
Smoothing Multivariate Performance Measures

Xinhua Zhang
Department of Computing Science

University of Alberta
Alberta, T6G 2E8, Canada

xinhua2@ualberta.ca

Ankan Saha
Department of Computer Science

University of Chicago
Chicago, IL 60637, USA
ankans@cs.uchicago.edu

S.V. N. Vishwanathan
Department of Statistics and

Department of Computer Science
Purdue University, IN 47907, USA

vishy@stat.purdue.edu

Abstract

A Support Vector Method for multivariate
performance measures was recently intro-
duced by Joachims (2005). The underlying
optimization problem is currently solved us-
ing cutting plane methods such as SVM-Perf
and BMRM. One can show that these algo-
rithms converge to an ε accurate solution in
O
(

1
λε

)
iterations, where λ is the trade-off pa-

rameter between the regularizer and the loss
function. We present a smoothing strategy
for multivariate performance scores, in par-
ticular precision/recall break-even point and
ROCArea. When combined with Nesterov’s
accelerated gradient algorithm our smooth-
ing strategy yields an optimization algorithm
which converges to an ε accurate solution in

O∗
(

min
{

1
ε ,

1√
λε

})
iterations. Furthermore,

the cost per iteration of our scheme is the
same as that of SVM-Perf and BMRM. Em-
pirical evaluation on a number of publicly
available datasets shows that our method
converges significantly faster than cutting
plane methods without sacrificing generaliza-
tion ability.

1 Background and Introduction

Different kinds of applications served by machine
learning algorithms have varied and specific measures
to judge the performance of the algorithms. In this
paper we focus on efficient algorithms for directly op-
timizing multivariate performance measures such as
precision/recall break-even point (PRBEP) and area
under the Receiver Operating Characteristic curve
(ROCArea). Given a training set with n examples
X := {(xi, yi)}ni=1 where xi ∈ Rp and yi ∈ {+1,−1},
Joachims (2005) proposed an elegant formulation for
this problem which minimizes the following regularized

risk:
min
w

J(w) =
λ

2
‖w‖2 +Remp(w). (1)

Here 1
2 ‖w‖

2
is the regularizer, λ > 0 is a trade-off

parameter and the empirical risk Remp for contingency
table based multivariate performance measures is

Remp(w)= max
z∈{−1,1}n

[
∆(z,y)+

1

n

n∑
i=1

〈w,xi〉 (zi−yi)

]
. (2)

Here, ∆(z,y) denotes the multivariate discrepancy be-
tween the correct labels y := (y1, . . . , yn)> and a can-
didate labeling z (Joachims, 2005), and 〈·, ·〉 denotes
the Euclidean dot product. In order to compute the
multivariate discrepancy for the PRBEP, which is the
main focus of our work, we need the false positive and
false negative rates, which are defined as

b =
∑
i∈P

δ(zi = −1), and c =
∑
j∈N

δ(zj = 1).

Here δ(x) = 1 if x is true and 0 otherwise, while P
and N denote the set of indices of positive (yi = +1)
and negative (yi = −1) examples respectively. Fur-
thermore, let n+ = |P|, n− = |N |. With this notation
in place, ∆(z,y) for PRBEP is defined as b/n+ if b = c
and −∞ otherwise (Joachims, 2005).

ROCArea, on the other hand, measures how many
pairs of examples are mis-ordered. Denote m = n+n−.
(Joachims, 2005) proposed using the following empir-
ical risk, Remp, to directly optimize the ROCArea:

1

m
max

z∈{−1,1}m

[∑
i∈P,j∈N

1
2 (1−zij) + zijw

>(xi − xj)

]
. (3)

The empirical risks in (2) and (3) are non-smooth and
this leads to difficulties in solving (1). However, cut-
ting plane methods such as SVM-Perf (Joachims, 2006)
and BMRM (Teo et al., 2010) can handle such prob-
lems. At each iteration these algorithms only require
a sub-gradient of Remp, which can be efficiently com-
puted by a separation algorithm with O(n log n) effort
for both (2) and (3) (Joachims, 2005). One can show

mailto:xinhua2@ualberta.ca
mailto:ankans@cs.uchicago.edu
mailto:vishy@stat.purdue.edu

that cutting plane methods can find an ε accurate so-
lution of (1) after computing O(1

λε) sub-gradients (Teo
et al., 2010). These rates are optimal and cannot be
improved (Zhang et al., 2011).

One possible approach to break the Ω(1
λε) barrier is to

approximate (1) by a smooth function, which in turn
can be efficiently minimized by using either an acceler-
ated gradient method or a quasi-Newton method (Nes-
terov, 2005, 2007). This technique for non-smooth op-
timization was pioneered by Nesterov (2005). We now
describe some relevant details. The necessary mathe-
matical preliminaries can be found in Appendix B.

1.1 Nesterov’s Formulation1

Let A be a linear transform and assume that we can
find a smooth function g∗µ(A>w) with a Lipschitz con-

tinuous gradient such that
∣∣Remp(w)− g∗µ(A>w)

∣∣ ≤ µ
for all w. It is easy to see that

Jµ(w) :=
λ

2
‖w‖2 + g∗µ(A>w) (4)

satisfies |Jµ(w)− J(w)| ≤ µ for all w. In partic-
ular, if we set µ = ε/2 and find a w′ such that
Jµ(w′) ≤ minw Jµ(w) + ε/2, then it follows that
J(w′) ≤ minw J(w) + ε. In other words, w′ is an
ε accurate solution for (1).

If we apply Nesterov’s accelerated gradient method
(Nesterov, 1983) to Jµ(w), as shown in Appendix A,
one can find an ε accurate solution to J(w) by query-
ing the gradient of g?µ(A>w) for

O∗
(√

D ‖A‖min

{
1

ε
,

1√
λε

})
(5)

number of times (Nesterov, 2005). Here ‖A‖ is the
matrix norm of A, and D is a geometric constant that
depends solely on g∗µ and is independent of ε or λ.

Compared with the O(1
λε) rates of cutting plane meth-

ods, the 1√
λε

part in (5) is already superior. Further-

more, many applications require λ � ε and in this
case the 1

ε part of the rate is even better. Note cut-

ting plane methods rely on λ
2 ‖w‖

2
to stabilize each

update, and so they often converge slowly when λ is
small (Do et al., 2009).

Although the above scheme is conceptually simple, the
smoothing of the objective function in (1) has to be
performed very carefully in order to avoid dependence
on n, the size of the training set. The main difficulties
are two-fold. First, one needs to obtain a smooth ap-
proximation g∗µ(A>w) to Remp(w) such that

√
D ‖A‖

is small (ideally a constant). Second, we need to show
that computing the gradient of g∗µ(A>w) is no harder

1For completeness we reproduce technical details from
Nesterov (2005) in Appendix A.

than computing a sub-gradient of Remp(w). In the
sequel we will demonstrate how both the above diffi-
culties can be overcome. Before describing our scheme
in detail we would like to place our work in context by
discussing some relevant related work.

1.2 Related Work

Training large models by using variants of stochas-
tic gradient descent has recently become increasingly
popular (Bottou, 2008; Shalev-Shwartz et al., 2007).
However, stochastic gradient descent can only be ap-
plied when the empirical risk is additively decompos-
able, that is, it can be written as the average loss over
individual data points. Since the non-linear multivari-
ate scores such as the ones that we consider in this
paper are not additively decomposable, this rules out
the application of online algorithms to these problems.

Traditionally, batch optimizers such as the popular Se-
quential Minimal Optimization (SMO) worked in the
dual (Platt, 1998). Recently, there has been significant
research interest in optimizers which directly optimize
(1) because there are some distinct advantages (Teo
et al., 2010). Chapelle (2007) observed that to find a
w which generalizes well, one only needs to solve the
primal problem to very low accuracy (e.g., ε ≈ 0.01).
In fact, Chapelle (2007) introduced the idea of smooth-
ing the objective function to the machine learning com-
munity. Specifically, he proposed to approximate the
binary hinge loss by a smooth Huber’s loss and used
the Newton’s method to solve this smoothed prob-
lem. This approach yielded the best overall perfor-
mance in the Wild Competition Track of Sonnenburg
et al. (2008) for training binary linear SVMs on large
datasets. A similar smoothing approach is proposed
by Zhou et al. (2010), but it is also only for binary
hinge loss.

However, the smoothing proposed by Chapelle (2007)
for the binary hinge loss is rather ad-hoc, and does
not easily generalize to (2) and (3). Moreover, a
function can be smoothed in many different ways and
(Chapelle, 2007) did not explicitly relate the influence
of smoothing on the rates of convergence of the solver.
In contrast, we propose principled approaches to over-
come these problems.

Of course, other smoothing techniques have also been
explored in the literature. A popular approach is to
replace the nonsmooth max term by a smooth log-sum-
exp approximation (Boyd & Vandenberghe, 2004). In
the case of binary classification this approximation is
closely related to logistic regression (Bartlett et al.,
2006; Zhang, 2004), and is equivalent to using an en-
tropy regularizer in the dual. However, as we discuss
in Section 2.1.2 this technique has some undesirable
properties.

1.3 Notation and Paper Outline

We assume a standard setup as in Nesterov (2005),
and make a running assumption that all xi reside in a
Euclidean ball of radius R. In Section 2 we will discuss
how the smoothing function g∗µ(A>w) can be designed
for (2) and (3). We will focus on efficiently computing
the gradient of the smooth objective function in Sec-
tion 3. Empirical evaluation is presented in Section 4,
and the paper concludes with a discussion in Section 5.

2 Reformulating the Empirical Risk

In order to approximate Remp by g∗µ we will write

Remp(w) as g∗(A>w) for an appropriate linear trans-
form A and convex function g∗ with domain Q. Let d
be a strongly convex function with modulus 1 defined
on Q. Furthermore, assume minβ∈Q d(β) = 0 and de-
note D = maxβ∈Q d(β). d is called a prox-function.
Set

g?µ = (g + µd)?.

Then, one can show that g?µ(A>w) is smooth and its
gradient is Lipschitz continuous with constant at most
1
µ ‖A‖

2
. Clearly,

|g?µ(A>w)−Remp(w)| < µD, (6)

and by choosing µ = ε/D, we can guarantee the ap-
proximation is uniformly upper bounded by ε.

There are indeed many different ways of writing
Remp(w) as g∗(A>w), but the next two sections will
demonstrate the advantage of our design.

2.1 Contingency Table Based Loss

Letting Sk denote the k dimensional probability sim-
plex, we can rewrite (2) as:

Remp(w)= max
z∈{−1,1}n

[
∆(z,y)+

1

n

n∑
i=1

〈w,xi〉 (zi−yi)

]

= max
α∈S2n

∑
z∈{−1,1}n

αz

(
∆(z,y)+

1

n

n∑
i=1

〈w,xi〉 (zi−yi)

)
(7)

= max
α∈S2n

−2

n

n∑
i=1

yi 〈w,xi〉

(∑
z:zi=−yi

αz

)
+
∑

z∈{−1,1}n
αz∆(z,y).

Define βi =
∑

z:zi=−yi αz, then it is not hard to show
that Remp(w) can be further rewritten as

max
β∈[0,1]n

{
−2

n

n∑
i=1

yi 〈w,xi〉βi − g(β)

}
where (8)

g(β) :=−max
α∈A

∑
z

αz∆(z,y). (9)

Here A is a subset of S2n defined via A ={
α s.t.

∑
z:zi=−yi αz = βi for all i

}
. Indeed, this

rewriting only requires that the mapping from α ∈ S2n

to β ∈ Q := [0, 1]n is surjective. This is clear because
for any β ∈ [0, 1]n, a pre-image α can be constructed:

αz =

n∏
i=1

γi, where γi =

{
βi if zi = −yi
1− βi if zi = yi.

Furthermore we can show g(β) is convex on β ∈ [0, 1]n,
(see Appendix C for a proof). Using (8) it immediately
follows that Remp(w) = g?(A>w) where A is a p-by-n
matrix whose i-th column is −2n yixi, and g∗ denotes
the Fenchel dual of g.

2.1.1
√
D ‖A‖ for our design

Let us choose the prox-function d(β) as 1
2 ‖β‖

2
. Then

D = maxβ∈[0,1]n d(β) = n
2 . The norm of A =

−2
n (y1x1, . . . , ynxn) can be tightly upper bounded by
2
n

√
nR = 2R√

n
. Hence

√
D ‖A‖ ≤

√
n

2

2R√
n

=
√

2R.

2.1.2 Alternatives

It is illuminating to see how naive choices for smooth-
ing Remp can lead to large values of

√
D ‖A‖. For

instance, by (7), Remp(w) can be written as h?(B>w)
where h(α)=−n

∑
z∈{−1,1}n∆(z,y)αz if αz ∈ [0, n−1]

and
∑

z αz = 1
n , and∞ elsewhere. B is a p-by-2n ma-

trix whose z-th column is
∑n
i=1 xi(zi − yi). h(α) has

exactly the same form as the matrix game objective in
(Nesterov, 2005), and a natural choice of prox-function
d is the entropy d(α) =

∑
z αz lnαz + 1

n log n + log 2.

However one can show that in this case
√
D ‖A‖ can

be Ω(nR) which grows linearly with n, the number of
training examples. Similarly, the smoothing scheme
proposed by Zhang et al. (2011) also suffers from a
linearly growing

√
D ‖A‖.

Conceptually the key difficulty arises because the en-
tropy d is defined on a 2n dimensional simplex. How-
ever, one can bypass the Ω(nR) dependence when ∆
is additively decomposable. For example, if ∆(z,y) =
1
n

∑
i δ(zi 6= yi) in (2), then one can define d(α) =∑

i αi logαi + (1 − αi) log(1 − αi). By a straightfor-
ward derivation (omitted for brevity), one can show
that g?µ(A>w) recovers the logistic loss with its slope

controlled by µ, and hence
√
D ‖A‖ is constant. How-

ever, since our ∆ is not decomposable, the log-sum-exp
approximation to (2) is not advantageous.

2.2 ROCArea

We rewrite Remp(w) from (3) as:

1

m
max

α∈S2m

∑
z∈{−1,1}m

αz

∑
i∈P

∑
j∈N

1

2
(1−zij)+zijw

>(xi−xj)

=

1

2
+

1

m
max
α

[
− 1

2

∑
i,j

(∑
z

zijαz

)
(10)

+
∑
i,j

w>(xi − xj)

(∑
z

zijαz

)]
.

Let us define βij =
∑

z zijαz for all (i, j) ∈ P × N .
This yields a compact form of Remp(w):

1

2
+

1

m
max
β

−1

2

∑
i,j

βij +
∑
i,j

βijw
>(xi − xj)

 . (11)

Clearly βij ∈ [−1, 1]. In fact, we can further show that
the mapping from α ∈ S2m to β ∈ Q := [−1, 1]m is
surjective. For any β, a (non-unique) pre-image α is

αz =
∏
ij

γij , where γij =

{
1
2 (1 + βij) if zij = 1
1
2 (1− βij) if zij = −1

.

Ignoring 1
2 , and using (11) Remp(w) can be written as

g?(A>w) where

g(β) =

{
1

2m

∑
i,j βij if β ∈ [−1, 1]m

+∞ elsewhere
,

and A is a p-by-m matrix whose (ij)-th column is
1
m (xi − xj) for all (i, j) ∈ P ×N .

2.2.1
√
D ‖A‖ for our design

Choose prox-function d(β) = 1
2

∑
i,j β

2
ij . By a sim-

ple calculation, D = maxβ d(β) = m
2 . We can upper

bound the norm of A by

‖A‖ = max
‖w‖=‖β‖=1

w>Aβ

= max
‖w‖=‖β‖=1

∑
i,j

βij
m

w>(xi − xj)

≤ max
‖β‖=1

2R

m

∑
i,j

|βij | ≤ 2Rm−
1
2 ,

where the last step follows from the Cauchy-Schwarz
inequality. Therefore

√
D ‖A‖ ≤

√
m

2
· 2R√

m
=
√

2R.

3 Computing the Gradient Efficiently

The last building block required to make the whole
scheme work is an efficient algorithm to compute the
gradient of the smoothed empirical risk g?µ(A>w). By
the chain rule and Corollary X.1.4.4 of (Hiriart-Urruty
& Lemaréchal, 1993), we have

∂

∂w
g?µ(A>w) = Aβ∗ where (12)

β∗ = argmax
β∈Q

〈
β, A>w

〉
− g(β)− µd(β). (13)

Two major difficulties arise in computing the above
gradient: (13) can be hard to solve (e.g. in the case of
contingency table based loss), and the matrix vector
product in (12) can be costly (e.g. O(n2p) for RO-
CArea). Below we show how these operations can be
performed in O(n log n) time.

3.1 Contingency table based loss

Since A is a p × n dimensional matrix and β∗ is a n
dimensional vector, the matrix vector product in (12)
can be computed in O(np) time. Below we focus on
solving (13).

To take into account the constraints in the definition
of g(β), we introduce Lagrangian multipliers θi and
the optimization in (13) becomes

g?µ(A>w) = max
β∈[0,1]n

{
−2

n

n∑
i=1

yi 〈w,xi〉βi −
µ

2

n∑
i=1

β2
i

+max
α∈S2n

[∑
z

αz∆(z,y) + min
θ∈Rn

n∑
i=1

θi

(∑
z:zi=−yi

αz − βi

)]}

⇔ min
θ∈Rn

{
max

α∈S2n

∑
z

αz

[
∆(z,y) +

∑
i

θiδ(zi = −yi)

]

+ max
β∈[0,1]n

n∑
i=1

(
−µ
2
β2
i −

(
2

n
yi 〈w,xi〉+ θi

)
βi

)}

⇔ min
θ∈Rn

{
max

z

:=q(z,θ)︷ ︸︸ ︷[
∆(z,y) +

∑
i

θiδ(zi = −yi)

]
(14)

+

n∑
i=1

max
βi∈[0,1]

[
−µ
2
β2
i −

(
2

n
yi 〈w,xi〉+ θi

)
βi

]
︸ ︷︷ ︸

:=hi(θi)

}
.

The last step is because all βi are decoupled and can
be optimized independently. Let

D(θ) := max
z
q(z,θ)+

n∑
i=1

hi(θi) and θ∗=argmin
θ

D(θ).

Given θ∗ and denoting ai = −2
n yi 〈w,xi〉, we can re-

cover the optimal β(θ∗i) from the definition of hi(θ
∗
i)

as follows:

β∗i = βi(θ
∗
i) =

0 if θ∗i ≥ ai
1 if θ∗i ≤ ai − µ
1
µ (ai − θ∗i) if θ∗i ∈ [ai − µ, ai]

(15)

So, the main challenge that remains is to compute θ∗.
Towards this end, first note that2:

∇θihi(θi) = −βi(θi) and

∇θq(z,θ) = co

{
δz : z ∈ argmax

z
q(z,θ)

}
.

Here δz := (δ(z1 = −y1), . . . , δ(zn = −yn))> and co(·)
denotes the convex hull of a set. By the first order
optimality conditions 0 ∈ D(θ∗) which implies that

−β∗ ∈ co

{
δz : z ∈ argmax

z
q(z,θ)

}
.

The next theorem characterizes θ∗.

Property 1. There must exist a unique optimal so-
lution θ∗ of (20). Furthermore, θ∗i ∈ [ai − µ, ai] and
can be computed in O(n log n) time for PRBEP.

The proof of the theorem is technical and relegated
to Appendix D. The entire algorithm is described in
detail in Appendix E.

3.2 ROCArea loss

For the ROCArea loss, given the optimal β∗ in (13)
one can compute

∂

∂w
g?µ(A>w) =

1

m

∑
i,j

β∗ij(xi − xj)

=
1

m

[∑
i∈P

xi

∑
j∈N

β∗ij

︸ ︷︷ ︸

:=γi

−
∑
j∈N

xj

(∑
i∈P

β∗ij

)
︸ ︷︷ ︸

:=γj

]
.

If we can efficiently compute all γi and γj , then the
gradient can be computed in O(np) time.

Given β∗ij , a brute-force approach to compute γi and
γj takes O(m) time. We exploit the structure of
the problem to reduce this cost to O(n log n), thus
matching the complexity of the separation algorithm
in (Joachims, 2005). Towards this end, we specialize
(13) to ROCArea and write

max
β

 1

m

∑
i,j

βijw
>(xi−xj)−

1

2m

∑
i,j

βij−
µ

2

∑
i,j

β2
ij

.
2We abuse notation slightly and use ∇ to denote both

the gradient and sub-gradient

Since all βij are decoupled, their optimal value can be
easily found:

β∗ij = median (1, ai − aj ,−1) where

ai =
1

µm

(
w>xi −

1

4

)
, and aj =

1

µm

(
w>xj +

1

4

)
.

Below we give a high level description of how γi for
i ∈ P can be computed; the scheme for computing γj
for j ∈ N is identical. We omit the details for bevity.

For a given i, suppose we can divide N into three sets
M+

i , Mi, and M−i such that

• j ∈M+
i =⇒ 1 < ai − aj , hence β∗ij = 1

• j ∈Mi =⇒ ai−aj ∈ [−1, 1], hence β∗ij = ai−aj

• j ∈M−i =⇒ ai − aj < −1, hence β∗ij = −1.

Then, clearly

γi =
∑
j∈N

β∗ij = |M+
i | − |M

−
i |+ |Mi| ai −

∑
j∈Mi

aj .

In order to identify the sets M+
i , Mi, and M−i , we

first sort both {ai : i ∈ P} and {aj : j ∈ N}. We then
walk down the sorted lists to identify for each i the
first and last indices j such that ai−aj ∈ [−1, 1]. This
is very similar to the algorithm used to merge two
sorted lists, and takes O(n− + n+) = O(n) time and
space. The rest of the operations for computing γi can
be performed in O(1) time with some straightforward
book-keeping. The overall complexity of our algorithm
is dominated by the complexity of sorting the two lists,
which is O(n log n).

4 Empirical Evaluation

We used 11 publicly available datasets and focused our
study on two aspects: The reduction in objective value
as a function of CPU time, and the generalization per-
formance of the models obtained via the two schemes.

Practical Considerations Optimizing the smooth
objective function Jµ(w) using the optimization
scheme described in (Nesterov, 2005) requires esti-
mating the Lipschitz constant of the gradient of the
g∗µ(A>w). Although it can automatically tuned by,
e.g. (Beck & Teboulle, 2009), extra costs are incurred
which slows down the optimization empirically (?, Ap-
pendix G)ee Appendix H). Therefore, we chose to op-
timize our smooth objective function using L-BFGS, a
widely used quasi-Newton solver (Nocedal & Wright,
2006). The L-BFGS code is obtained from http:

//www.chokkan.org/software/liblbfgs/, which is
a C port of the original Fortran implementation of L-
BFGS by Nocedal. The size of the L-BFGS buffer de-
termines the number of past parameter and gradient

http://www.chokkan.org/software/liblbfgs/
http://www.chokkan.org/software/liblbfgs/

Table 1: Dataset statistics. n: #examples, d: #features, s: feature density.

dataset n d s(%) dataset n d s(%) dataset n d s(%)
adult9 32,561 123 11.28 covertype 522,911 6,274,932 22.22 web8 45,546 579,586 4.24

astro-ph 62,369 99,757 0.077 news20 15,960 7,264,867 0.033 worm 615,620 804 25
aut-avn 56,862 20,707 0.25 real-sim 57,763 2,969,737 0.25 kdd99 4,898,431 127 12.86

reuters-c11 23,149 1,757,801 0.16 reuters-ccat 23,149 1,757,801 0.16

displacement vectors that are used in the construction
of the quasi-Newton direction. We set the buffer size
to 6. Following Chapelle (2007) we set ε = 0.001 and
observed that the solution obtained with this approx-
imation generalizes well in most cases.

We compared this scheme with BMRM3, a state-of-
the-art cutting plane method for optimizing multi-
variate performance scores which directly minimizes
the non-smooth objective function J(w) (Teo et al.,
2010). We obtained the latest BMRM code from http:

//users.rsise.anu.edu.au/~chteo/BMRM.html and
used default settings. For a fair comparison, our
smoothed loss was implemented as a subroutine in
BMRM and L-BFGS was added as an alternative
solver to the BMRM framework. All our code was
written in C++ and will be made publicly available.

Datasets Table 1 summarizes the datasets used
in our experiments. adult9, astro-ph, news20,
real-sim, reuters-c11, reuters-ccat are from the
same source as in Hsieh et al. (2008). aut-avn clas-
sifies documents on auto and aviation and was ob-
tained from http://www.cs.umass.edu/~mccallum/

data/sraa.tar.gz. covertype is from UCI reposi-
tory (Merz & Murphy, 1998). We divided the whole
dataset into training, validation and test set in the
same way as in (Teo et al., 2010). For all datasets
we used the λ which yielded the best generalization
performance using their corresponding validation sets.

Due to lack of space, we will only present results for
three representative datasets in the main body of the
paper. Complete results can be found in Appendix G.

4.1 Results

Optimizing the primal objective J(w) In the
first experiment we study the effect of µ on optimizing
the primal objective J(w). The choice of µ is dic-
tated by two conflicting requirements. On the one
hand the uniform deviation bound (6) suggests setting
µ = ε/D. However, this estimate is very conservative
because in (6) we use D an upper bound on the prox-
function. In practice, the quality of the approxima-
tion depends on the value of the prox-function around
the optimum. On the other hand, as µ increases, the

3For quadratic regularizers, BMRM and SVM-Perf are
equivalent.

strong convexity of g increases, and this makes g∗µ and
hence Jµ easier to optimize. We set µ̂ = ε/D and let
µ ∈ {µ̂, 100µ̂, 1000µ̂} and compare the performance of
our scheme with BMRM in Figures 1 and 2.

It is clear that for all the values of µ, optimizing the
smoothed objective function converges significantly
faster than BMRM. Furthermore, for µ = µ̂ and
µ = 100µ̂ we obtained a solution which was at most ε
distance away from the solution obtained by BMRM.
Somewhat surprisingly, the optimization trajectories
were near identical for µ = µ̂ and µ = 100µ̂ indicat-
ing that increasing the strong convexity of g did not
significantly impact the convergence rates. However,
µ = 1000µ̂ did converge significantly faster, but to a
worse quality solution.

Performance on Test Set We also studied the evo-
lution of the PRBEP and ROCArea performance on
the test data. For this, we obtained the solution after
each iteration, computed its performance on the test
set, and plotted the results in Figures 3 and 4. Clearly,
the intermediate models output by our scheme achieve
comparable (or better) PRBEM scores and ROCArea
in time orders of magnitude faster those generated by
BMRM.

5 Conclusion and Discussion

The non-smoothness of the loss function is an impor-
tant consideration for algorithms which employ the
kernel trick (Schölkopf & Smola, 2002). This is be-
cause such algorithms typically operate in the dual,
and the non-smooth losses lead to sparse dual solu-
tions. In many applications such as natural language
processing, the kernel trick is not needed because the
input data is sufficiently high dimensional. However,
now we are “stuck” with a non-smooth objective func-
tion in the primal. While a lot of past work has been
devoted to solving this non-smooth problem, one must
bear in mind that optimization is a means to an end
in machine learning. In line with this philosophy, we
proposed efficient smoothing techniques to approxi-
mate the non-smooth function. When combined with
a smooth optimization algorithm, our technique out-
performs state-of-the-art non-smooth optimization al-
gorithms for multivariate performance scores not only
in terms of CPU time but also in terms of generaliza-

http://users.rsise.anu.edu.au/~chteo/BMRM.html
http://users.rsise.anu.edu.au/~chteo/BMRM.html
http://www.cs.umass.edu/~mccallum/data/sraa.tar.gz
http://www.cs.umass.edu/~mccallum/data/sraa.tar.gz

10
−2

10
0

10
2

10
40.7

0.75

0.8

0.85

0.9

0.95

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(a) adult9

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(b) news20

10
0

10
20.7

0.75

0.8

0.85

0.9

0.95

1

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(c) covertype

Figure 1: Primal objective versus CPU time for PRBEP.

10
−2

10
0

10
2

10
40.2

0.25

0.3

0.35

0.4

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(a) adult9

10
0

10
2

10
40

0.1

0.2

0.3

0.4

0.5

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(b) news20

10
0

10
25

6

7

8

9

10

11

Seconds

P
rim

al
 o

bj
 v

al
ue

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(c) covertype

Figure 2: Primal objective versus CPU time for ROCArea.

tion performance.

It is also worthwhile noting that smoothing is not the
right approach for every non-smooth problem. For ex-
ample, although it is easy to smooth the L1 norm reg-
ularizer, it is not recommended; the sparsity of the
solution is an important statistical property of these
algorithms and smoothing destroys this property.

In future work we would like to extend our techniques
to handle more complicated contingency based mul-
tivariate performance measures such as the F1-score.
We would also like to extend smoothing to matching
loss functions commonly used in ranking, where we be-
lieve our techniques will solve a smoothed version of
the Hungarian marriage problem.

References

Bartlett, Peter L., Jordan, Michael I., and McAuliffe,
Jon D. Convexity, classification, and risk bounds. Jour-
nal of the American Statistical Association, 101(473):
138–156, 2006.

Beck, Amir and Teboulle, Marc. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Bottou, Léon. Stochastic gradient SVMs. http://leon.
bottou.org/projects/sgd, 2008.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, Cambridge, England, 2004.

Chapelle, Olivier. Training a support vector machine in the
primal. Neural Computation, 19(5):1155–1178, 2007.

Do, C., Le, Q., and Foo, C.S. Proximal regularization for
online and batch learning. In International Conference
on Machine Learning, 2009.

Hiriart-Urruty, J. B. and Lemaréchal, C. Convex Analysis
and Minimization Algorithms, I and II, volume 305 and
306. Springer-Verlag, 1993.

Hsieh, Cho Jui, Chang, Kai Wei, Lin, Chih Jen, Keerthi,
S. Sathiya, and Sundararajan, S. A dual coordinate
descent method for large-scale linear SVM. In Cohen,
William, McCallum, Andrew, and Roweis, Sam (eds.),
ICML, pp. 408–415. ACM, 2008.

Joachims, T. A support vector method for multivariate
performance measures. In Proc. Intl. Conf. Machine
Learning, pp. 377–384, 2005.

Joachims, T. Training linear SVMs in linear time. In
Proc. ACM Conf. Knowledge Discovery and Data Min-
ing (KDD), pp. 217–226, 2006.

Merz, C. J. and Murphy, P. M. UCI repos-
itory of machine learning databases, 1998.
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

Nesterov, Y. A method for unconstrained convex mini-
mization problem with the rate of convergence O(1/k2).
Soviet Math. Docl., 269:543–547, 1983.

Nesterov, Y. Gradient methods for minimizing composite
objective function. Technical Report 76, CORE Discus-
sion Paper, UCL, 2007.

Nesterov, Yurii. Smooth minimization of non-smooth func-
tions. Math. Program., 103(1):127–152, 2005.

Nocedal, Jorge and Wright, Stephen J. Numerical Op-
timization. Springer Series in Operations Research.
Springer, 2nd edition, 2006.

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd

10
−2

10
0

10
2

10
458

60

62

64

66

68

Seconds

P
R

B
E

P

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(a) adult9

10
0

10
2

10
480

85

90

95

100

Seconds

P
R

B
E

P

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(b) news20

10
0

10
260

62

64

66

68

70

Seconds

P
R

B
E

P

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(c) covertype

Figure 3: PRBEP on test data versus CPU time.

10
−2

10
0

10
2

10
475

80

85

90

95

Seconds

R
O

C
A

re
a

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(a) adult9

10
0

10
2

10
488

90

92

94

96

98

100

Seconds

R
O

C
A

re
a

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(b) news20

10
0

10
272

74

76

78

80

82

84

Seconds

R
O

C
A

re
a

BMRM
µ = 1000µ̂
µ = 100µ̂
µ = µ̂

(c) covertype

Figure 4: ROCArea on test data versus CPU time.

Platt, J. C. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Technical
Report MSR-TR-98-14, Microsoft Research, 1998.

Schölkopf, B. and Smola, A. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
Primal estimated sub-gradient solver for SVM. In Proc.
Intl. Conf. Machine Learning, pp. 807–814, 2007.

Sonnenburg, Soeren, Franc, Vojtech, Yom-Tov, Elad,
and Sebag, Michele. Pascal large scale learning chal-
lenge. 2008. URL http://largescale.ml.tu-berlin.
de/workshop/.

Teo, C. H., Vishwanthan, S. V. N., Smola, A. J., and Le,
Q. V. Bundle methods for regularized risk minimization.
J. Mach. Learn. Res., 11:311–365, January 2010.

Zhang, T. Statistical behavior and consistency of classifica-
tion methods based on convex risk minimization. Ann.
Statist., 32(1):56–85, 2004.

Zhang, Xinhua, Saha, Ankan, and Vishwanathan, S. V. N.
Lower bounds on rate of convergence of cutting plane
methods. In Advances in Neural Information Processing
Systems 23, 2011.

Zhou, Tianyi, Tao, Dacheng, and Wu, Xindong. NESVM:
a fast gradient method for support vector machines. In
Proc. Intl. Conf. Data Mining, 2010.

A The Smoothing Procedure

The idea of the smoothing technique in (Nesterov,
2005) can be motivated by using the Theorem 4.2.1

and 4.2.2 in (Hiriart-Urruty & Lemaréchal, 1993).

Lemma 1. If f : Rn → R is convex and differentiable,
and ∇f is Lipschitz continuous with constant L (called
L-l.c.g), then f? is strongly convex with modulus 1

L
(called 1

L -sc). Conversely, if f : Rn → R ∪ {∞} is
σ-sc, then f? is finite on Rn and is 1

σ -l.c.g.

Since g + µd is µ-sc, Lemma 1 implies g?µ is 1
µ -l.c.g .

By chain rule, one can show that g?µ(A>w) is Lµ-l.c.g

where Lµ ≤ 1
µ ‖A‖

2
. Further, the definition of Fenchel

dual implies the following uniform deviation bound:

g?(u)− µD ≤ g?µ(u) ≤ g?(u), ∀ u ∈ Rn. (16)

Hence to find an ε accurate solution to J(w), it suffices
to set the maximum deviation µD < ε

2 (i.e. µ < ε
2D),

and then find a ε
2 accurate solution to Jµ in (4). Initial-

ize w to 0 and apply Nesterov’s accelerated gradient
method in (Nesterov, 2007) to Jµ, this takes at most

k = min

{√
4Lµ∆0

ε
, ln

Lµ∆0

ε

/
ln

(
1−

√
λ/Lµ

)}

number of steps where ∆0 = 1
2 ‖w

∗‖2 and w∗ is the
minimizer of J(w). Each step involves one gradient
query of g?µ(A>w) and some cheap updates. Plugging

http://largescale.ml.tu-berlin.de/workshop/
http://largescale.ml.tu-berlin.de/workshop/

in Lµ ≤ 2D
ε ‖A‖

2
and using ln(1 + δ) ≈ δ when δ ≈ 0,

we get the iteration bound in (5).
B Preliminaries of Convex Analysis

The following three notions will be used extensively:

Definition 1. A convex function F : Rn → R is
strongly convex (s.c.) wrt norm ‖ · ‖ if there exists
a constant σ > 0 such that F − σ

2 ‖ · ‖
2 is convex. σ

is called the modulus of strong convexity of F , and for
brevity we will call F σ-strongly convex or σ-s.c..

Definition 2. A function F is said to have Lipschitz
continuous gradient (l.c.g) if there exists a constant L
such that

‖∇F (w)−∇F (w′)‖ ≤ L‖w −w′‖ ∀ w,w′. (17)

For brevity, we will call F L-l.c.g..

Definition 3. The Fenchel dual of a function F :
E1 → E2, is a function F ? : E?2 → E?1 given by

F ?(w?) = sup
w∈E1

{〈w,w?〉 − F (w)} (18)

C Convexity of g(β)

Lemma 2. g(β) is convex on β ∈ [0, 1]n.

Proof. For any β(1) and β(2) in [0, 1]n, suppose their
argmax in (9) is attained at (among others) α(1) and

α(2) respectively. So
∑

z:zi=−yi α
(j)
z = β

(j)
i for j =

1, 2. For any λ ∈ [0, 1], consider β := λβ(1) + (1 −
λ)β(2). Define α := λα(1) + (1− λ)α(2). Then clearly
α satisfies∑

z:zi=−yi

αz = λβ
(1)
i + (1− λ)β

(2)
i = βi.

Therefore α is admissible in the definition of g(β) and

g(β) ≤ −
∑
z

αz∆(z,y)

= −λ
∑
z

α(1)
z ∆(z,y)− (1− λ)

∑
z

α(2)
z ∆(z,y)

= λg(β(1)) + (1− λ)g(β(2)). �

D Proof of Property 1

Let θ̂ be an arbitrary optimal solution and we consider
two cases.

• θ̂i > ai: In this case reducing θi to ai does not
change hi(θi). Furthermore, since for all z, q(z,θ)
is monotonically non-decreasing in θi, therefore
none of the pieces will be increased by reducing
θi. In summary, replacing θi by ai also gives an
optimal solution.

• θ̂i < ai−µ: In this case increasing θi to ai−µ will
reduce hi(θi) by ai − µ− θ̂i. As for the piecewise
linear part, since for each z this change of θi will
increase q(z,θ) by at most ai − µ− θ̂i, hence the
whole piecewise linear part is increased by at most
ai − µ − θ̂i. So overall, the objective value D(θ)
will not increase.

Note that in conjunction with the strong convexity of
hi(θi) in [ai − µ, ai], the optimal solution θ̂ is unique.

E Details of the algorithm for
PRBEP measure

In this section, we change the notations slightly from
the main body of the paper for the convenience of pre-
senting technical details. Assume y∗i is the true label
corresponding to xi.

We write the empirical loss as follows:

Remp(w)= max
y∈{−1,1}n

[
∆(y,y∗)+

1

n

n∑
i=1

〈w,xi〉 (yi−y∗i)

]

= max
α∈S2n

∑
y∈{−1,1}n

αy

(
∆(y,y∗) +

1

n

n∑
i=1

〈w,xi〉 (yi − y∗i)

)

= max
α∈S2n

−2

n

n∑
i=1

y∗i 〈w,xi〉

 ∑
y:yi=−y∗i

αy

+
∑

y∈{−1,1}n
αy∆(y,y∗).

Define βi =
∑

y:yi=−y∗i
αy, then it is not hard to show

that Remp(w) can be further rewritten as

max
β∈[0,1]n

{
−2

n

n∑
i=1

y∗i 〈w,xi〉βi − g(β)

}
where

g(β) :=− max
α∈S2n :∀i,

∑
y:yi=−y∗

i
αy=βi

∑
y

αy∆(y,y∗).

Indeed, this rewriting only requires that the mapping
from α ∈ S2n to β ∈ [0, 1]n is surjective. This is
clear because for any β ∈ [0, 1]n, a pre-image α can
be constructed as

αy =

n∏
i=1

γi, where γi =

{
βi if yi = −y∗i
1− βi if yi = y∗i

.

Furthermore we can show g is convex (and obviously
closed).

Lemma 3. g(β) is convex on β ∈ [0, 1]n.

Proof. For any β(1) and β(2) in [0, 1]n, suppose their
argmax in the definition of g is attained at (among oth-

ers) α(1) and α(2) respectively. So
∑

y:yi=−y∗i
α
(j)
y =

β
(j)
i for j = 1, 2. For any λ ∈ [0, 1], consider β :=
λβ(1) + (1− λ)β(2). Define α := λα(1) + (1− λ)α(2).
Then clearly α satisfies

∑
y:yi=−y∗i

αy = λβ
(1)
i + (1− λ)β

(2)
i = βi.

Therefore α is admissible in the definition of g(β) and

g(β) ≤ −
∑
y

αy∆(y,y∗)

= −λ
∑
y

α(1)
y ∆(y,y∗)− (1− λ)

∑
y

α(2)
y ∆(y,y∗)

= λg(β(1)) + (1− λ)g(β(2)). �

So Remp(w) can be written as g?(A>w) where A is a
d-by-n matrix whose i-th column is −2n y

∗
i xi.

Rate of convergence. Let us use prox-function
d(β) = 1

2

∑n
i=1 β

2
i . Then D = maxβ d(β) = n

2 . En-
dowing L2 norm on both the w and β space, the norm
of A can be upper bounded by 2

n

√
nR = 2R√

n
. Hence

D ‖A‖2 ≤ n

2

4R2

n
= 2R2.

Plugging this into Nesterov’s convergence expression,
we obtain that to find an ε accurate solution, one needs

O∗
(
Rmin

{
1

ε
,

1√
λε

})

number of iterations. This is independent of n. Note
if we apply entropy regularizer directly on α, then the
above iteration complexity will be multiplied by n.

Computing the gradient. Again, ∂
wg

?
µ(A>w) =

−2
n

∑n
i=1 β̂iy

∗
i xi, where β̂i is the optimal solution of

g?µ(A>w) = max
β∈[0,1]n

〈
β, A>w

〉
− g(β)− µ

2

n∑
i=1

β2
i .

(19)

To take into account the constraints in the definition
of g(β), we introduce Lagrangian multipliers θi and

the optimization in (19) is equivalent to

g?µ(A>w) = max
β∈[0,1]n

{
−2

n

n∑
i=1

y∗i 〈w,xi〉βi −
µ

2

n∑
i=1

β2
i

+max
α∈S2n

[∑
y

αy∆(y,y∗) + min
θ∈Rn

n∑
i=1

θi

(∑
y:yi=−y∗i

αy − βi

)]}

⇔ min
θ∈Rn

{
max

α∈S2n

∑
y

αy

[
∆(y,y∗) +

∑
i

θiδ(yi = −y∗i)

]

+ max
β∈[0,1]n

n∑
i=1

(
−µ
2
β2
i −

(
2

n
y∗i 〈w,xi〉+ θi

)
βi

)}

⇔ min
θ∈Rn

{
max
y

:=q(y,θ)︷ ︸︸ ︷[
∆(y,y∗) +

∑
i

θiδ(yi = −y∗i)

]
(20)

+

n∑
i=1

max
βi∈[0,1]

[
−µ
2
β2
i −

(
2

n
y∗i 〈w,xi〉+ θi

)
βi

]
︸ ︷︷ ︸

:=hi(θi)

}
.

The last step is because all βi are decoupled and can be
optimized independently. Denoting ai = −2

n y
∗
i 〈w,xi〉,

we have

hi(θi) =

0 if θi ≥ ai
−θi + ai − µ

2 if θi ≤ ai − µ
1
2µ (θi − ai)2 if θi ∈ [ai − µ, ai]

(21)

with the optimal βi being

βi(θi) =

0 if θi ≥ ai
1 if θi ≤ ai − µ
1
µ (ai − θi) if θi ∈ [ai − µ, ai]

. (22)

So we only need to find the optimal θ̂ to (20):

θ̂ ∈argmin
θ

D(θ), where D(θ) := max
y

q(y, θ)+

n∑
i=1

hi(θi).

Then compute β̂ = β(θ̂) according to (22), and get

the gradient. Our major tool for finding θ̂ is the first
order condition: 0 must be a subgradient of D(θ) at θ̂.
So we compute the gradient of hi (hi is differentiable):

∇hi(θi) =

0 if θi ≥ ai
−1 if θi ≤ ai − µ
1
µ (θi − ai) if θi ∈ [ai − µ, ai]

= −βi(θi).

Therefore, βi(θi) can be viewed as the height of gradi-
ent, i.e. how much is the gradient below 0. The subd-
ifferential of the piecewise linear part can be computed
using the following lemma.

Lemma 4. Let f(θ) = maxi∈I
{
θ>ai + bi

}
where I

is an index set. Let J be the index set of argmax: J ={
j ∈ I : θ>ai + bi = f(θ)

}
. Then the subdifferential

∂f(θ) =

{∑
j∈J

αjaj : α ∈ S |J |
}
. (23)

So the optimization of (20) is boiled down to finding a
θ such that there is an element in (23) which cancels
with the gradient of hi. The major challenge is that
the argmaxy in (20) can have a lot of tie.

The following property gives an important characteri-
zation of the solution to (20).

Property 2. There must exist an optimal solution to
(20) which lies in

∏n
i=1[ai−µ, ai]. In conjunction with

the strong convexity of hi(θi) in [ai−µ, ai], there must

exist a unique optimal solution θ̂ in
∏n
i=1[ai − µ, ai].

Proof. Let θ̂ be an arbitrary optimal solution and we
consider two cases. i) if θ̂i > ai, then reducing θi to
ai does not change hi(θi). Furthermore, since for all
y, q(y,θ) is monotonically non-decreasing in θi, there-
fore none of the pieces will be increased by reducing
θi. In summary, replacing θi by ai also gives an opti-
mal solution. ii) if θ̂i < ai − µ, then increasing θi to

ai − µ will reduce hi(θi) by ai − µ − θ̂i. As for the
piecewise linear part, since for each y this change of
θi will increase q(y,θ) by at most ai − µ − θ̂i, hence
the whole piecewise linear part is increased by at most
ai − µ− θ̂i. So overall, the objective D value will not
increase. �

In the sequel, we will use θ̂ to denote the unique opti-
mal solution in

∏n
i=1[ai−µ, ai], and denote β̂ = β(θ̂).

By Lemma 4 and the form of q(y, θ), we have

Lemma 5. β̂i = 0 if, and only if, all ŷ ∈
argmaxy q(y, θ̂) satisfy ŷi = y∗i . β̂i = 1 if, and only if,

all ŷ ∈ argmaxy q(y, θ̂) satisfy ŷi = −y∗i . β̂i ∈ (0, 1)

if, and only if, there exists ŷ ∈ argmaxy q(y, θ̂) such

that ŷi = −y∗i , and there exists ŷ′ ∈ argmaxy q(y, θ̂)
such that ŷ′i = y∗i .

Proof. Since 0 ∈ ∂D(θ̂), so there must exist a sub-

gradient g of maxy q(y, θ̂) such that gi = −∇hi(θ̂i) =

β̂i = 0. Hence by Lemma 4, for all ŷ ∈ argmaxy q(y, θ̂)

we have ∂
∂θi
q(y,θ) = 0. But note that for any fixed y,

∂

∂θi
q(y,θ) = δ(yi = −y∗i).

Therefore ŷi = y∗i for all ŷ ∈ argmaxy q(y, θ̂). The
other results in this lemma can be proved similarly. �

Characterizing the solution for contingency ta-
ble based loss. As in the previous subsection, with-
out loss of generality suppose there are n+ positive
examples which are associated with x+

i , y+i , a+i , θ̂+i ,

β̂+
i , and h+i (·), and n− negative examples which are

associated with x−j , y−j , a−j , θ̂−j , β̂−j , and h−j (·). So
n = n+ + n−. We will always use i to index posi-
tive examples and j to index negative examples. Also
assume both

{
a+i
}

and
{
a−j
}

are already sorted de-
creasingly :

a+1 ≥ a
+
2 . . . ≥ a+n+

, and a−1 ≥ . . . ≥ a−n− .

We can further characterize the optimal solution θ̂ by
making use of the fact that ∆(y,y∗) is based on the
contingency table, i.e. ∆(y,y∗) = ∆(b(y), c(y)) where

b(y) =

n+∑
i=1

δ(y+i = −1), and c(y) =

n−∑
j=1

δ(y−j = 1). (24)

The first property is that the optimal
{
θ̂+i

}
and

{
θ̂−j

}
are both in a decreasing order.

Lemma 6. θ̂+i ≥ θ̂+i′ for all i, i′ ∈ [n+] and i < i′.

θ̂−j ≥ θ̂
−
j′ for all j, j′ ∈ [n−] and j < j′.

Proof. We just prove the first clause since the second
can be proved similarly. If a+i = a+i′ , then by symmetry

θ̂+i = θ̂+i′ . So let us assume a+i > a+i′ . Suppose the
lemma were not true, i.e. there exist i, i′ ∈ [n+] and

i < i′ such that θ̂+i < θ̂+i′ . Let us swap the value of θ̂+i
and θ̂+i′ , and call the new θ as θ̄. Below we show that

D(θ̄) < D(θ̂) which contradicts with the optimality of

θ̂. Clearly, maxy q(y, θ̂) = maxy q(y, θ̄). However, it

is not hard to see that by a+i > a+i′ and θ̂+i < θ̂+i′ ,

− a+i θ̂
+
i − a

+
i′ θ̂

+
i′ − (−a+i θ̂

+
i′ − a

+
i′ θ̂

+
i)

=(a+i − a
+
i′)(θ̂

+
i′ − θ̂

+
i) > 0.

So

h+i (θ̂+i) + h+i′ (θ̂
+
i′) =

1

2µ

[
(a+i − θ̂

+
i)2 + (a+i′ − θ̂

+
i′)

2
]

>
1

2µ

[
(a+i − θ̂

+
i′)

2 + (a+i′ − θ̂
+
i)2
]

= h+i (θ̄+i) + h+i′ (θ̄
+
i′).

θ̂ and θ̄ match on all other h+i and h−j . So D(θ̄) <

D(θ̂). Contradiction. �

The second most important property of the optimal
solution θ̂ is that its height is monotonically decreas-
ing among the set of positive and negative examples
respectively.

Lemma 7. β̂+
i ≥ β̂+

i′ for all i, i′ ∈ [n+] and i < i′.

β̂−j ≥ β̂
−
j′ for all j, j′ ∈ [n−] and j < j′.

Proof. We just prove the first clause since the second
can be proved similarly. Suppose otherwise there exist
i, i′ ∈ [n+] and i < i′ such that β̂+

i < β̂+
i′ . We will show

0 cannot be a subgradient of D for such a solution.
We first claim that for any ŷ which maximizes q(y, θ̂),
ŷi′ = −1 must entail ŷi = −1. Suppose otherwise
ŷi = 1. Then let us swap their values, i.e. consider a
new assignment ȳ where ȳi′ = 1 and ȳi = −1. Then
∆(ŷ,y∗) = ∆(ȳ,y∗) since ŷ and ȳ have the same false
positive and false negative. However,

q(ŷ, θ̂)− q(ȳ, θ̂)

=

n+∑
k=1

θ̂+k δ(ŷk = −1)−
n+∑
k=1

θ̂+k δ(ȳk = −1)

= θ̂+i′ − θ̂
+
i = a+i′ − µβ̂

+
i′ − (a+i − µβ̂

+
i)

= (a+i′ − a
+
i) + µ(β̂+

i − β̂
+
i′) < 0,

which contradicts with the assumption that ŷ maxi-
mizes q(y, θ̂). Therefore by Lemma 4, for any subgra-

dient g of maxy q(y, θ̂) we have g+i′ ≤ g+i . But then

g+i′ − β̂
+
i′ and g+i − β̂

+
i cannot equal 0 simultaneously

because if so then

β̂+
i′ = g+i′ ≤ g

+
i = β̂+

i ,

which contradicts with our assumption. �

Algorithm for solving (20) with PRBEP loss.
Now we specialize the loss ∆ to PRBEP and give
a concrete algorithm to find θ̂. For PRBEP loss,
∆(y,y∗) = −∞ if the false negative b(y) in (24)
is not equal to the false positive c(y). And when
b(y) = c(y), ∆(y,y∗) is defined as 1

nb(y) = 1
nc(y).

So we just abbreviate ∆ as ∆(k) = k/n. Our algo-
rithm also works when ∆(k) satisfies the diminishing
gain property: ∆(k′) −∆(k′ − 1) ≤ ∆(k) −∆(k − 1)
for all k′ > k > 0. But for simplicity, we will stick to
∆(k) = k/n in the sequel.

According to Lemma 7, the first few β̂+
1 , . . . β̂

+
k are all

1, followed by some β̂+
k+1, . . . β̂

+
k′ lying in (0, 1), and

finally all the rest β̂+
k′+1, . . . β̂

+
n+

are straight 0. Of
particular importance is the phase transition point k
which takes into account both the positive and nega-
tive examples. Let θ̂+0 = θ̂−0 = 0 and define

k :=max

{
0≤ i≤min{n+, n−} : θ̂+i +θ̂−i +

1

n
>0

}
. (25)

Depending on the value of k and whether θ̂+k+1+θ̂−k+1+
1
n = 0, our discussion can be divided into several cases,
which are summarized in Figure 5.

…

…

… …

…

… …

…

… …

…

… …

…

…

…

…

… …

… …

… …

… …

Case
1.1

Case
1.2

Case 2.1.1 Case 2.1.2

Case 2.2.1 Case 2.2.2

Figure 5: Summary of all cases of the solution of PRBEP loss. The black dot represents the solution θ̂+i and θ̂−j .

Case 1. Suppose k = 0. Then θ̂+1 + θ̂−1 + 1
n ≤ 0.

Case 1.1 Suppose θ̂+1 + θ̂−1 + 1
n < 0. By the defini-

tion of ∆(k) and the decreasing order of θ̂+i and θ̂−j in

Lemma 6, argmaxy q(y, θ̂) must be the correct labeling

y∗, i.e. b(y) = c(y) = 0 and q(y∗, θ̂) = 0. Therefore

∂maxy q(y, θ̂) = {0}. Since 0 ∈ ∂D(θ̂), so for all

i ∈ [n+], β̂+
i = −∇h+i (θ̂+i) = 0, i.e. θ̂+i = a+i ; and for

all j ∈ [n−], β̂−j = −∇h−j (θ̂−j) = 0, i.e. θ̂−j = a−j . In
summary, the condition of falling in this case is

a+1 + a−1 +
1

n
≤ 0. (26)

Note we allow equality here because it lies on the
boundary of cases and does give a proper solution.

Case 1.2 Suppose θ̂+1 + θ̂−1 + 1
n = 0. Assume θ̂+1 =

. . . = θ̂+p > θ̂+p+1 (p ≥ 1), and θ̂−1 = . . . = θ̂−r > θ̂−r+1

(r ≥ 1). Then we have two properties, one for these

tied elements of θ̂ (Property 4) and one for the rest

elements of θ̂ (Property 3). We first state the latter
since it is simpler.

Property 3. For all i > p, β̂+
i = 0, i.e. θ̂+i = a+i . For

all j > r, β̂−j = 0, i.e. θ̂−j = a−j .

Proof. We just prove the first clause since the second
can be proved similarly. Suppose otherwise there ex-
ists i > p and β̂+

i > 0. Then by Lemma 5, there must

exist a ŷ ∈ argmaxy q(y, θ̂) such that ŷi = −1. Since

θ̂i < θ̂p, so b(ŷ) ≥ p + 1 and ŷ+1 = . . . = ŷ+p = −1.
Since c(ŷ) = b(ŷ) ≥ p + 1, there must exist j ∈ [n−]
such that ŷ−j = 1. Now construct a new assignment

ȳ which is the same as ŷ except that ȳ+i = 1 and
ȳ−j = −1. Now ȳ commits one less false positive and

false negative than ŷ, and by θ̂i < θ̂1 and θ̂−j ≤ θ̂
−
1 ,

q(ŷ, θ̂)− q(ȳ, θ̂) = θ̂+i + θ̂−j +
1

n
< θ̂+1 + θ̂−1 +

1

n
= 0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

Property 4.
∑p
i=1 β̂

+
i =

∑r
j=1 β̂

−
j .

Proof. By Property 3 and Lemma 5, all ŷ ∈
argmaxy q(y, θ̂) must satisfy ŷ+p+1 = . . . = ŷ+n+

= 1

and ŷ−r+1 = . . . = ŷ−n− = −1. Noting θ̂+1 + θ̂−1 + 1
n = 0,

we can explicitly express the set of argmaxy q(y, θ̂) as

Y =
{
y :

p∑
i=1

δ(y+i = −1) =

r∑
j=1

δ(y−j = −1),

y+i = 1 ∀i > p, y−j = −1 ∀j > r
}
.

Since 0 ∈ ∂D(θ̂), so there exists a distribution α over
y ∈ Y such that for all i ∈ [p] and j ∈ [r]:

β̂+
i =

∑
y∈Y:y+i =−1

αy, and β̂−j =
∑

y∈Y:y−j =1

αy.

So

p∑
i=1

β̂+
i =

p∑
i=1

∑
y∈Y:y+i =−1

αy =
∑
y∈Y

αy

p∑
i=1

δ(y+i = −1)

=
∑
y∈Y

αy

r∑
j=1

δ(y−j = −1) =

r∑
j=1

∑
y∈Y:y−j =1

αy =

r∑
j=1

β̂−j .

�

Incidentally, the α in the proof of Property 4 can be
explicitly constructed as

αy =

p∏
i=1

γ+i

r∏
j=1

γ−j where γ+i =

{
β̂+
i if y+i = −1

1− β̂+
i if y+i = 1

,

γ−j =

{
β̂−j if y−j = 1

1− β̂−j if y−j = −1
.

Property 4 allows us to fix the value of θ̂+1 and θ̂−1 ,

and to conveniently check whether the optimal θ̂ falls
in this case. Using θ̂+1 + θ̂−1 + 1

n = 0, it is obvious that

θ̂+1 must be the root of the following function

G(θ) =

n+∑
i=1

β+
i (θ)−

n−∑
j=1

β−j

(
− 1

n
− θ
)
,

where θ ∈ [a+1 − µ, a
+
1],

and − 1

n
− θ ∈ [a−1 − µ, a

−
1].

G(θ) is monotonically decreasing. So the necessary
and sufficient conditions for falling into this case are:
i) the above domain of θ is not empty; ii) G(θ) at the
maximum of the domain is non-positive and G(θ) at
the minimum of the domain is non-negative.

Once the root θ∗ is found, simply set p to the greatest
i such that a+i ≥ θ∗, and set r to the greatest j such

that a−j ≥ − 1
n − θ

∗. Assign θ̂+1 = . . . = θ̂+p = θ∗ and

θ̂−1 = . . . = θ̂−r = − 1
n − θ

∗. Then it is easy to see that∑p
i=1 β

+
i (θ∗) =

∑r
j=1 β

−
j (− 1

n − θ
∗).

Algorithmically, the root finding algorithm based on
binary search takes O(log n) steps, but at each step,
for a given θ it may require O(n) time to compute
G+(θ) :=

∑n+

i=1 β
+
i (θ) (and

∑n−
j=1 β

−
j (θ)). This cost

can be reduced to O(log n) (amortized) if we con-
duct the following O(n log n) pre-computation. Spend
O(n log n) time sorting {a+i , a

+
i − µ : i ∈ [n+]} and

then G+(θ) is linear between two adjacent points
in the sorted list. Next spend O(n) time recording
their slopes and the value of G+ at the end points:
{G+(a+i − µ), G+(a+i) : i ∈ [n+]}. Now given a θ,
use binary search (which costs O(log n)) to find the
interval of the sorted list which θ belongs to, and then
G+(θ) can be computed by using its slope and the
value of G+ at the end points.

Case 2. Suppose 1 ≤ k < min {n+, n−}. We start
with the following property which will significantly
simplify our analysis.

Property 5. β̂+
k = 1 or β̂−k = 1, or both.

Proof. First it is clearly impossible that θ̂+k = θ̂+k+1

and θ̂−k = θ̂−k+1 simultaneously, because then k + 1
also satisfies the condition in (25). Without loss of

generality, assume θ̂+k > θ̂+k+1 and below we show β̂+
k =

1. Suppose otherwise β̂+
k < 1. Then by Lemma 5,

there must exist a ŷ ∈ argmaxy q(y, θ̂) such that ŷ+k =
1. This rules out the possibility that b(ŷ) ≥ k because

if so then ŷ+k = −1 as guaranteed by θ̂+k+1 < θ̂+k . Now
that b(ŷ) = c(ŷ) < k, there must exist j ∈ [k] such
that ŷ−j = −1. Then we can construct a new ȳ which

is the same as ŷ except that ȳ+k = −1 and ȳ−j = 1.
So ȳ makes one more false positive and false negative,
and

q(ȳ, θ̂)− q(ŷ, θ̂) =
1

n
+ θ̂+k + θ̂−j ≥

1

n
+ θ̂+k + θ̂−k > 0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

By Property 5, let us assume β̂−k = 1 and so by Lemma

7 we have for all j ∈ [k], β̂−j = 1 and θ̂−j = a−j − µ.
Now let us consider two cases.

Case 2.1. Suppose β̂+
k = 1. By Lemma 7 we have

β̂+
i = 1 and θ̂+i = a+i − µ for all i ∈ [k]. By the

definition of k, we have θ̂+k+1 + θ̂−k+1 + 1
n ≤ 0. So we

further consider two cases.

Case 2.1.1. θ̂+k+1 + θ̂−k+1 + 1
n < 0. We have the

following property in this case.

Property 6. For all i > k, β̂+
i = 0, i.e. θ̂+i = a+i . For

all j > k, β̂−j = 0, i.e. θ̂−j = a−j .

Proof. Let us just prove the first clause since the sec-
ond one can be proved similarly. Suppose otherwise
there exists i ≥ k + 1 and β̂+

i > 0. Then by Lemma

5 there must exist a ŷ ∈ argmaxy q(y, θ̂) such that

ŷi = −1. Since β̂+
1 = . . . = β̂+

k = 1, Lemma 5 guaran-
tees that ŷ+1 = . . . = ŷ+1 = −1. So c(ŷ) = b(ŷ) ≥ k+1.
As a result, there must exist an index j ≥ k + 1 such
that ŷ−j = 1. Now construct a new ȳ which is the same

as ŷ except that ȳ+i = 1 and ȳ−j = −1. So ȳ commits
one less false positive and false negative than ŷ, and
so

q(ŷ)− q(ȳ) =
1

n
+ a+i + a−j ≤

1

n
+ a+k+1 + a−k+1 < 0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

In summary, the solution in this case is θ̂+i = a+i − µ,

∀ i ≤ k; θ̂+i = a+i , ∀ i > k; θ̂−j = a−j − µ, ∀ j ≤ k; and

θ̂−j = a−j , ∀ j > k. The conditions for falling in this
case are also easy to describe and check:

a+k+1 ≤ a
+
k − µ, a−k+1 ≤ a

−
k − µ,

a+k+1 + a−k+1 + 1
n ≤ 0,

(a+k − µ) + (a−k − µ) + 1
n ≥ 0.

Note we allow equality in the last two inequalities be-
cause they lie on the boundary of different cases and
do give a proper solution.

Case 2.1.2. θ̂+k+1 + θ̂−k+1 + 1
n = 0. Suppose θ̂+k+1 =

θ̂+k+2 = . . . = θ̂+k+p > θ̂+k+p+1 (p ≥ 1) and θ̂−k+1 =

θ̂−k+2 = . . . = θ̂−k+r > θ̂−k+r+1 (r ≥ 1). Then it is
straightforward to set the value for the “tails”.

Property 7. For all i > k+ p, β̂+
i = 0, i.e. θ̂+i = a+i .

For all j > k + r, β̂−j = 0, i.e. θ̂−j = a−j .

Proof. We just prove the first clause since the second
can be proved in the same way. Suppose otherwise
there exists a i > k + p such that β̂+

i > 0. So by

Lemma 5 there must exist ŷ ∈ argmaxy q(y, θ̂) such

that ŷ+i = −1. Since θ̂+i < θ̂+k+1, so ŷ+i−1 = . . . =

ŷ+1 = −1, i.e. c(ŷ) = b(ŷ) ≥ i ≥ k + 2. Therefore

there must exist j ≥ k + 2 such that ŷ−j = 1. Now
consider a new assignment ȳ which is the same as ŷ
except that ȳ+i = 1 and ȳ−j = −1. So ȳ commits one

less false positive and false negative, and by θ̂+i < θ̂+k+1

and θ̂−j ≤ θ̂
−
k+1,

q(ŷ, θ̂)− q(ȳ, θ̄) =
1

n
+ θ̂+i + θ̂−j <

1

n
+ θ̂+k+1 + θ̂−k+1 = 0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

So the only values to be determined are θ̂+k+1(= . . . =

θ̂+k+p) and θ̂−k+1(= . . . = θ̂−k+r). To this end, we use a
property similar to Property 4.

Property 8.
∑k+p
i=k+1 β̂

+
i =

∑k+r
j=k+1 β̂

−
j .

The proof is exactly the same as for Property 4 with
the only difference that the set of argmaxy q(y, θ̂) is
now{

y :

k+p∑
i=k+1

δ(y+i = −1) =

k+r∑
j=k+1

δ(y−j = 1),

y+i = −1 ∀i ≤ k, and y+i = 1 ∀i > k + p,

y−j = 1 ∀j ≤ k, and y−j = −1 ∀j > k + r

}
.

Using Property 8, we can not only fix the value of θ̂+k+1

and θ̂−k+1, but also check whether the real optimal θ̂

falls in this case. Using θ̂+k+1 + θ̂−k+1 + 1
n = 0, it is

obvious that θ̂+k+1 must be the root of the following
function

Gk(θ) =

n+∑
i=k+1

β+
i (θ)−

n−∑
j=k+1

β−j

(
− 1

n
− θ
)
,

where θ ∈ [a+k+1 − µ,min
{
a+k+1, a

+
k − µ

}
],

and − 1

n
− θ ∈ [a−k+1 − µ,min

{
a−k+1, a

−
k − µ

}
].

Gk is monotonically decreasing and has at most 6n lin-
ear pieces. To fall in this case, the following conditions
are necessary and sufficient. First the above domain
of θ is not empty. Second Gk(θ) at the maximum of
the domain is non-positive and Gk(θ) at the minimum
of the domain is non-negative.

When Gk(θ∗) = 0, set k+p to the greatest i such that
a+i ≥ θ∗, and set k + r to the greatest j such that

a−j ≥ − 1
n − θ

∗. Assign θ̂+k+1 = . . . = θ̂+k+p = θ∗ and

θ̂−k+1 = . . . = θ̂−k+r = − 1
n − θ

∗. Then it is easy to see

that
∑k+p
i=k+1 β

+
i (θ∗) =

∑k+r
j=k+1 β

−
j (− 1

n − θ
∗).

The binary search for the root takes O(log n) steps
and each step costs O(log n) using the same pre-

computation and root finding procedure as for G(θ)
in case 1.2.

Case 2.2. Suppose β̂+
k < 1. Using the proof of

Property 5, θ̂+k must be tied with θ̂+k+1 and assume

θ̂+k = . . . = θ̂+k+p > θ̂+k+p+1 (p ≥ 1). Now by the def-

inition of k, we have θ̂+k+1 + θ̂−k+1 + 1
n ≤ 0. So we

furthermore consider two cases.

Case 2.2.1. θ̂+k+1 + θ̂−k+1 + 1
n < 0. We have the

following property in this case.

Property 9. For all i > k+ p, β̂+
i = 0, i.e. θ̂+i = a+i .

For all j ≥ k + 1, β̂−j = 0, i.e. θ̂−j = a−j .

Proof. Note since β̂+
k < 1 and β̂−k = 1, the situations

for negative and positive side are not symmetric. To
prove the first clause, suppose there exists i > k + p
such that β̂+

i > 0. Then by Lemma 5 there must

exist a ŷ ∈ argmaxy q(y, θ̂) such that ŷ+i = −1. Since

θ̂+i < θ̂+k+p, so c(ŷ) = b(ŷ) ≥ k + p + 1. Therefore

there must exist a j ≥ k + 1 such that ŷ−j = 1. Now
consider a new assignment ȳ which is the same as ŷ
except that ȳ+i = 1 and ȳ−j = −1. So ȳ commits one
less false positive and false negative, and so

q(ŷ, θ̂)− q(ȳ, θ̄) =
1

n
+ θ̂+i + θ̂−j ≤

1

n
+ θ̂+k+1 + θ̂−k+1<0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂).

To prove the second clause, suppose there exist j ≥
k+ 1 such that β̂−j > 0. Then by Lemma 5 there must

exist a ŷ ∈ argmaxy q(y, θ̂) such that ŷ−j = −1. Since

β̂−1 = . . . = β̂−k = 1, so Lemma 5 implies ŷ−1 = . . . =
ŷ−k = 1. Therefore b(ŷ) = c(ŷ) ≥ k+ 1. So there must
exist i ≥ k + 1 such that ŷ+i = −1. Now consider a
new assignment ȳ which is the same as ŷ except that
ȳ+i = 1 and ȳ−j = −1. So ȳ commits one less false
positive and false negative, and so

q(ŷ, θ̂)− q(ȳ, θ̄) =
1

n
+ θ̂+i + θ̂−j ≤

1

n
+ θ̂+k+1 + θ̂−k+1<0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

Now the only values to be determined are θ̂+1 , . . . , θ̂
+
k+p.

Let us assume that θ̂+k+p = . . . = θ̂+k = . . . = θ̂+k−q <

θ̂+k−q−1 (q ≥ 0). Then one can easily fix θ̂+i for all
i ∈ [k − q − 1].

Property 10. For all i ∈ [k − q − 1], β̂+
i = 1, i.e.

θ̂+i = a+i − µ.

Proof. By Lemma 7, it suffices to show β̂+
k−q−1 = 1.

Suppose otherwise β̂+
k−q−1 < 1, then there must ex-

ist ŷ ∈ argmaxy q(y, θ̂) such that ŷ+k−q−1 = 1. Since

θ̂+k−q < θ̂+k−q−1, so c(ŷ) = b(ŷ) ≤ k − q − 2 ≤ k − 2.
Therefore there must exist j ∈ [k − 1] such that
ŷ−j = −1. Now consider a new assignment ȳ which

is the same as ŷ except that ȳ+i = −1 and ȳ−j = 1. So
ȳ commits one more false positive and false negative,
and so

q(ȳ, θ̂)− q(ŷ, θ̄)=
1

n
+ θ̂+k−q−1 + θ̂−j ≥

1

n
+ θ̂+k + θ̂−k >0,

which contradicts with ŷ ∈ argmaxy q(y, θ̂). �

Finally we use the following property to fix the value
of θ̂+k (= θ̂+i , ∀ k − q ≤ i ≤ k + p).

Property 11.
∑k+p
i=k−q β̂

+
i = q + 1.

Proof. By Property 9 and β̂−j = 1 for all j ∈ [k], we

have that any ŷ ∈ Y := argmaxy q(y, θ̂) must satisfy

that ŷ−j = 1 for all j ∈ [k] and ŷ−j = −1 for all j > k.

So b(y) = c(y) = k. By Property 10, ŷ+i = −1 for all
i ≤ k− q− 1. By Property 9, ŷ+i = 1 for all i > k+ p.
Therefore among ŷ+k−q, . . . , ŷ

+
k+p, there are exactly q+1

−1’s. And since θ̂+k−q = . . . = θ̂+k+p, so this is also a

sufficient condition for ŷ to maximize q(y, θ̂). Hence

k+p∑
i=k−q

δ(y+i = −1) = q + 1, ∀ y ∈ Y. (27)

Since 0 ∈ ∂D(θ̂), so there exists a distribution α over
y ∈ Y such that

β̂+
i =

∑
y∈Y:y+i =−1

αy, ∀ i ∈ {k − q, . . . , k + p}.

Then

k+p∑
i=k−q

β̂+
i =

k+p∑
i=k−q

∑
y∈Y:y+i =−1

αy

=
∑
y∈Y

αy

k+p∑
i=k−q

δ(y+i = −1)
(∗)
=
∑
y∈Y

αy(q + 1) = q + 1,

where equality (*) is by (27). �

Algorithmically, to check if Property 11 is satisfiable
notice θ̂+k must be the root of

Hk(θ)=

k∑
i=1

(β+
i (θ)− 1) +

n+∑
i=k+1

β+
i (θ), (28)

where θ ∈ [a+k − µ, a
+
k+1],

and − 1

n
− θ ∈ [a−k+1, a

−
k − µ].

Note we changed open interval in the last range into
closed interval because it lies on the boundary of cases
and does give a valid solution.

Clearly Hk(θ) is monotonically decreasing in θ. To fall
in this case, the following conditions are necessary and
sufficient. First the above domain of θ is not empty.
Second Hk(θ) at the maximum of the domain is non-
positive and Rk(θ) at the minimum of the domain is
non-negative. Third a−k+1 ≤ a

−
k − µ.

Once the root θ∗ of Hk(θ) is found, set k + p to the
greatest i such that a+i ≥ θ∗, and set to k − q the

smallest i such that a+i − µ ≤ θ∗. Assign θ̂+i = θ∗

for all k − q ≤ i ≤ k + p. Then it is easy to see that∑k+p
i=k−q β

+
i (θ∗) = q + 1.

To find the root of Hk(θ) we only need to use binary
search which costs O(log n) steps with each step cost-
ing O(log n) time for evaluating Hk(θ). This requires
some pre-computation which is similar to the root find-
ing procedure for G(θ) in case 1.2.

Case 2.2.2. θ̂+k+1 + θ̂−k+1 + 1
n = 0. Now both θ̂+k and

θ̂−k+1 can be tied. Suppose θ̂+k+p+1 < θ̂+k+p = . . . =

θ̂+k−q < θ̂+k−q−1 where p, q ≥ 0, and θ̂−k+r+1 < θ̂−k+r =

. . . = θ̂−k+1 where r ≥ 1. Then using the same proof
technique as above, we can show that for all i > k+ p,
θ̂+i = a+i and for all j > k + r, θ̂−j = a−j . For all

i < k − q, θ̂i = a+i − µ. So the only values to be

determined are θ̂+k (= θ̂+i , ∀ k − q ≤ i ≤ k + p) and

θ̂−k+1(= . . . = θ̂−k+r). This can be accomplished by
using the following property, which can be viewed as
a combination of Property 8 and Property 11.

Property 12.
∑k+p
i=k−q β̂

+
i = q + 1 +

∑k+r
j=k+1 β̂

−
j .

Proof. First we write out the explicit form of Y :=
argmaxy q(y, θ̂):{

y :

k+p∑
i=k−q

δ(y+i = −1) = q + 1 +

k+r∑
j=k+1

δ(y−j = 1),

y+i = −1 ∀i < k − q, and y+i = 1 ∀i > k + p,

y−j = 1 ∀j ≤ k, and y−j = −1 ∀j > k + r

}
,

where the first condition is because b(y) = c(y), while∑k−q−1
i=1 δ(y+i = −1)+

∑n+

i=k+p δ(y
+
i = −1) = k−q−1

and
∑k
j=1 δ(y

−
j = 1)+

∑n−
j=k+r+1 δ(y

−
j = 1) = k. Since

0 ∈ ∂D(θ̂), so there exists a distribution α over y ∈ Y
such that for all k − q ≤ i ≤ k + p and k ≤ j ≤ k + r:

β̂+
i =

∑
y∈Y:y+i =−1

αy, and β̂−j =
∑

y∈Y:y−j =1

αy.

So

k+p∑
i=k−q

β̂+
i =

k+p∑
i=k−q

∑
y∈Y:y+i =−1

αy =
∑
y∈Y

αy

k+p∑
i=k−q

δ(y+i = −1)

=
∑
y∈Y

αy

q + 1 +

k+r∑
j=k+1

δ(y−j = 1)

= q + 1 +

∑
y∈Y

αy

k+r∑
j=k+1

δ(y−j = −1)

= q + 1 +

k+r∑
j=k+1

∑
y∈Y:y−j =1

αy = q + 1 +

k+r∑
j=k+1

β̂−j . �

Algorithmically, to check if Property 12 is satisfiable
we notice θ̂+k+1 must be the root of

Rk(θ)=

k∑
i=1

(β+
i (θ)−1) +

n+∑
i=k+1

β+
i (θ)−

n−∑
j=k+1

β−j

(
− 1

n
−θ
)
,

where θ ∈ [a+k − µ, a
+
k+1],

and − 1

n
− θ ∈ [a−k+1 − µ,min

{
a−k − µ, a

−
k+1

}
].

Clearly Rk(θ) is monotonically decreasing in θ, and
has at most 6n linear pieces. To fall in this case, the
following conditions are necessary and sufficient. First
the above domain of θ is not empty. Second Rk(θ) at
the maximum of the domain is non-positive and Rk(θ)
at the minimum of the domain is non-negative.

After obtaining the root θ∗, set k + p to the greatest
i such that a+i ≥ θ∗, and set k − q to the smallest
i such that a+i − µ ≤ θ∗. Set k + r to the greatest

j such that a−j ≥ − 1
n − θ∗. Assign θ̂+i = θ∗ for all

k−q ≤ i ≤ k+p and θ̂−j = − 1
n −θ

∗. Then it is easy to

see that
∑k+p
i=k−q β

+
i (θ∗) = q+1+

∑k+r
j=k+1 β

−
j (− 1

n−θ
∗).

The binary search for the root takes O(log n) steps and
each step costs (log n) using the same pre-computation
and root finding procedure as for G(θ) in case 1.2.

Case 3. Suppose k = min {n+, n−}. Assume n+ ≥
n−. Then we must have β̂−j = 1 and θ̂−j = a−j − µ for
all j ∈ [n−]. The proof is similar to the above and we

omit it here. Suppose θ̂+k+p+1 < θ̂+k+p = . . . = θ̂+k =

. . . = θ̂+k−q < θ̂+k−q−1 where p, q ≥ 0. Then we have

β̂+
i = 1 and θ̂+i = a+i − µ for all i < k− q, and β̂+

i = 0

and θ̂+i = a+i for all i > k+ p. Similar to Property 11,

we can also show that
∑k+p
i=k−q β̂

+
i = q + 1, which can

be used to determine θ̂+i (k− q ≤ i ≤ k+ p). The root
finding by binary search is also the same and the cost

is O(log n). Everything is the same as the Hk in (28),
except that we treat a−n−+1 = −∞.

Summary Our algorithm is simple: enumerate k
from 0 to min{n+, n−} and check whether the con-
dition of any of the above cases can be satisfied. Since
we know there is a unique solution, hence there must
exist a unique k and a case which is satisfied. Since
each check takes O(log n) time, the total time cost is
O(n log n). In a more fancy fashion, we can even do a
binary search over k, but it will require more refined
characterization of whether to increase or decrease k
when none of the cases is satisfied for a given k.

F Vishy’s algorithm

Claim 1: There exists a θ+ and a θ− such that
the argmin of (20) can we written as θ+i = θ+ for
i = 1, . . . , n+ and θ−j = θ− for j = 1, . . . , n−.

Claim 2: The function

f+(θ) :=

n+∑
i=1

∇hi(θ) =

n+∑
i=1

∇β+
i (θ) (29)

is a piecewise linear non-decreasing function of θ with
at most 2n+ kink points. The same holds for

f−(θ) :=

n−∑
j=1

∇hj(θ) =

n−∑
j=1

∇β−j (θ). (30)

Proof. Since hi is a convex function of θ and therefore∑
i hi is also a convex function, while f+ is its gra-

dient. Consequently, f+ is non-decreasing. Further-
more, ∇hi defined in (21) is a piecewise linear function
with 2 kink points. Summing piecewise linear func-
tions gives rise to a piecewise linear function with at
most 2n+ kinks. An identical argument can be made
for f−. �

Claim 3: At the optimal solution of (20)

n+∑
i=1

∇hi(θ) =

n−∑
j=1

∇hj(θ).

In other words, f+(θ+) = f−(θ−).

Proof. Essentially similar to the proof of property 4.
�

The high level description of the algorithm is as fol-
lows:

• Sort the arrays
{
a+i , a

+
i − µ

}
with i = 1, . . . , n+

and
{
a−j , a

−
j − µ

}
with j = 1, . . . , n−. I will call

Algorithm 1 Compute f+

Require: a+0 ≥ a
+
1 ≥ . . . ≥ a

+
n+−1

Require: Smoothing parameter µ
1: i1 = 0, i2 = 0, i = 0
2: s = 0 (slope)
3: f−1 = 0 (array)
4: while i1 < n+ and i2 < n+ do
5: if a+i1 > a+i2 − µ then

6: s← s+ a+i1
7: fi ← fi−1 + 1

µ (a+i1 − s)
8: i1 ← i1 + 1
9: else

10: i2 ← i2 + 1
11: p = ai2 − µ
12: end if
13: i← i+ 1
14: end while

the entries of
{
a+i , a

+
i − µ

}
(resp.

{
a−j , a

−
j − µ

}
)

as b+i (resp. b−j) below

• Evaluate f+(b+i) and f−(b−j). This takes O(n)
time given the sorted arrays

• Find i and j such that one of the two following
conditions holds:

f+(b+i) ≤ f−(b−j) and f+(b+i+1) ≥ f−(b−j+1) or

f+(b+i) ≥ f−(b−j) and f+(b+i+1) ≤ f−(b−j+1)

Then θ+ lies in the interval (b+i , b
+
i+1) while θ−

lies in the interval (b−j , b
−
j+1).

G Plots of All Experimental Results

H Plots with Nesterov’s Solver

We tried to use FISTA (Beck & Teboulle, 2009) to
optimize the smoothed objective. It turns out that it
is quite effective when a high accuracy solution is need.
However, it is slow initially.

We only used µ = 100µ̂ because it is already slower
than other solvers. In all the figures, the cyan line
with triangle marker is the result of FISTA.

	Background and Introduction
	Nesterov's Formulation
	Related Work
	Notation and Paper Outline

	Reformulating the Empirical Risk
	Contingency Table Based Loss
	D "026B30D A"026B30D for our design
	Alternatives

	ROCArea
	D "026B30D A"026B30D for our design

	Computing the Gradient Efficiently
	Contingency table based loss
	ROCArea loss

	Empirical Evaluation
	Results

	Conclusion and Discussion
	The Smoothing Procedure
	Preliminaries of Convex Analysis
	Convexity of g()
	Proof of Property 1
	Details of the algorithm for PRBEP measure
	Vishy's algorithm
	Plots of All Experimental Results
	Plots with Nesterov's Solver

