
Lower Bounds on Rate of Convergence of Cutting
Plane Methods

Xinhua Zhang
Dept. of Computing Science

University of Alberta
xinhua2@ualberta.ca

Ankan Saha
Dept. of Computer Science

University of Chicago
ankans@cs.uchicago.edu

S.V. N. Vishwanathan
Dept. of Statistics and

Dept. of Computer Science
Purdue University

vishy@stat.purdue.edu

Abstract

In a recent paper Joachims [1] presented SVM-Perf, a cutting plane method
(CPM) for training linear Support Vector Machines (SVMs) which converges to
an ε accurate solution in O(1/ε2) iterations. By tightening the analysis, Teo et al.
[2] showed thatO(1/ε) iterations suffice. Given the impressive convergence speed
of CPM on a number of practical problems, it was conjectured that these rates
could be further improved. In this paper we disprove this conjecture. We present
counter examples which are not only applicable for training linear SVMs with
hinge loss, but also hold for support vector methods which optimize a multivari-
ate performance score. However, surprisingly, these problems are not inherently
hard. By exploiting the structure of the objective function we can devise an algo-
rithm that converges in O(1/

√
ε) iterations.

1 Introduction
There has been an explosion of interest in machine learning over the past decade, much of which
has been fueled by the phenomenal success of binary Support Vector Machines (SVMs). Driven by
numerous applications, recently, there has been increasing interest in support vector learning with
linear models. At the heart of SVMs is the following regularized risk minimization problem:

min
w

J(w) :=
λ

2
‖w‖2︸ ︷︷ ︸

regularizer

+Remp(w)︸ ︷︷ ︸
empirical risk

with Remp(w) :=
1

n

n∑
i=1

max(0, 1− yi 〈w,xi〉). (1)

Here we assume access to a training set of n labeled examples {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈
{−1,+1}, and use the square Euclidean norm ‖w‖2 =

∑
i w

2
i as the regularizer. The parameter λ

controls the trade-off between the empirical risk and the regularizer.

There has been significant research devoted to developing specialized optimizers which minimize
J(w) efficiently. In an award winning paper, Joachims [1] presented a cutting plane method
(CPM)1, SVM-Perf, which was shown to converge to an ε accurate solution of (1) in O(1/ε2) iter-
ations, with each iteration requiring O(nd) effort. This was improved by Teo et al. [2] who showed
that their Bundle Method for Regularized Risk Minimization (BMRM) (which encompasses SVM-
Perf as a special case) converges to an ε accurate solution in O(nd/ε) time.

While online learning methods are becoming increasingly popular for solving (1), a key advantage
of CPM such as SVM-Perf and BMRM is their ability to directly optimize nonlinear multivariate
performance measures such as F1-score, ordinal regression loss, and ROCArea which are widely
used in some application areas. In this case Remp does not decompose into a sum of losses over
individual data points like in (1), and hence one has to employ batch algorithms. Letting ∆(y, ȳ)
denote the multivariate discrepancy between the correct labels y := (y1, . . . , yn)> and a candidate
labeling ȳ (to be concretized later), the Remp for the multivariate measure is formulated by [3] as

1In this paper we use the term cutting plane methods to denote specialized solvers employed in machine
learning. While clearly related, they must not be confused with cutting plane methods used in optimization.

1

mailto:xinhua2@ualberta.ca
mailto:ankans@cs.uchicago.edu
mailto:vishy@stat.purdue.edu

Remp(w) = max
ȳ∈{−1,1}n

[
∆(y, ȳ) +

1

n

n∑
i=1

〈w,xi〉 (ȳi − yi)

]
. (2)

In another award winning paper by Joachims [3], the regularized risk minimization problems corre-
sponding to these measures are optimized by using a CPM.

Given the widespread use of CPM in machine learning, it is important to understand their conver-
gence guarantees in terms of the upper and lower bounds on the number of iterations needed to
converge to an ε accurate solution. The tightest, O(1/ε), upper bounds on the convergence speed
of CPM is due to Teo et al. [2], who analyzed a restricted version of BMRM which only optimizes
over one dual variable per iteration. However, on practical problems the observed rate of conver-
gence is significantly faster than predicted by theory. Therefore, it had been conjectured that the
upper bounds might be further tightened via a more refined analysis. In this paper we construct
counter examples for both decomposable Remp like in equation (1) and non-decomposable Remp

like in equation (2), on which CPM requires Ω(1/ε) iterations to converge, thus disproving this con-
jecture2. We will work with BMRM as our prototypical CPM. As Teo et al. [2] point out, BMRM
includes many other CPM such as SVM-Perf as special cases.

Our results lead to the following natural question: Do the lower bounds hold because regularized
risk minimization problems are fundamentally hard, or is it an inherent limitation of CPM? In other
words, to solve problems such as (1), does there exist a solver which requires less than O(nd/ε)
effort (better in n, d and ε)? We provide partial answers. To understand our contribution one needs
to understand the two standard assumptions that are made when proving convergence rates:

• A1: The data points xi lie inside a L2 (Euclidean) ball of radius R, that is, ‖xi‖ ≤ R.
• A2: The subgradient of Remp is bounded, i.e., at any point w, there exists a subgradient g

of Remp such that ‖g‖ ≤ G <∞.

Clearly assumption A1 is more restrictive than A2. By adapting a result due to [6] we show that one
can devise anO(nd/

√
ε) algorithm for the case when assumption A1 holds. Finding a fast optimizer

under assumption A2 remains an open problem.

Notation: Lower bold case letters (e.g., w, µ) denote vectors, wi denotes the i-th component of
w, 0 refers to the vector with all zero components, ei is the i-th coordinate vector (all 0’s except
1 at the i-th coordinate) and ∆k refers to the k dimensional simplex. Unless specified otherwise,
〈·, ·〉 denotes the Euclidean dot product 〈x,w〉 =

∑
i xiwi, and ‖·‖ refers to the Euclidean norm

‖w‖ := (〈w,w〉)1/2. We denote R := R ∪ {∞}, and [t] := {1, . . . , t}.
Our paper is structured as follows. We briefly review BMRM in Section 2. Two types of lower
bounds are subsequently defined in Section 3, and Section 4 contains descriptions of various counter
examples that we construct. In Section 5 we describe an algorithm which provably converges to an
ε accurate solution of (1) in O(1/

√
ε) iterations under assumption A1. The paper concludes with a

discussion and outlook in Section 6. Technical proofs and a ready reckoner of the convex analysis
concepts used in the paper can be found in Appendix A.

2 BMRM
At every iteration, BMRM replaces Remp by a piecewise linear lower bound Rcp

k and optimizes [2]

min
w

Jk(w) :=
λ

2
‖w‖2 +Rcp

k (w), where Rcp
k (w) := max

1≤i≤k
〈w,ai〉+ bi, (3)

to obtain the next iterate wk. Here ai ∈ ∂Remp(wi−1) denotes an arbitrary subgradient of Remp

at wi−1 and bi = Remp(wi−1) − 〈wi−1,ai〉. The piecewise linear lower bound is successively
tightened until the gap

εk := min
0≤t≤k

J(wt)− Jk(wk) (4)
falls below a predefined tolerance ε.

Since Jk in (3) is a convex objective function, one can compute its dual. Instead of minimizing Jk
with respect to w one can equivalently maximize the dual [2] over the k dimensional simplex:

Dk(α) = − 1

2λ
‖Akα‖2 + 〈bk,α〉 , where α ∈ ∆k, (5)

2Because of the specialized nature of these solvers, lower bounds for general convex optimizers such as
those studied by Nesterov [4] and Nemirovski and Yudin [5] do not apply.

2

Algorithm 1: qp-bmrm: solving the inner loop
of BMRM exactly via full QP.

Require: Previous subgradients {ai}ki=1 and
intercepts {bi}ki=1.

1: Set Ak :=(a1, . . . ,ak) ,bk :=(b1, . . . bk)>.

2: αk ← argmax
α∈∆k

{
− 1

2λ‖Akα‖
2 + 〈α,bk〉

}
.

3: return wk = −λ−1Akαk.

Algorithm 2: ls-bmrm: solving the inner loop
of BMRM approximately via line search.

Require: Previous subgradients {ai}ki=1 and
intercepts {bi}ki=1.

1: Set Ak :=(a1, . . . ,ak) ,bk :=(b1, . . . bk)>.
2: Set α(η) :=

(
ηα>k−1, 1− η

)>
.

3: ηk←argmax
η∈[0,1]

{−1
2λ ‖Akα(η)‖2+〈α(η),bk〉

}
.

4: αk ←
(
ηkα

>
k−1, 1− ηk

)>
.

5: return wk = −λ−1Akαk.

and set αk = argmaxα∈∆k
Dk(α). Note that Ak and bk in (5) are defined in Algorithm 1. Since

maximizing Dk(α) is a quadratic programming (QP) problem, we call this algorithm qp-bmrm.
Pseudo-code can be found in Algorithm 1.

Note that at iteration k the dualDk(α) is a QP with k variables. As the number of iterations increases
the size of the QP also increases. In order to avoid the growing cost of the dual optimization at each
iteration, [2] proposed using a one-dimensional line search to calculate an approximate maximizer
αk on the line segment {(ηα>k−1, (1−η))> : η ∈ [0, 1]}, and we call this variant ls-bmrm. Pseudo-
code can be found in Algorithm 2. We refer the reader to [2] for details.

Even though qp-bmrm solves a more expensive optimization problem Dk(α) per iteration, Teo
et al. [2] could only show that both variants of BMRM converge at O(1/ε) rates:

Theorem 1 ([2]) Suppose assumption A2 holds. Then for any ε < 4G2/λ, both ls-bmrm and qp-
bmrm converge to an ε accurate solution of (1) as measured by (4) after at most the following
number of steps:

log2

λJ(0)

G2
+

8G2

λε
− 1.

Generality of BMRM Thanks to the formulation in (3) which only uses Remp, BMRM is applica-
ble to a wide variety ofRemp. For example, when used to train binary SVMs withRemp specified by
(1), it yields exactly the SVM-Perf algorithm [1]. When applied to optimize the multivariate score,
e.g. F1-score with Remp specified by (2), it immediately leads to the optimizer given by [3].

3 Upper and Lower Bounds
Since most rates of convergence discussed in the machine learning community are upper bounds,
it is important to rigorously define the meaning of a lower bound with respect to ε, and to study
its relationship with the upper bounds. At this juncture it is also important to clarify an important
technical point. Instead of minimizing the objective function J(w) defined in (1), if we minimize a
scaled version cJ(w) this scales the approximation gap (4) by c. Assumptions such as A1 and A2
fix this degree of freedom by bounding the scale of the objective function.

Given a function f ∈ F and an optimization algorithm A, suppose {wk} are the iterates produced
by the algorithmAwhen minimizing f . Define T (ε; f,A) as the first step index k when wk becomes
an ε accurate solution3:

T (ε; f,A) = min {k : f(wk)−minw f(w) ≤ ε} . (6)

Upper and lower bounds are both properties for a pair of F and A. A function g(ε) is called an
upper bound of (F , A) if for all functions f ∈ F and all ε > 0, it takes at most order g(ε) steps for
A to reduce the gap to less than ε, i.e.,

(UB) ∀ ε > 0,∀ f ∈ F , T (ε; f,A) ≤ g(ε). (7)
On the other hand, lower bounds can be defined in two different ways depending on how the above
two universal qualifiers are flipped to existential qualifiers.

3 The initial point also matters, as in the best case we can just start from the optimal solution. Thus the quan-
tity of interest is actually T (ε; f,A) := maxw0 min{k : f(wk)−minw f(w) ≤ ε, starting point being w0}.
However, without loss of generality we assume some pre-specified way of initialization.

3

Algorithms Assuming A1 Assuming A2
UB SLB WLB UB SLB WLB

ls-bmrm O(1/ε) Ω(1/ε) Ω(1/ε) O(1/ε) Ω(1/ε) Ω(1/ε)

qp-bmrm O(1/ε) open open O(1/ε) open Ω(1/ε)

Nesterov O(1/
√
ε) Ω(1/

√
ε) Ω(1/

√
ε) n/a n/a n/a

Table 1: Summary of the known upper bounds and our lower bounds. Note: A1⇒ A2, but not vice
versa. SLB⇒WLB, but not vice versa. UB is tight, if it matches WLB.

• Strong lower bounds (SLB) h(ε) is called a SLB of (F , A) if there exists a function f̃ ∈ F ,
such that for all ε > 0 it takes at least h(ε) steps for A to find an ε accurate solution of f̃ :

(SLB) ∃ f̃ ∈ F , s.t. ∀ ε > 0, T (ε; f̃ , A) ≥ h(ε). (8)

• Weak lower bound (WLB) h(ε) is called a WLB of (F , A) if for any ε > 0, there exists a
function fε ∈ F depending on ε, such that it takes at least h(ε) steps for A to find an ε accurate
solution of fε:

(WLB) ∀ ε > 0,∃ fε ∈ F , s.t. T (ε; fε, A) ≥ h(ε). (9)

Clearly, the existence of a SLB implies a WLB. However, it is usually much harder to establish SLB
than WLB. Fortunately, WLBs are sufficient to refute upper bounds or to establish their tightness.
The size of the function class F affects the upper and lower bounds in opposite ways. Suppose
F ′ ⊂ F . Proving upper (resp. lower) bounds on (F ′, A) is usually easier (resp. harder) than proving
upper (resp. lower) bounds for (F , A).

4 Constructing Lower Bounds
Letting the minimizer of J(w) be w∗, we are interested in bounding the primal gap of the iterates
wk : J(wk) − J(w∗). Datasets will be constructed explicitly whose resulting objective J(w) will
be shown to attain the lower bounds of the algorithms. The Remp for both the hinge loss in (1)
and the F1-score in (2) will be covered, and our results are summarized in Table 1. Note that as
assumption A1 implies A2 and SLB implies WLB, some entries of the table imply others.

4.1 Strong Lower Bounds for Solving Linear SVMs using ls-bmrm

We first prove the Ω(1/ε) lower bound for ls-bmrm on SVM problems under assumption A1. Con-
sider a one dimensional training set with four examples: (x1, y1) = (−1,−1), (x2, y2) = (− 1

2 ,−1),
(x3, y3)=(1

2 , 1), (x4, y4)=(1, 1). Setting λ = 1
16 , the regularized risk (1) can be written as (using

w instead of w as it is now a scalar):

min
w∈R

J(w) =
1

32
w2 +

1

2

[
1− w

2

]
+

+
1

2
[1− w]+ . (10)

The minimizer of J(w) is w∗ = 2, which can be verified by the fact that 0 is in the subdifferential
of J at w∗ : 0 ∈ ∂J(2) =

{
2
16 −

1
2

1
2α : α ∈ [0, 1]

}
. So J(w∗) = 1

8 . Choosing w0 = 0, we have

Theorem 2 limk→∞ k (J(wk)− J(w∗)) = 1
4 , i.e. J(wk) converges to J(w∗) at 1/k rate.

The proof relies on two lemmata. The first shows that the iterates generated by ls-bmrm on J(w)
satisfy the following recursive relations.

Lemma 3 For k ≥ 1, the following recursive relations hold true

w2k+1 = 2 +
8α2k−1,1 (w2k−1 − 4α2k−1,1)

w2k−1 (w2k−1 + 4α2k−1,1)
> 2, and w2k = 2− 8α2k−1,1

w2k−1
∈ (1, 2). (11)

α2k+1,1 =
w2

2k−1 + 16α2
2k−1,1

(w2k−1 + 4α2k−1,1)
2α2k−1,1,where α2k+1,1 is the first coordinate of α2k+1. (12)

4

The proof is lengthy and is relegated to Appendix B. These recursive relations allow us to derive the
convergence rate of α2k−1,1 and wk (see proof in Appendix C):

Lemma 4 limk→∞ kα2k−1,1 = 1
4 . Combining with (11), we get limk→∞ k|2− wk| = 2.

Now that wk approaches 2 at the rate of O(1/k), it is finally straightforward to translate it into the
rate at which J(wk) approaches J(w∗). See the proof of Theorem 2 in Appendix D.

4.2 Weak Lower Bounds for Solving Linear SVMs using qp-bmrm

Theorem 1 gives an upper bound on the convergence rate of qp-bmrm, assuming thatRemp satisfies
the assumption A2. In this section we further demonstrate that thisO(1/ε) rate is also a WLB (hence
tight) even when the Remp is specialized to SVM objectives satisfying A2.

Given ε > 0, define n = d1/εe and construct a dataset {(xi, yi)}ni=1 as yi = (−1)i and xi =
(−1)i (nei+1 +

√
ne1) ∈ Rn+1. Then the corresponding objective function (1) is

J(w)=
‖w‖2

2
+Remp(w), where Remp(w)=

1

n

n∑
i=1

[1−yi〈w,xi〉]+ =
1

n

n∑
i=1

[1−
√
nw1−nwi+1]+.

(13)
It is easy to see that the minimizer w∗ = 1

2 (1√
n
, 1
n ,

1
n , . . . ,

1
n)> and J(w∗) = 1

4n . In fact, simply

check that yi 〈w∗,xi〉 = 1, so ∂J(w∗) =

{
w∗ −

(
1√
n

∑n
i=1 αi, α1, . . . , αn

)>
: αi ∈ [0, 1]

}
, and

setting all αi = 1
2n yields the subgradient 0. Our key result is the following theorem.

Theorem 5 Let w0 = (1√
n
, 0, 0, . . .)>. Suppose running qp-bmrm on the objective function (13)

produces iterates w1, . . . ,wk, Then it takes qp-bmrm at least
⌊

2
3ε

⌋
steps to find an ε accurate

solution. Formally,
min
i∈[k]

J(wi)− J(w∗) =
1

2k
+

1

4n
for all k ∈ [n], hence min

i∈[k]
J(wi)− J(w∗) > ε for all k <

2

3ε
.

Indeed, after taking n steps, wn will cut a subgradient an+1 = 0 and bn+1 = 0, and then the
minimizer of Jn+1(w) gives exactly w∗.

Proof Since Remp(w0) = 0 and ∂Remp(w0) =
{−1
n

∑n
i=1 αiyixi : αi ∈ [0, 1]

}
, we can choose

a1 = − 1

n
y1x1 =

(
− 1√

n
,−1, 0, . . .

)>
, b1 = Remp(w0)− 〈a1,w0〉 = 0 +

1

n
=

1

n
, and

w1 = argmin
w

{
1

2
‖w‖2 − 1√

n
w1 − w2 +

1

n

}
=

(
1√
n
, 1, 0, . . .

)>
.

In general, we claim that the k-th iterate wk produced by qp-bmrm is given by

wk =

(
1√
n
,

k copies︷ ︸︸ ︷
1

k
, . . . ,

1

k
, 0, . . .

)>
.

We prove this claim by induction on k. Assume the claim holds true for steps 1, . . . , k, then it is
easy to check that Remp(wk) = 0 and ∂Remp(wk) =

{−1
n

∑n
i=k+1 αiyixi : αi ∈ [0, 1]

}
. Thus we

can again choose

ak+1 = − 1

n
yk+1xk+1, and bk+1 = Remp(wk)− 〈ak+1,wk〉 =

1

n
, so

wk+1 = argmin
w

{
1

2
‖w‖2 + max

1≤i≤k+1
{〈ai,w〉+ bi}

}
=

(
1√
n
,

k+1 copies︷ ︸︸ ︷
1

k + 1
, . . . ,

1

k + 1
, 0, . . .

)>
,

which can be verified by checking that ∂Jk+1(wk+1) =
{
wk+1 +

∑
i∈[k+1] αiai : α ∈ ∆k+1

}
3

0. All that remains is to observe that J(wk) = 1
2k + 1

2n while J(w∗) = 1
4n from which it follows

that J(wk)− J(w∗) = 1
2k + 1

4n as claimed.

5

As an aside, the subgradient of theRemp in (13) does have Euclidean norm
√

2n at w = 0. However,
in the above run of qp-bmrm, ∂Remp(w0), . . . , ∂Remp(wn) always contains a subgradient with
norm 1. So if we restrict the feasible region to

{
n−1/2

}
× [0,∞]n, then J(w) does satisfy the

assumption A2 and the optimal solution does not change. This is essentially a local satisfaction of
A2. In fact, having a bounded subgradient of Remp at all wk is sufficient for qp-bmrm to converge
at the rate in Theorem 1.

However when we assume A1 which is more restrictive than A2, it remains an open question to
determine whether the O(1/ε) rates are optimal for qp-bmrm on SVM objectives. Also left open is
the SLB for qp-bmrm on SVMs.

4.3 Weak Lower Bounds for Optimizing F1-score using qp-bmrm

F1-score is defined by using the contingency table: F1(ȳ,y) := 2a
2a+b+c .

Given ε > 0, define n = d1/εe+1 and construct a dataset {(xi, yi)}ni=1 as
follows: xi = − n

2
√

3
e1− n

2 ei+1 ∈ Rn+1 with yi = −1 for all i ∈ [n−1],

and xn =
√

3n
2 e1 + n

2 en+1 ∈ Rn+1 with yn = +1. So there is only one
positive training example. Then the corresponding objective function is

y=1 y=−1

ȳ=1 a b

ȳ=−1 c d

Contingency table.

J(w) =
1

2
‖w‖2 + max

ȳ

[
1− F1(y, ȳ) +

1

n

n∑
i=1

yi 〈w,xi〉 (yiȳi − 1)

]
. (14)

Theorem 6 Let w0 = 1√
3
e1. Then qp-bmrm takes at least

⌊
1
3ε

⌋
steps to find an ε accurate solution.

J(wk)−min
w

J(w) ≥ 1

2

(
1

k
− 1

n− 1

)
∀k ∈ [n−1], hence min

i∈[k]
J(wi)−min

w
J(w) > ε ∀k < 1

3ε
.

Proof A rigorous proof can be found in Appendix E, we provide a sketch here. The crux is to show

wk =

(
1√
3
,

k copies︷ ︸︸ ︷
1

k
, . . . ,

1

k
, 0, . . .

)>
∀k ∈ [n− 1]. (15)

We prove (15) by induction. Assume it holds for steps 1, . . . , k. Then at step k + 1 we have

1

n
yi 〈wk,xi〉 =

1
6 + 1

2k if i ∈ [k]
1
6 if k + 1 ≤ i ≤ n− 1
1
2 if i = n

. (16)

For convenience, define the term in the max in (14) as

Υk(ȳ) := 1− F1(y, ȳ) +
1

n

n∑
i=1

yi 〈wk,xi〉 (yiȳi − 1).

Then it is not hard to see that the following assignments of ȳ (among others) maximize Υk: a)
correct labeling, b) only misclassify the positive training example xn (i.e., ȳn = −1), c) only
misclassify one negative training example in xk+1, . . . ,xn−1 into positive. And Υk equals 0 at all
these assignments. For a proof, consider two cases. If ȳ misclassifies the positive training example,
then F1(y, ȳ) = 0 and by (16) we have

Υk(ȳ)=1−0 +
1

n

n−1∑
i=1

yi〈wk,xi〉 (yiȳi−1)+
1

2
(−1−1)=

k + 3

6k

k∑
i=1

(yiȳi−1)+
1

6

n−1∑
i=k+1

(yiȳi−1)≤0.

Suppose ȳ correctly labels the positive example, but misclassifies t1 examples in x1, . . . ,xk and t2
examples in xk+1, . . . ,xn−1 (into positive). Then F1(y, ȳ) = 2

2+t1+t2
, and

Υk(ȳ) = 1− 2

2 + t1 + t2
+

(
1

6
+

1

2k

) k∑
i=1

(yiȳi − 1) +
1

6

n−1∑
i=k+1

(yiȳi − 1)

=
t1 + t2

2 + t1 + t2
−
(

1

3
+

1

k

)
t1 −

1

3
t2 ≤

t− t2

3(2 + t)
≤ 0 (t := t1 + t2).

6

So we can pick ȳ as (

k copies︷ ︸︸ ︷
−1, . . . ,−1,+1,

n−k−1 copies︷ ︸︸ ︷
−1, . . . ,−1,+1)> which only misclassifies xk+1, and get

ak+1 =
−2

n
yk+1xk+1 = − 1√

3
e1 − ek+2, bk+1 = Remp(wk)− 〈ak+1,wk〉 = 0 +

1

3
=

1

3
,

wk+1 = argmin
w

:=Jk+1(w)︷ ︸︸ ︷
1

2
‖w‖2 + max

i∈[k+1]
{〈ai,w〉+ bi} =

(
1√
3
,

k+1 copies︷ ︸︸ ︷
1

k + 1
, . . . ,

1

k + 1
, 0, . . .

)>
.

which can be verified by ∂Jk+1(wk+1) =
{
wk+1 +

∑k+1
i=1 αiai : α ∈ ∆k+1

}
3 0 (just set all

αi = 1
k+1). So (15) holds for step k + 1. End of induction.

All that remains is to observe that J(wk) = 1
2 (1

3 + 1
k) while minw J(w) ≤ J(wn−1) = 1

2 (1
3 + 1

n−1)

from which it follows that J(wk)−minw J(w) ≥ 1
2 (1
k −

1
n−1) as claimed in Theorem 6.

5 An O(nd/
√
ε) Algorithm for Training Binary Linear SVMs

The lower bounds we proved above show that CPM such as BMRM require Ω(1/ε) iterations to
converge. We now show that this is an inherent limitation of CPM and not an artifact of the problem.
To demonstrate this, we will show that one can devise an algorithm for problems (1) and (2) which
will converge in O(1/

√
ε) iterations. The key difficulty stems from the non-smoothness of the

objective function, which renders second and higher order algorithms such as L-BFGS inapplicable.
However, thanks to Theorem 7 in Appendix A, the Fenchel dual of (1) is a convex smooth function
with a Lipschitz continuous gradient, which are easy to optimize.

To formalize the idea of using the Fenchel dual, we can abstract from the objectives (1) and (2) a
composite form of objective functions used in machine learning with linear models:

min
w∈Q1

J(w) = f(w) + g?(Aw), where Q1 is a closed convex set. (17)

Here, f(w) is a strongly convex function corresponding to the regularizer, Aw stands for the output
of a linear model, and g? encodes the empirical risk measuring the discrepancy between the correct
labels and the output of the linear model. Let the domain of g be Q2. It is well known that [e.g. 7,
Theorem 3.3.5] under some mild constraint qualifications, the adjoint form of J(w):

D(α) = −g(α)− f?(−A>α), α ∈ Q2 (18)

satisfies J(w) ≥ D(α) and infw∈Q1
J(w) = supα∈Q2

D(α).

Example 1: binary SVMs with bias. Let A := −Y X> where Y := diag(y1, . . . , yn) and X :=

(x1, . . . ,xn), f(w) = λ
2 ‖w‖

2, g?(u) = minb∈R
1
n

∑n
i=1 [1 + ui − yib]+ which corresponds to

g(α)=−
∑
i αi. Then the adjoint form turns out to be the well known SVM dual objective function:

D(α) =
∑
i

αi −
1

2λ
α>Y X>XYα, α ∈ Q2 =

{
α ∈ [0, n−1]n :

∑
i

yiαi = 0
}
. (19)

Example 2: multivariate scores. Denote A as a 2n-by-d matrix where the ȳ-th row is∑n
i=1 x

>
i (ȳi − yi) for each ȳ ∈ {−1,+1}n, f(w) = λ

2 ‖w‖
2, g?(u) = maxȳ

[
∆(y, ȳ) + 1

nuȳ
]

which corresponds to g(α) = −n
∑

ȳ ∆(y, ȳ)αȳ, we recover the primal objective (2) for multi-
variate performance measure. Its adjoint form is

D(α) =− 1

2λ
α>AA>α + n

∑
ȳ

∆(y, ȳ)αȳ, α ∈ Q2 =
{
α ∈ [0, n−1]2

n

:
∑
ȳ

αȳ =
1

n

}
. (20)

In a series of papers [6, 8, 9], Nesterov developed optimal gradient based methods for minimizing
the composite objectives with primal (17) and adjoint (18). A sequence of wk and αk is produced
such that under assumption A1 the duality gap J(wk) − D(αk) is reduced to less than ε after at
most k = O(1/

√
ε) steps. We refer the readers to [8, 10] for details.

7

5.1 Efficient Projections in Training SV Models with Optimal Gradient Methods

However, applying Nesterov’s algorithm is challenging, because it requires an efficient subroutine
for computing projections onto the set of constraints Q2. This projection can be either an Euclidean
projection or a Bregman projection.
Example 1: binary SVMs with bias. In this case we need to compute the Euclidean projection to
Q2 defined by (19), which entails solving a Quadratic Programming problem with a diagonal Hes-
sian, many box constraints, and a single equality constraint. We present an O(n) algorithm for
this task in [10, Section 5.5.1]. Plugging this into the algorithm described in [8] and noting that
all intermediate steps of the algorithm can be computed in O(nd) time directly yield a O(nd/

√
ε)

algorithm. More detailed description of the algorithm is available in [10].
Example 2: multivariate scores. Since the dimension of Q2 in (20) is exponentially large in
n, Euclidean projection is intractable and we resort to Bregman projection. Given a differentiable
convex function F on Q2, a point α, and a direction g, we can define the Bregman projection as:

V (α,g) := argmin
ᾱ∈Q2

F (ᾱ)− 〈∇F (α)− g, ᾱ〉 .

Scaling up α by a factor of n, we can choose F (α) as the negative entropy F (α) = −
∑
i αi logαi.

Then the application of the algorithm in [8] will endow a distribution over all possible labelings:
p(ȳ;w) ∝ exp

(
c∆(ȳ,y) +

∑
i

ai 〈xi,w〉 ȳi
)
, where c and ai are constant scalars. (21)

The solver will request the expectation Eȳ [
∑
i aixiȳi] which in turn requires that marginal distri-

bution of p(ȳi). This is not as straightforward as in graphical models because ∆(ȳ,y) may not
decompose. Fortunately, for multivariate scores defined by contingency tables, it is possible to com-
pute the marginals in O(n2) time by using dynamic programming, and this cost is similar to the
algorithm proposed by [3]. The detail of the dynamic programming is given in [10, Section 5.4].

6 Outlook and Conclusion
CPM are widely employed in machine learning especially in the context of structured prediction
[11]. While upper bounds on their rates of convergence were known, lower bounds were not studied
before. In this paper we set out to fill this gap by exhibiting counter examples in binary classification
on which CPM require Ω(1/ε) iterations. Our examples are substantially different from the one in
[12] which requires an increasing number of classes. The Ω(1/ε) lower bound is a fundamental lim-
itation of these algorithms and not an artifact of the problem. We show this by devising an O(1/

√
ε)

algorithm borrowing techniques from [8]. However, this algorithm assumes that the dataset is con-
tained in a ball of bounded radius (assumption A1 Section 1). Devising a O(1/

√
ε) algorithm under

the less restrictive assumption A2 remains an open problem.

It is important to note that the linear time algorithm in [10, Section 5.5.1] is the key to obtaining a
O(nd/

√
ε) computational complexity for binary SVMs with bias mentioned in Section 5.1. How-

ever, this method has been rediscovered independently by many authors (including us), with the
earliest known reference to the best of our knowledge being [13] in 1990. Some recent work in
optimization [14] has focused on improving the practical performance, while in machine learning
[15] gave an expected linear time algorithm via randomized median finding.

Choosing an optimizer for a given machine learning task is a trade-off between a number of poten-
tially conflicting requirements. CPM are one popular choice but there are others. If one is interested
in classification accuracy alone, without requiring deterministic guarantees, then online to batch
conversion techniques combined with stochastic subgradient descent are a good choice [16]. While
the dependence on ε is still Ω(1/ε) or worse [17], one gets bounds independent of n. However, as
we pointed out earlier, these algorithms are applicable only when the empirical risk decomposes
over the examples.

On the other hand, one can employ coordinate descent in the dual as is done in the Sequential Mini-
mal Optimization (SMO) algorithm of [18]. However, as [19] show, if the kernel matrix obtained by
stacking xi into a matrix X and X>X is not strictly positive definite, then SMO requires O(n/ε)
iterations with each iteration costing O(nd) effort. However, when the kernel matrix is strictly pos-
itive definite, then one can obtain an O(n2 log(1/ε)) bound on the number of iterations, which has
better dependence on ε, but is prohibitively expensive for large n. Even better dependence on ε can
be achieved by using interior point methods [20] which require only O(log(log(1/ε)) iterations, but
the time complexity per iteration is O(min{n2d, d2n}).

8

References
[1] T. Joachims. Training linear SVMs in linear time. In Proc. ACM Conf. Knowledge Discovery

and Data Mining (KDD), pages 217–226, 2006.
[2] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized

risk minimization. J. Mach. Learn. Res., 11:311–365, January 2010.
[3] T. Joachims. A support vector method for multivariate performance measures. In Proc. Intl.

Conf. Machine Learning, pages 377–384, 2005.
[4] Y. Nesterov. Introductory Lectures On Convex Optimization: A Basic Course. Springer, 2003.
[5] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization.

John Wiley and Sons, 1983.
[6] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of con-

vergence O(1/k2). Soviet Math. Docl., 269:543–547, 1983.
[7] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and

Examples. CMS books in Mathematics. Canadian Mathematical Society, 2000.
[8] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on

Optimization, 16(1):235–249, 2005. ISSN 1052-6234.
[9] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Re-

port 76, CORE Discussion Paper, UCL, 2007.
[10] Xinhua Zhang, Ankan Saha, and S.V.N. Vishwanathan. Regularized risk minimization by Nes-

terov’s accelerated gradient methods: Algorithmic extensions and empirical studies. Technical
report arXiv:1011.0472, 2010. http://arxiv.org/abs/1011.0472.

[11] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured
and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

[12] T. Joachims, T. Finley, and C.N.J̃. Yu. Cutting-plane training of structural SVMs. Machine
Learning Journal, 77(1):27–59, 2009.

[13] P. M. Pardalos and N. Kovoor. An algorithm for singly constrained class of quadratic programs
subject to upper and lower bounds. Mathematical Programming, 46:321–328, 1990.

[14] Y.-H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic programs
subject to lower and upper bounds. Mathematical Programming: Series A and B archive, 106
(3):403–421, 2006.

[15] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the `1-ball
for learning in high dimensions. In Proc. Intl. Conf. Machine Learning, pages 272–279, 2008.

[16] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver
for SVM. In Proc. Intl. Conf. Machine Learning, pages 807–814, 2007.

[17] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. Wainwright. Information-theoretic lower
bounds on the oracle complexity of convex optimization. In Neural Information Processing
Systems, pages 1–9, 2009.

[18] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.

[19] N. List and H. U. Simon. SVM-optimization and steepest-descent line search. In S. Dasgupta
and A. Klivans, editors, Proc. Annual Conf. Computational Learning Theory, 2009.

[20] M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector machines.
SIAM Journal on Optimization, 13(3):783–804, 2002.

[21] J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, I and
II, volume 305 and 306. Springer-Verlag, 1993.

9

http://arxiv.org/abs/1011.0472

Supplementary Material

A Concepts from Convex Analysis

The following four concepts from convex analysis are used in the paper.

Definition 1 Suppose a convex function f : Rn → R is finite at w. Then a vector g ∈ Rn is called
a subgradient of f at w if, and only if,

f(w′) ≥ f(w) + 〈w′ −w,g〉 for all w′.

The set of all such g vectors is called the subdifferential of f at w, denoted by ∂wf(w). For any
convex function f , ∂wf(w) must be nonempty. Furthermore if it is a singleton then f is said to be
differentiable at w, and we use∇f(w) to denote the gradient.

Definition 2 A convex function f : Rn → R is strongly convex with respect to a norm ‖·‖ if there
exists a constant σ > 0 such that f − σ

2 ‖ · ‖
2 is convex. σ is called the modulus of strong convexity

of f , and for brevity we will call f σ-strongly convex.

Definition 3 Suppose a function f : Rn → R is differentiable on Q ⊆ Rn. Then f is said to have
Lipschitz continuous gradient (l.c.g) with respect to a norm ‖ ·‖ if there exists a constant L such that

‖∇f(w)−∇f(w′)‖ ≤ L‖w −w′‖ ∀ w,w′ ∈ Q.

For brevity, we will call f L-l.c.g.

Definition 4 The Fenchel dual of a function f : Rn → R, is a function f? : Rn → R defined by

f?(w?) = sup
w∈Rn

{〈w,w?〉 − f(w)}

Strong convexity and l.c.g are related by Fenchel duality according to the following lemma:

Theorem 7 ([21, Theorem 4.2.1 and 4.2.2])

1. If f : Rn → R is σ-strongly convex, then f? is finite on Rn and f? is 1
σ -l.c.g.

2. If f : Rn → R is convex, differentiable on Rn, and L-l.c.g, then f? is 1
L -strongly convex.

Finally, the following lemma gives a useful characterization of the minimizer of a convex function.

Lemma 8 ([21, Theorem 2.2.1]) A convex function f is minimized at w∗ if, and only if, 0 ∈
∂f(w∗). Furthermore, if f is strongly convex, then its minimizer is unique.

B Proof of Lemma 3

We prove the lemma by induction on k. Obviously, Lemma 3 holds for k = 1. Suppose it holds for
indices up to some k − 1 (k ≥ 2). Let p = 2k − 1 (p ≥ 3). Then

Ap =

(
−3

4
, 0,−1

4
, . . . , 0,−1

4

)
, b̄p =

(
1, 0,

1

2
, . . . , 0,

1

2

)
,

wp = −16Apαp = (−16)

(
−3

4
αp,1 −

1

4
αp,3 −

1

4
αp,5 − . . .−

1

4
αp,p−2 −

1

4
αp,p

)
⇒ αp,3 + . . .+ αp,p−2 + αp,p =

wp
4
− 3αp,1.

So

10

b̄pαp = αp,1 +
1

2
αp,3 +

1

2
αp,5 + . . .+

1

2
αp,p−2 +

1

2
αp,p =

1

8
wp −

1

2
αp,1.

Since wp > 2, so ap+1 = 0, bp+1 = 0. So Ap+1 = (Ap, 0), b̄p+1 =
(
b̄p, 0

)
. Let αp+1 =

(ηαp, 1− η), then Dp+1(η) = 8η2(Apαp)
2 − ηb̄pαp. So

ηp+1 =
b̄pαp

16 (Apαp)
2 =

2wp − 8αp,1
w2
p

, wp+1 = −16Apαpηp+1 = wpηp+1 = 2− 8αp,1
wp

< 2.

(22)

which proves the claim in (11) for even iterates as p+ 1 = 2k.

Since α2,1 = 1
9 , p ≥ 3, and αk,1 ≥ αk+1,1 due to the update rule of ls-bmrm, we have

8αp,1 ≤
8

9
< 2 < wp, hence wp+1 > 1. (23)

Next step, since wp+1 ∈ (1, 2), so ap+2 = − 1
4 , bp+2 = 1

2 , Ap+2 =
(
Ap, 0,− 1

4

)
, b̄p+1 =

(
b̄p, 0,

1
2

)
.

Let αp+2(η) = (ηηp+1αt, η(1− ηp+1), 1− η). Then

Ap+2αp+2 = ηηp+1Apαp −
1

4
(1− η), b̄p+2αp+2 = ηηp+1b̄pαp +

1

2
(1− η).

Dp+2(η) = 8(Ap+2αp+2)2 − b̄p+2αp+2

=

(
4ηp+1Apαp + 1

)2
2

η2−
(

4ηp+1Apαp + ηp+1b̄pαp +
1

2

)
η+const,

where the const means terms independent of η. So

ηp+2 = argmin
η∈[0,1]

Dp+2(η) =
4ηp+1Apαp + ηp+1b̄pαp + 1

2(
4ηp+1Apαp + 1

)2 =
w2
p + 16α2

p,1

(wp + 4αp,1)
2 , (24)

wp+2 = −16Ap+2αp+2 = −16ηp+2ηp+1Apαp + 4(1− ηp+2) = 2 +
8αp,1 (wp − 4αp,1)

wp (wp + 4αp,1)
,

where the last step is by plugging in the expression of ηp+1 in (22) and ηp+2 in (24). Now using
(23) we get

wp+2 − 2 =
8αp,1(wp − 4αp,1)

wp(wp + 4αp,1)
> 0.

C Proof of Lemma 4

The proof is based on (12). Let βk = 1/α2k−1,1, then limk→∞ βk = ∞ because
limk→∞ α2k−1,1 = 0. Now

lim
k→∞

kα2k−1,1 =

(
lim
k→∞

1

kα2k−1,1

)−1

=

(
lim
k→∞

βk
k

)−1

=

(
lim
k→∞

βk+1 − βk
)−1

,

where the last step is by the discrete version of L’Hospital’s rule.

To compute limk→∞ βk+1 − βk we plug the definition βk = 1/α2k−1,1 into (12), which gives:

1

βk+1
=

w2
2k + 16 1

β2
k(

w2k + 4 1
βk

)2

1

βk
⇒ βk+1 − βk = 8

w2kβ
2
k

w2
2kβ

2
k + 16

= 8
w2k

w2
2k + 16

β2
k

.

Since limk→∞ wk = 2 and limk→∞ βk =∞, so

lim
k→∞

kα2k−1,1 =

(
lim
k→∞

βk+1 − βk
)−1

=
1

4
.

11

D Proof of Theorem 2

Denote δk = 2− wk, then limk→∞ k |δk| = 2 by Theorem 4. So

If δk > 0, then J(wk)− J(w∗) = 1
32 (2− δk)2 + 1

2
δk
2 −

1
8 = 1

8δk + 1
32δ

2
k = 1

8 |δk|+
1
32δ

2
k.

If δk ≤ 0, then J(wk)− J(w∗) = 1
32 (2− δk)2 − 1

8 = − 1
8δk + 1

32δ
2
k = 1

8 |δk|+
1
32δ

2
k.

Combining these two cases, we conclude limk→∞ k(J(wk)− J(w∗)) = 1
4 .

E Proof of Theorem 6

The crux of the proof is to show that

wk =

(
1√
3
,

k copies︷ ︸︸ ︷
1

k
, . . . ,

1

k
, 0, . . .

)>
∀k ∈ [n− 1]. (25)

At the first iteration, we have

1

n
yi 〈w0,xi〉 =

{
1
6 if i ∈ [n− 1]
1
2 if i = n

. (26)

For convenience, define the term in the max of (14) as

Υ0(ȳ) := 1− F1(y, ȳ) +
1

n

n∑
i=1

yi 〈w0,xi〉 (yiȳi − 1).

The key observation in the context of F1 score is that Υ0(ȳ) is maximized at any of the following
assignments of (ȳ1, . . . , ȳn), and it is easy to check that they all give Υ0(ȳ) = 0:

(−1, . . . ,−1,+1), (−1, . . . ,−1,−1), (+1,−1,−1, . . . ,−1,+1), . . . , (−1, . . . ,−1,+1,+1).

The first assignment is just the correct labeling of the training examples. The second assignment just
misclassifies the only positive example xn into negative. The rest n−1 assignments only misclassify
a single negative example into positive. To prove that they maximize Υ0(ȳ), consider two cases of
ȳ. First the positive training example is misclassified. Then F1(y, ȳ) = 0 and by (26) we have

Υ0(ȳ) = 1− 0 +
1

n

n−1∑
i=1

yi 〈w0,xi〉 (yiȳi − 1) +
1

2
(−1− 1) =

1

6

n−1∑
i=1

(yiȳi − 1) ≤ 0.

Second, consider the case of ȳ where the positive example is correctly labeled, while t ≥ 1 negative
examples are misclassified. Then F1(y, ȳ) = 2

2+t , and

Υ0(ȳ) = 1− 2

2 + t
+

1

6

n−1∑
i=1

(yiȳi − 1) =
t

2 + t
− 1

3
t =

t− t2

3(2 + t)
≤ 0, ∀t ∈ [1, n− 1].

So now suppose we pick
ȳ1 = (+1,−1,−1, . . . ,−1,+1)>,

i.e. just misclassify the first negative training example. Then

a1 =
−2

n
y1x1 =

(
− 1√

3
,−1, 0, . . .

)>
, b1 = Remp(w0)− 〈a1,w0〉 = 0 +

1

3
=

1

3
,

w1 = argmin
w

{
1

2
‖w‖2 − 1√

3
w1 − w2

}
=

(
1√
3
, 1, 0, . . .

)>
.

Next, we prove (25) by induction. Assume that it holds for steps 1, . . . , k. Then at step k + 1 it is
easy to check that

1

n
yi 〈wk,xi〉 =

1
6 + 1

2k if i ∈ [k]
1
6 if k + 1 ≤ i ≤ n− 1
1
2 if i = n

. (27)

12

Define

Υk(ȳ) := 1− F1(y, ȳ) +
1

n

n∑
i=1

yi 〈wk,xi〉 (yiȳi − 1).

Then it is not hard to see that the following ȳ (among others) maximize Υk: a) correct labeling, b)
only misclassify the positive training example xn, c) only misclassify one negative training example
in xk+1, . . . ,xn−1. And Υk equals 0 at all these assignments. For proof, again consider two cases.
If ȳ misclassifies the positive training example, then F1(y, ȳ) = 0 and by (27) we have

Υk(ȳ) = 1− 0 +
1

n

n−1∑
i=1

yi 〈wk,xi〉 (yiȳi − 1) +
1

2
(−1− 1)

=

(
1

6
+

1

2k

) k∑
i=1

(yiȳi − 1) +
1

6

n−1∑
i=k+1

(yiȳi − 1) ≤ 0.

If ȳ correctly labels the positive example, but misclassifies t1 examples in x1, . . . ,xk and t2 exam-
ples in xk+1, . . . ,xn−1 (into positive). Then F1(y, ȳ) = 2

2+t1+t2
, and

Υk(ȳ) = 1− 2

2 + t1 + t2
+

(
1

6
+

1

2k

) k∑
i=1

(yiȳi − 1) +
1

6

n−1∑
i=k+1

(yiȳi − 1)

=
t1 + t2

2 + t1 + t2
−
(

1

3
+

1

k

)
t1 −

1

3
t2 ≤

t− t2

3(2 + t)
≤ 0 (t := t1 + t2).

So we can pick ȳ as (

k copies︷ ︸︸ ︷
−1, . . . ,−1,+1,

n−k−1 copies︷ ︸︸ ︷
−1, . . . ,−1,+1)> which only misclassifies xk+1, and get

ak+1 =
−2

n
yk+1xk+1 = − 1√

3
e1 − ek+2, bk+1 = Remp(wk)− 〈ak+1,wk〉 = 0 +

1

3
=

1

3
,

wk+1 = argmin
w

1

2
‖w‖2 + max

i∈[k+1]
{〈ai,w〉+ bi} =

(
1√
3
,

k+1 copies︷ ︸︸ ︷
1

k + 1
, . . . ,

1

k + 1
, 0, . . .

)>
.

which can be verified by ∂Jk+1(wk+1) =
{
wk+1 +

∑k+1
i=1 αiai : α ∈ ∆k+1

}
3 0 (setting all

αi = 1
k+1). All that remains is to observe that J(wk) = 1

2 (1
3 + 1

k) while minw J(w) ≤ J(wn−1) =
1
2 (1

3 + 1
n−1) from which it follows that J(wk)−minw J(w) ≥ 1

2 (1
k −

1
n−1) as claimed by Theorem

6.

13

	Introduction
	BMRM
	Upper and Lower Bounds
	Constructing Lower Bounds
	Strong Lower Bounds for Solving Linear SVMs using ls-bmrm
	Weak Lower Bounds for Solving Linear SVMs using qp-bmrm
	Weak Lower Bounds for Optimizing F1-score using qp-bmrm

	An O(nd/) Algorithm for Training Binary Linear SVMs
	Efficient Projections in Training SV Models with Optimal Gradient Methods

	Outlook and Conclusion
	Concepts from Convex Analysis
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 2
	Proof of Theorem 6

