gorithm 5 computes V+(b) = αn+

(b) for all b ∈ [n+].
Clearly the computational cost is O(n2

+). If we only
19

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Algorithm 5 Forward propagation to compute all
{V+(b) : 0 ≤ b ≤ n+}.
1: Initialize α0(0) = 1.
2: for k = 1, . . . , n+ do

3: for v = 0, 1, . . . , k do

4: αk(v) =
1
ck
αk−1(v − 1) + ckαk−1(v).

5: end for

6: end for

7: Return: V+(b) = αn+
(b) for all 0 ≤ b ≤ n+.

need V+(b) then the space complexity is O(n+). But
later we will need all αk(v) so we keep O(n2

+) mem-
ory. Taking into account the similar cost for V−(c), the
total spatial and computational cost is both O(n2).

To compute the marginal distributions p(y′k) we need
a backward propagation. For example let us consider
p(y′k = 1) for k ∈ [n+], and the case of k > n+ (neg-
ative examples) can be dealt with similarly. By the
definition of αy′ , it suffices to compute

Zk :=
∑

y′:y′

k
=1

exp

(

1

µ

∑

i

y′ix
⊤
i w +

n

µ
∆(y′,y)

)

=

n+∑

b=0

n−∑

c=0

exp

(
n

µ
∆(b, c)

)
∑

y′

+
∼b,y′

k
=1

exp

(

1

µ

n+∑

i=1

y′ix
⊤
i w

)

·
∑

y′

−
∼c

exp

1

µ

n∑

i=n++1

y′ix
⊤
i w

=

n+∑

b=0

∑

y′

+
∼b,y′

k
=1

exp

(

1

µ

n+∑

i=1

y′ix
⊤
i w

)

︸ ︷︷ ︸

=:Tk
+
(b)

·
n−∑

c=0

exp

(
n

µ
∆(b, c)

)

V−(c)

︸ ︷︷ ︸

=:η−(b)

.

Since V−(c) available from forward propagation,
{η−(b)} can be computed in O(n2) time. So the only
problem left is to compute T k

+(b). T k
+(b) has a very

intuitive interpretation in Figure 2: the total weight
of all paths from (0, 0) to (n+, b) with the k-th step
(i.e. between the horizontal coordinate k − 1 and k)
going horizontal (not diagonal). Let βb

k(v) denote the
total weight of all paths from (k, v) to (n+, b). Then

T k
+(b) =

k−1∑

v=0

αk−1(v)ckβ
b
k(v).

Algorithm 6 Backward propagation to compute
p(y′k) for all k ∈ [n+].

1: Initialize ξn+
(v) = η−(v) for all v = 0, 1, . . . , n+.

2: Zn+
= cn+

∑n+

v=0 αn+−1(v)ξn+
(v).

3: for k = n+ − 1, . . . , 1 do

4: for v = 0, 1, . . . , k do

5: ξk(v) = ck+1ξk+1(v) +
1

ck+1
ξk+1(v + 1).

6: end for

7: Zk = ck
∑k−1

v=0 αk−1(v)ξk(v).
8: end for

9: Return: p(y′k = 1) = Zi

nZ
for all k ∈ [n+].

So

Zk =

n+∑

b=0

T k
+(b)η−(b) =

n+∑

b=0

k−1∑

v=0

αk−1(v)ckβ
b
k(v)η−(b)

= ck

k−1∑

v=0

αk−1(v)

n+∑

b=0

βb
k(v)η−(b)

︸ ︷︷ ︸

=:ξk(v)

.

Therefore as long as ξk(v) can be updated efficiently,
so is Zk. Fortunately, β

b
k(v) has a recursive form

βb
k(v) = ck+1β

b
k+1(v) +

1

ck+1
βb
k+1(v + 1),

for all 0 ≤ k ≤ n+ − 1, 0 ≤ v ≤ k and 0 ≤ b ≤ n+.
This implies for all 0 ≤ k ≤ n+ − 1 and 0 ≤ v ≤ k

ξk(v) =

n+∑

b=0

βb
k(v)η−(b)

=

n+∑

b=0

[ck+1β
b
k+1(v) +

1

ck+1
βb
k+1(v + 1)]η−(b)

= ck+1ξk+1(v) +
1

ck+1
ξk+1(v + 1).

The final algorithm is summarized in Algorithm 6. Its
time and space cost is both O(n2). The initialization
of ξk therein is based on initializing βb

n+
(v) = δ(v = b)

for all b, v = 0, 1, . . . , n+.

The gradient of g⋆(Aw) for M
3
Ns can also be com-

puted efficiently by dynamic programming, but the
key structure it exploits is the clique decomposition
in graphical models. Details can be found in [37].

5.5. Minimizing the model efficiently

In this section, we show that the model ψk can be
minimized efficiently.

20

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

5.5.1. Diagonal quadratic constrained to a

box and a hyperplane

When AGM-EF is applied to solve the dual optimiza-
tion problem D(α) for SVM in (41), each iteration
needs to solve the model subject to Q2. This can be
reduced to a box constrained diagonal QP with a single
linear equality constraint:

min
1

2

n∑

i=1

d2i (αi −mi)
2 (64)

s.t. li ≤αi ≤ ui ∀i ∈ [n];
n∑

i=1

σiαi = z.

Similarly, when solving in the primal with smoothing
in (56), the gradient query also involves an optimiza-
tion in this form. In this section, we focus on the
following the QP in (64). The algorithm we describe
below stems from [38] and finds the exact optimal so-
lution in O(n) time, faster than the O(n log n) com-
plexity in [39]. [39] also proposes a median finding
based algorithm which has linear time complexity in
expectation. In contrast, our method is deterministic
and linear. Liu and Ye [40] tackle this problem too,
but they use the mean bisection and apply Newton’s
method to find a solution up to an inexact prespecified
accuracy δ. The resulting total cost is O(n log 1

δ
).

Without loss of generality, we assume li < ui and di 6=
0 for all i. Also assume σi 6= 0 because otherwise
αi can be solved independently. To make the feasible
region nonempty, we also assume

z ≥
∑

i

σi(δ(σi > 0)li + δ(σi < 0)ui)

and z ≤
∑

i

σi(δ(σi > 0)ui + δ(σi < 0)li).

With a simple change of variable βi = σi(αi−mi), the
problem (64) is simplified as

min
1

2

n∑

i=1

d̄2i β
2
i

s.t. l′i ≤βi ≤ u′i ∀i ∈ [n];
n∑

i=1

βi = z′,

where d̄2i =
d2
i

σ2
i

, l′i =

{
σi(li −mi) if σi > 0
σi(ui −mi) if σi < 0

, u′i =
{
σi(ui −mi) if σi > 0
σi(li −mi) if σi < 0

, and z′ = z − ∑i σimi.

λd̄2

i l
′

i d̄2

i u
′

i

l′i

u′

i

slope = d̄−2

i

hi(λ)

Figure 3. hi(λ)

Write out its partial Lagrangian:

min
βi∈[l′

i
,u′

i
]
max
λ∈R

n∑

i=1

1

2
d̄2iβ

2
i − λ

(
n∑

i=1

βi − z′
)

.

Due to strong duality, we can swap the min and max:

max
λ∈R

min
βi∈[l′i,u

′

i]

n∑

i=1

1

2
d̄2i β

2
i − λ

(
n∑

i=1

βi − z′
)

= max
λ∈R

∑

i

min
βi∈[l′

i
,u′

i
]

(
1

2
d̄2i β

2
i − λβi

)

+ λz′

⇔ min
λ∈R

∑

i

max
βi∈[l′

i
,u′

i
]

(

−1

2
d̄2i β

2
i + λβi

)

︸ ︷︷ ︸

:=Hi(λ)

−λz′ (65)

Clearly, the optimal β∗
i (λ) in the definition of Hi(λ)

can be solved analytically, and this gives

Hi(λ) =

− 1
2 d̄

2
iu

′2
i + λu′i if λ > u′id̄

2
i

− 1
2 d̄

2
i l

′2
i + λl′i if λ < l′id̄

2
i

λ2

2d̄2
i

if λ ∈ [l′id̄
2
i , u

′
id̄

2
i]

with β∗
i (λ) =

u′i if λ > u′id̄
2
i

l′i if λ < l′id̄
2
i

λ
2d̄2

i

if λ ∈ [l′id̄
2
i , u

′
id̄

2
i]

.

To minimize the objective in (65) as a function of λ, we
notice that Hi(λ) is convex and differentiable. Thus,
the minimizer of (65) is exactly the root of its gradient.
Note the gradient of Hi:

hi(λ) =

u′i if λ > u′id̄
2
i

l′i if λ < l′id̄
2
i

λ
d̄2
i

if λ ∈ [l′id̄
2
i , u

′
id̄

2
i]

.

See Figure 3 for the plot of hi(λ). So we need to find
21

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(a) minS < d̄2i l
′

i < d̄2iu
′

i < maxS

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(b) minS < d̄2i l
′

i < maxS ≤ d̄2iu
′

i

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(c) d̄2i l
′

i ≤ minS < d̄2iu
′

i < maxS

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(d) minS < maxS ≤ d̄2i l
′

i

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(e) d̄2i l
′

i ≤ minS < maxS ≤ d̄2iu
′

i

d̄2

i l
′

i d̄2

i u
′

i
[]

min S maxS

(f) d̄2iu
′

i ≤ minS < maxS

Figure 4. All possible locations of minS and maxS on hi(λ).

the root of the gradient of (65):

f(λ) :=

n∑

i=1

hi(λ) − z′ = 0. (66)

Note that hi(λ) is a monotonically increasing function
of λ, so the whole f(λ) is monotonically increasing in
λ. Since f(∞) ≥ 0 by z′ ≤∑i u

′
i and f(−∞) ≤ 0 by

z′ ≥ ∑i l
′
i, the root must exist. Considering that f

has at most 2n kinks (nonsmooth points) and is linear
between two adjacent kinks, the simplest idea is to sort
{
d̄2i l

′
i, d̄

2
i u

′
i : i ∈ [n]

}
into s(1) ≤ . . . ≤ s(2n). If f(s(i))

and f(s(i+1)) have different signs, then the root must
lie between them and can be easily found because f
is linear in [s(i), s(i+1)]. This algorithm takes at least
O(n log n) time because of sorting.

However, this cost can be reduced to O(n) by mak-
ing use of the fact that the median of n (unsorted)
elements can be found in O(n) time. Notice that due
to the monotonicity of f , f evaluated at the median
of a set S is exactly the median of function values,
i.e., f(MED(S)) = MED({f(x) : x ∈ S}). Algorithm
7 shows the binary search. Let |S| denote the cardi-
nality of S. The while loop must terminate in order
log2(2n) iterations because in each iteration the cardi-

nality of set S is reduced to at most |S|
2 + 1 (we will

call it “almost halves”). So if f(m) can be evaluated in
O(|S|) time, then the time complexity of each iteration
is linear in |S|, and the total complexity of Algorithm
7 is O(n). Step 7 and 9 ensure that |S| = 2 at step 12.

The evaluation of f(m) potentially involves summing
up n terms as in (66). However by carefully aggregat-

Algorithm 7 O(n) algorithm to find the root of
f(λ). Do not allow duplicate points in S.

1: Initialize kink set S ←
{
d̄2i l

′
i, d̄

2
iu

′
i : i ∈ [n]

}
. Re-

move duplicates if any.
2: while |S| > 2 do

3: Find the median of S: m← MED(S)
4: if f(m) = 0 then

5: Return m.
6: else if f(m) > 0 then

7: S ← {x ∈ S : x ≤ m}.
8: else

9: S ← {x ∈ S : x ≥ m}.
10: end if

11: end while

12: Return
lf(u)−uf(l)
f(u)−f(l) if S = {l, u : f(l) 6= f(u)}, or

any value in [l, u] if S = {l < u : f(l) = f(u)}.

ing the slope and offset, this can be reduced to O(|S|)
too. In more detail, let us first consider all the possible
locations of minS and maxS on hi(λ) as illustrated
in Figure 4. By halving the set S, the possible trans-
fers of situation are shown in Figure 5. Once the set
S gets into the states (d), (e), (f), its state will never
change with the shrinking of S, and the contribution
of hi(λ) to f(λ) will be determined by: l′i for case
(d), u′i for case (f) and λ

d̄2
i

for case (e). So we keep

two buffers: cg ∈ R which aggregates the contribution
by all the hi ending in state (d) or (f), and sg ∈ R
which aggregates the slope 1

d̄2
i

for all hi ending in state

(e). In other words, to evaluate f(m) we only need to
visit those hi which are still in state (a), (b) and (c)
(called undetermined states). But how many such i

22

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

a

b c

d f e

Figure 5. All possible transitions of state.

can there be? By Figure 4, these hi all contribute at
least one kink point in S (state (a) contributes two).
If
{
d̄2i l

′
i, d̄

2
iu

′
i : i ∈ [n]

}
are distinct, then the points in

S has one-to-one correspondence to the kink points of
hi. Therefore, the number of hi in undetermined states
must be upper bounded by the size of S. Since the size
of S almost halves in each iteration, so is number of hi
in undetermined states. As a result, the cost for com-
puting f(m) halves too. Overall, running Algorithm 7
to completion, the total time spent on evaluating f(m)
in step 4 is O(n).

The analysis becomes a bit more complicated when
{
d̄2i l

′
i, d̄

2
i u

′
i : i ∈ [n]

}
contains duplicate points. In this

case, one point in S may correspond to kink points of
multiple hi, and so the above argument can no longer
be used to upper bound the number of hi in unde-
termined states. The simplest patch is to add small
perturbations to the duplicate points and make them
different. A more principled solution is given in Algo-
rithm 8. The key idea is to allow duplicates in S, and
replace S ← {x ∈ S : x ≤ m} in step 7 of Algorithm
7 by S ← {x ∈ S : x < m} (and similarly step 9). An
additional level of if-then-else check is introduced so
as not to miss out the solution. Clearly, the size of S
still halves in Algorithm 8. More importantly, because
we do allow the duplicates in S, so the size of S is an
upper bound of the number of hi which is in undeter-
mined states. Therefore, the cost for computing f(m)
and f(y) halves through iterations, and the total time
spent on evaluating f(m) and f(y) is O(n).

Note that the duplication removal in Algorithm 8 ac-
tually cannot be done in O(n) time, and is subject
to numerical precision. In our experiment, we used
Algorithm 8 which does not remove duplicates. The
correctness is easy to prove, and in practice there is
almost no duplicates and it works very well.

Algorithm 8 O(n) algorithm to find the root of
f(λ). Allow duplicate kink points in S.

1: Initialize kink set S ←
{
d̄2i l

′
i, d̄

2
iu

′
i : i ∈ [n]

}
. Keep

duplications and so |S| = 2n.
2: while |S| > 2 do

3: Find the median of S: m← MED(S).
4: if f(m) = 0 then

5: Return m.
6: else if f(m) > 0 then

7: Find y := max {x ∈ S : x < m}.
// {x ∈ S : x < m} must be nonempty.

8: if f(y) > 0 then

9: S ← {x ∈ S : x < m}.
10: else

11: S ← {y,m}. // Root lies in [y,m], so exit
the while loop immediately.

12: end if

13: else

14: Find y := min {x ∈ S : x > m}.
// {x ∈ S : x > m} must be nonempty.

15: if f(y) < 0 then

16: S ← {x ∈ S : x > m}.
17: else

18: S ← {m, y}. // Root lies in [m, y], so exit
the while loop immediately.

19: end if

20: end if

21: end while

22: Return
lf(u)−uf(l)
f(u)−f(l) if S = {l, u : f(l) 6= f(u)}, or

any value in [l, u] if S = {l < u : f(l) = f(u)}.

5.5.2. Elastic net

For the first type of elastic net (52), the composite
optimization is easy thanks to the separability. The
second type which uses constraints is much more chal-
lenging, and we show in this section how to solve this
constrained optimization in linear time. Our approach
is similar to the previous Section 5.5.1.

At each iteration of AGM-EF-∞ or AGM-EF-1, we
need to solve

min
w

λ

(

γ ‖w‖1 +
1

2
‖w‖22

)

+
L

2
‖w − gi‖2 .

Since all dimensions of w are decoupled, each wi can
be solved separately as a one dimensional optimization
problem. In fact, its solution enjoys a simple closed
form [41, p. 384]:

w∗
i =

{
Lgi−γλ
λ+L

if λ < Lgi/γ

0 if λ ≥ Lgi/γ
.

23

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

A more difficult version of elastic net is based on con-
straints, where in each iteration one needs to solve

min
w

1

2
‖w− g‖2 (67)

s.t. γ ‖w‖1 +
1

2
‖w‖22 ≤ λ. (68)

Clearly the optimal wi has the same sign as gi, hence
we can assume gi ≥ 0 without loss of generality. Next
we follow the same idea as in Section 5.5.1 and refor-
mulate (67) into a one dimensional root finding prob-
lem. First write out the Lagrangian:

min
w

max
λ≥0

1

2
‖w− g‖2 + λ

(

γ ‖w‖1 +
1

2
‖w‖22 − r

)

⇔ max
λ≥0

min
w

1

2
‖w− g‖2 + λ

(

γ ‖w‖1 +
1

2
‖w‖22 − r

)

︸ ︷︷ ︸

=:fλ(w)

where the equivalence is based on a simple check of
Slater’s condition. For each fixed λ, the optimal w
can be found by setting the subgradient to 0.

∂

∂wi

fλ(w) = wi − gi + λwi + λγ ·

1 if wi > 0

−1 if wi < 0

[−1, 1] if wi = 0

.

Therefore, the optimal solution is

w∗
i =

{
gi−λγ
1+λ

if λ ≤ gi/γ
0 if λ > gi/γ

. (69)

Plugging it back to fλ(w) we get the one dimensional
optimization problem in λ:

H(λ) = −rλγ +

p
∑

i=1

{
λ(−λγ2+g2

i +2giγ)
2(1+λ) if λ ≤ gi/γ

g2
i

2 if λ > gi/γ
.

It is easy to see that H(λ) is concave in [−1,∞). So
its maximizer is 0 or the root of its derivative.

H ′(λ) = −rγ +

p
∑

i=1

{
−γ2λ2−2γ2λ+2giλ+g2

i

2(λ+1)2 if λ ≤ gi/γ
0 if λ > gi/γ

=
1

2(λ+ 1)2
h(λ)

where

h(λ) = −2γr (λ+ 1)
2

+

p
∑

i=1

{

−γ2 (λ+ 1)
2
+ (γ + gi)

2
if λ ≤ gi/γ

0 if λ > gi/γ
.

Clearly h(λ) is monotonically decreasing in [0,∞). So
H(λ) is maximized at 0 if h(0) ≤ 0, i.e.

r ≥ −p
2
γ +

1

2γ

p
∑

i=1

(γ + gi)
2.

Otherwise, h(λ) has a root in [0,∞). Since it monoton-
ically decreases, the binary search trick in Section 5.5.1
can also be applied here. Once it is determined that
the optimal λ is less than a set of gi, these quadrat-

ics can be aggregated by summing up the γ
(

gi +
1
γ

)2

.

Finally, w is recovered by (69).

5.6. Optimizing the Prox-function

When smoothing g⋆, we have often used prox-function
d(x) =

∑

i x
2
i . However, it is possible to improve

the condition number by using an optimized prox-
function. This idea was used by [17] where the l.c.g
constant of a quadratic 1

2x
⊤Hx + 〈b,x〉 (x ∈ Rp)

is upper bounded by p when the norm is chosen as
‖x‖2 =

∑

iHiix
2
i , i.e. rescaling all dimensions.

Using this idea, we show in this section that a data
dependent optimization of the prox-function can im-
prove the condition number of the smoothed variant
of the primal objective as discussed in Section 5.1.

Let us consider the following simple but illustrative
example. Suppose Q2 = [0, c]n, g(u) = −∑n

i=1 ui.
Denote A = (a1, . . . , an)

⊤. We adopt a prox-function

d(u) =
1

2

n∑

i=1

b2iu
2
i ,

and we can derive g⋆µ = (g+µd)⋆. The diameter of Q2

under d is

D = max
x∈Q2

d(u) =
c2

2

∑

i

b2i . (70)

For any prescribed accuracy ǫ > 0, we first choose µ
such that µD ≤ ǫ, i.e. µ ≤ ǫ

D
. Then our goal is to find

the bi which minimizes the Lipschitz constant of the
gradient of g⋆µ(Aw) wrt w.

First compute g⋆µ(Aw):

g⋆µ(Aw) = sup
u∈Q2

〈Aw,u〉+
∑

i

ui −
µ

2

∑

i

b2iu
2
i .

It is easy to see that the optimal u∗ is

u∗i = MED

(

0, c,
〈ai,w〉+ 1

µb2i

)

.
24

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

where MED stands for the median. So the gradient of
g⋆µ(Aw) wrt w can be calculated by

∂

∂w
g⋆µ(Aw)=

n∑

i=1

gi, where gi=

0 if u∗i = 0

ai if u∗i = c
〈ai,w〉+1

µb2
i

ai else

.

So the Hessian of g⋆µ(Aw) in w can only take value in

Hδ =
1

µ

∑

i

δi
b2i
aia

⊤
i , where δi ∈ {0, 1} .

Now for any w1,w2 ∈ Q1, denote l = ‖w1 −w2‖
and v = (w2 − w1)/l (so ‖v‖ = 1). Denote h(t) =
∂
∂w
g⋆µ(A(w1 + tv)). So

∥
∥ ∂
∂w
g⋆µ(Aw1)− ∂

∂w
g⋆µ(Aw2)

∥
∥

‖w1 −w2‖
=
‖h(l)− h(0)‖

l

(a)

≤ ‖∇h(ξ)‖ (b)
= ‖Hδv‖

(c)

≤ λmax(Hδ).

Here, (a) is by the mean value theorem with ξ ∈ [0, l].
(b) is by the chain rule and the δ for Hδ is determined
by ξ. (c) is because for any real positive semi-definite
matrix H , max‖v‖=1 ‖Hv‖ = λmax(H).

Clearly λmax(Hδ) is maximized when all δi = 1 and
let us call it H1. In conjunction with (70) and (57),
we minimize λmax(H1) wrt bi:

min
bi

λmax(H1) = min
bi

D

ǫ
λmax

(
∑

i

1

b2i
aia

⊤
i

)

=
c2

2ǫ
min
bi

{(
∑

i

b2i

)

max
v:‖v‖=1

v⊤
∑

i

b−2
i aia

⊤
i v

}

=
c2

2ǫ
max
‖v‖=1

min
bi

(
∑

i

b2i

)
∑

i

b−2
i (a⊤i v)

2 (71)

=
c2

2ǫ
max
‖v‖=1

(
∑

i

∣
∣a⊤i v

∣
∣

)2

(Cauchy-Schwartz) (72)

⇔ max
‖v‖=1

∑

i

∣
∣a⊤i v

∣
∣ .

However, this last optimization problem is hard so we
maximize an approximation of it

max
‖v‖=1

∑

i

∣
∣a⊤i v

∣
∣
2
= max

‖v‖=1
v⊤
(
∑

i

aia
⊤
i

)

v.

The solution is the eigenvector v∗ corresponding to
the maximum eigenvalue of

∑

i aia
⊤
i . Then b2i can be

recovered by using the optimality condition of Cauchy-
Schwartz in (72):

b2i =
∣
∣a⊤i v

∗∣∣ .

Note [42] used the heuristic that b2i = ‖ai‖∞. We can
also compare with the isotropic d, i.e. bi = 1. Simply
plug bi = 1 into (71), and we get

c2

2ǫ
n
∑

i

(a⊤i v)
2

which must be greater than or equal to

c2

2ǫ

(
∑

i

∣
∣a⊤i v

∣
∣

)2

in (72) for all v. Therefore with a fixed ǫ, our approach
does possibly reduce the l.c.g constant of g⋆(Aw) in
w. The maximum eigenvector can be found very effi-
ciently by using the power iteration, and usually 5 to
6 iterations is enough.

6. Experimental Results

We will present the experimental result in a later ver-
sion.

7. Discussion

A lot of efforts (e.g., [43, 44]) have been devoted to
making Nesterov’s method online, i.e. use a stochastic
gradient oracle and preserve the 1/

√
ǫ rate of conver-

gence for the expected gap. This however turns out
hopeless as was shown by the lower bounds in [45, 46].

References

[1] Xinhua Zhang, Ankan Saha, and S.V.N. Vish-
wanathan. Lower bounds on rate of convergence
of cutting plane methods. In Advances in Neural
Information Processing Systems 23, 2011.

[2] Zhaosong Lu. Smooth optimization approach for
sparse covariance selection. SIAM Journal on Op-
timization, 19(4):1807–1827, 2009.

[3] Jun Liu, Jianhui Chen, and Jieping Ye. Large-
scale sparse logistic regression. In ACM SIGKDD
Conference on Knowledge Discovery and Data
Mining, 2009.

[4] Andrew Gilpin, Tuomas Sandholm, and
Troels Bjerre Sorensen. A heads-up no-limit texas
hold’em poker player: Discretized betting models
and automatically generated equilibrium-finding
programs. In International Joint Conference on
Autonomous Agents and Multiagent Systems,
2008.

25

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

[5] Xinhua Zhang, Ankan Saha, and S.V.N. Vish-
wanathan. Lower bounds for BMRM and faster
rates for training SVMs. Technical report
arXiv:0909.1334, 2009. URL http://arxiv.org/

abs/0909.1334.

[6] Yurii Nesterov. Smooth minimization of non-
smooth functions. Math. Program., 103(1):127–
152, 2005.

[7] John C. Platt. Fast training of support vector
machines using sequential minimal optimization.
In Advances in Kernel Methods—Support Vector
Learning, pages 185–208. MIT Press, 1999.

[8] Peter L. Bartlett, Michael I. Jordan, and Jon D.
McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical As-
sociation, 101(473):138–156, 2006.

[9] Paul Tseng. On accelerated proximal gradient
methods for convex-concave optimization. sub-
mitted to SIAM Journal on Optimization, 2009.

[10] Amir Beck and Marc Teboulle. A fast itera-
tive shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sci-
ences, 2(1):183–202, 2009.

[11] Hui Zou and Trevor Hastie. Regularization and
variable selection via the elastic net. Journal of
Royal Statistics Society. B, 67(2):301–320, 2005.

[12] Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. Online learning for matrix fac-
torization and sparse coding. Journal of Machine
Learning Research, 11:19–60, 2010.

[13] Manfred K. Warmuth, Karen A. Glocer, and
S. V. N. Vishwanathan. Entropy regularized LP-
Boost. In Yoav Freund, Yoav Làszlò Györfi, and
György Turàn, editors, Proc. Intl. Conf. Algo-
rithmic Learning Theory, number 5254 in Lecture
Notes in Artificial Intelligence, pages 256 – 271,
Budapest, October 2008. Springer-Verlag.

[14] Alexandre d’Aspremont, Onureena Banerjee, and
Laurent El Ghaoui. First-order methods for
sparse covariance selection. SIAM Journal on Ma-
trix Analysis and Applications, 30(1):56–66, 2008.

[15] Prateek Jain, Brian Kulis, Inderjit S. Dhillon, and
Kristen Grauman. Online metric learning and fast
similarity search. In Advances in Neural Informa-
tion Processing Systems, 2009.

[16] Brian Kulis and Peter L Bartlett. Implicit online
learning. In Proc. Intl. Conf. Machine Learning,
2010.

[17] Yurii Nesterov. Gradient methods for minimiz-
ing composite objective function. Technical Re-
port 76, CORE Discussion Paper, UCL, 2007.

[18] Yurii Nesterov. A method for unconstrained con-
vex minimization problem with the rate of conver-
gence O(1/k2). Soviet Math. Docl., 269:543–547,
1983.

[19] Yurii Nesterov. Introductory Lectures On Convex
Optimization: A Basic Course. Springer, 2003.

[20] Yurii Nesterov. Excessive gap technique in non-
smooth convex minimization. SIAM J. on Opti-
mization, 16(1):235–249, 2005. ISSN 1052-6234.

[21] Arkadi Nemirovski. Efficient methods in convex
programming. Lecture notes, 1994.

[22] Ting Kei Pong, Paul Tseng, Shuiwang Ji, and
Jieping Ye. Trace norm regularization: Refor-
mulations, algorithms, and multi-task learning.
SIAM Journal on Optimization, 2010.

[23] Alfred Auslender and Marc Teboulle. Interior gra-
dient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16
(3):697–725, 2006.

[24] Shai Shalev-Shwartz. Online Learning: Theory,
Algorithms, and Applications. PhD thesis, The
Hebrew University of Jerusalem, July 2007.

[25] Choon Hui Teo, S. V. N. Vishwanthan, Alex J.
Smola, and Quoc V. Le. Bundle methods for reg-
ularized risk minimization. J. Mach. Learn. Res.,
11:311–365, January 2010.

[26] Guanghui Lan, Zhaosong Lu, and Renato D. C.
Monteiro. Primal-dual first-order methods with
O(1/ǫ) iteration complexity for cone program-
ming. Mathematical Programming, 2009.

[27] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, 1995.

[28] Alfred Auslender and Marc Teboulle. Interior
gradient and epsilon-subgradient descent methods
for constrained convex minimization. Mathemat-
ics of Operations Research, 29(1):1–26, 2004.

[29] J. M. Borwein and A. S. Lewis. Convex Analy-
sis and Nonlinear Optimization: Theory and Ex-
amples. CMS books in Mathematics. Canadian
Mathematical Society, 2000.

[30] K. P. Bennett and O. L. Mangasarian. Robust
linear programming discrimination of two linearly
inseparable sets. Optim. Methods Softw., 1:23–34,
1992.

26

http://arxiv.org/abs/0909.1334
http://arxiv.org/abs/0909.1334

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

[31] T. Joachims. A support vector method for mul-
tivariate performance measures. In Proc. Intl.
Conf. Machine Learning, pages 377–384, San
Francisco, California, 2005. Morgan Kaufmann
Publishers.

[32] J. D. Lafferty, A. McCallum, and F. Pereira. Con-
ditional random fields: Probabilistic modeling for
segmenting and labeling sequence data. In Pro-
ceedings of International Conference on Machine
Learning, volume 18, pages 282–289, San Fran-
cisco, CA, 2001. Morgan Kaufmann.

[33] B. Taskar, C. Guestrin, and D. Koller. Max-
margin Markov networks. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural In-
formation Processing Systems 16, pages 25–32,
Cambridge, MA, 2004. MIT Press.

[34] Shuiwang Ji and Jieping Ye. An accelerated gra-
dient method for trace norm minimization. In
Proc. Intl. Conf. Machine Learning, 2009.

[35] C. Do, Q. Le, and C.S. Foo. Proximal regular-
ization for online and batch learning. In Inter-
national Conference on Machine Learning ICML,
2009.

[36] Olivier Chapelle. Training a support vector ma-
chine in the primal. Neural Computation, 19(5):
1155–1178, 2007.

[37] Xinhua Zhang, Ankan Saha, and S.V.N. Vish-
wanathan. Faster rates for training max-
margin markov networks. Technical report
arXiv:1003.1354, 2010. URL http://arxiv.org/

abs/1003.1354.

[38] P. M. Pardalos and N. Kovoor. An algorithm
for singly constrained class of quadratic programs
subject to upper and lower bounds. Mathematical
Programming, 46:321–328, 1990.

[39] John Duchi, Shai Shalev-Shwartz, Yoram Singer,
and Tushar Chandrae. Efficient projections onto
the ℓ1-ball for learning in high dimensions. In
Proc. Intl. Conf. Machine Learning, 2008.

[40] Jun Liu and Jieping Ye. Efficient euclidean pro-
jections in linear time. In Proc. Intl. Conf. Ma-
chine Learning. Morgan Kaufmann, 2009.

[41] G. B. Passty. Ergodic converence to a zero of
the sum of monotone operators in Hilberts space.
Journal of Optimization Theory and Applications,
72:383–390, 1979.

[42] Tianyi Zhou, Dacheng Tao, and Xindong Wu.
NESVM: a fast gradient method for support vec-
tor machines. In Proc. Intl. Conf. Data Mining,
2010.

[43] Chonghai Hu, James T. Kwok, and Weike Pan.
Accelerated gradient methods for stochastic opti-
mization and online learning. In Neural Informa-
tion Processing Systems, 2009.

[44] Lin Xiao. Dual averaging methods for regu-
larized stochastic learning and online optimiza-
tion. Technical Report MSR-TR-2010-23, Mi-
crosoft Research, 2010.

[45] Guanghui Lan. An optimal method for stochastic
composite optimization. Mathematical Program-
ming, 2010.

[46] Saeed Ghadimi and Guanghui Lan. ”optimal
stochastic approximation algorithms for strongly
convex stochastic composite optimization. Sub-
mitted, 2010.

[47] J.B. Hiriart-Urruty and C. Lemaréchal. Convex
Analysis and Minimization Algorithms, I and II,
volume 305 and 306. Springer-Verlag, 1993.

A. Concepts from Convex Analysis

The following four concepts from convex analysis are
used in the paper.

Definition 2. Suppose a convex function f : Rn →
R is finite at w. Then a vector g ∈ Rn is called a
subgradient of f at w if, and only if,

f(w′) ≥ f(w) + 〈w′ −w,g〉 for all w′.

The set of all such g vectors is called the subdifferen-
tial of f at w, denoted by ∂wf(w). For any convex
function f , ∂wf(w) must be nonempty. Furthermore
if it is a singleton then f is said to be differentiable at
w, and we use ∇f(w) to denote the gradient.

Definition 3. A convex function f : Rn → R is
strongly convex with respect to a norm ‖·‖ if there ex-
ists a constant σ > 0 such that f − σ

2 ‖ · ‖2 is convex.
σ is called the modulus of strong convexity of f , and
for brevity we will call f σ-strongly convex.

Definition 4. Suppose a function f : Rn → R is dif-
ferentiable on Q ⊆ Rn. Then f is said to have Lips-
chitz continuous gradient (l.c.g) with respect to a norm
‖ · ‖ if there exists a constant L such that

‖∇f(w)−∇f(w′)‖∗ ≤ L ‖w−w′‖ ∀ w,w′ ∈ Q.

For brevity, we will call f L-l.c.g.
27

http://arxiv.org/abs/1003.1354
http://arxiv.org/abs/1003.1354

Regularized Risk Minimization by Nesterov’s Accelerated Gradient Methods

Definition 5. The Fenchel dual of a function f :
Rn → R, is a function f⋆ : Rn → R defined by

f⋆(w⋆) = sup
w∈Rn

{〈w,w⋆〉 − f(w)}

Strong convexity and l.c.g are related by Fenchel du-
ality according to the following lemma:

Theorem 21 ([47, Theorem 4.2.1 and 4.2.2]).

1. If f : Rn → R is σ-strongly convex, then f⋆ is
finite on Rn and f⋆ is 1

σ
-l.c.g.

2. If f : Rn → R is convex, differentiable on Rn, and
L-l.c.g, then f⋆ is 1

L
-strongly convex.

Finally, the following lemma gives a useful characteri-
zation of the minimizer of a convex function.

Lemma 22 ([47, Theorem 2.2.1]). A convex function
f is minimized at w∗ if, and only if, 0 ∈ ∂f(w∗). Fur-
thermore, if f is strongly convex, then its minimizer
is unique.

28

