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Abstract. Clustering algorithms are often limited by an assumption
that each data point belongs to a single class, and furthermore that all
features of a data point are relevant to class determination. Such assump-
tions are inappropriate in applications such as gene clustering, where,
given expression profile data, genes may exhibit similar behaviors only
under some, but not all conditions, and genes may participate in more
than one functional process and hence belong to multiple groups. Identi-
fying genes that have similar expression patterns in a common subset of
conditions is a central problem in gene expression microarray analysis.
To overcome the limitations of standard clustering methods for this pur-
pose, Bi-clustering has often been proposed as an alternative approach,
where one seeks groups of observations that exhibit similar patterns over
a subset of the features. In this paper, we propose a new bi-clustering
algorithm for identifying linear-coherent bi-clusters in gene expression
data, strictly generalizing the type of bi-cluster structure considered by
other methods. Our algorithm is based on recent sparse learning tech-
niques that have gained significant attention in the machine learning
research community. In this work, we propose a novel sparse learning
based model, SLLB, for solving the linear coherent bi-clustering prob-
lem. Experiments on both synthetic data and real gene expression data
demonstrate the model is significantly more effective than current bi-
clustering algorithms for these problems. The parameter selection prob-
lem and the model’s usefulness in other machine learning clustering ap-
plications are also discussed. The on-line appendix for this paper can be
found at http://www.cs.ualberta.ca/~ys3/SLLB.

Keywords: Bi-clustering, Microarray, Sparse Learning, Gene Expres-
sion, Linear Coherent

1 Introduction

Gene expression microarrays measure the expression levels of thousands of genes
across multiple conditions (conditions are also often referred to as samples).

⋆ Corresponding author.
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Identifying groups of genes that have similar expression patterns in a common
subset of conditions is a central problem in gene expression microarray data
analysis. Unfortunately, traditional clustering methods, such as those deployed
in [5, 24, 25], are ill-suited to this purpose for two reasons: that genes may exhibit
similar behaviors only under some, but not all conditions, and that genes may
participate in more than one functional process and hence belong to multiple
groups.

To overcome the limitations of standard clustering methods, bi-clustering
[10, 18] has been proposed to identify groups of data points that exhibit similar
patterns on a subset of features. The first work to apply bi-clustering to gene
expression analysis is [4], which has motivated many other bi-clustering based
approaches. Although the general bi-clustering problem is NP-hard [4], many
papers have proposed heuristic methods for finding bi-clusters of different types.
In particular, as illustrated in Figure 4 in Appendix, there are six different types
of bi-clusters that have been sought in previous work, including: (a) the constant
value model, (b) the constant row model, (c) the constant column model, (d) the
additive coherent model, where each row (or column) is obtained by adding a
constant to another row (or column, respectively), (e) the multiplicative coher-
ent model, where each row (or column) is obtained by multiplying another row
(or column, respectively) by a constant value, and (f) the linear coherent model
[7], in which each row (or column) is obtained by multiplying another row (or
column) by a constant value and then adding a constant [23]. Mathematically,
the linear coherent model (f) is strictly more general than the other five models,
considered either row-wise or column-wise. In this paper, we design an algo-
rithm that discovers linear coherent bi-clusters that are arbitrarily positioned
and possibly even overlapping [16]. Note that, although bi-clusters cannot be
simultaneously row-wise and column-wise linear coherent, one is usually more
interested in clustering one dimension than the other [9, 2]. For example, in the
case of gene expression analysis, the main purpose is to identify groups of genes
that co-participate in certain genetic regulatory process, hence grouping condi-
tions (samples) is only a secondary consideration. Most bi-clustering algorithms
implicitly address non time series microarray data and only few address time
series microarray data [17]. For time series data, the time lag between mRNA
transcription and transcription factor translation needs to be considered. In this
paper, we address non time series data.

The motivation for considering linear coherent bi-clusters for gene expression
analysis specifically is illustrated in Figure 5 in Appendix [23]. The participation
of a pair of genes in a linear coherent bi-cluster must be evidenced by a non-
trivial subset of samples in which these two genes are co-up-regulated (or co-
down-regulated). Due to data noise, the linear coherence exhibit beams rather
than lines in a gene pairwise 2D plot [23, 9].

We compare our Sparse Learning based Linear Coherent Bi-clustering (SLLB)
algorithm to seven representative bi-clustering algorithms that have been pre-
dominant in the field. The first method is a recent bi-clustering algorithm,
QUBIC, which finds bi-clusters by a combination of (semi-) qualitative mea-
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sures of gene expression data and a combinatorial optimization technique [14].
The second method is “Linear Coherent Bi-cluster Discovery via Beam Detection
and Sample Set Clustering” (LinCoh) [23], which detects linear bi-clusters by
first evaluating the correlation of gene pairs, and then clustering the sample sets
that evidence the correlation. The third method is “Linear Coherent Bi-cluster
Discovery via Line Detection and Sample Majority Voting” (LCBD) [22], which
is the line detection version of LinCoh. Then, we compare to the maximum sim-
ilarity bi-clustering algorithm (MSBE) [15], which is the first polynomial time
bi-clustering algorithm that finds optimal solutions under certain constraints.
Then, we compare to the iterative signature algorithm (ISA) [11], which is based
on a bi-cluster quality evaluation scheme that uses gene and condition signatures.
One advantage of this method is that it can handle incomplete data by imput-
ing a randomized ISA in locations where the expression value is not available.
Then, we compare to the order preserving sub-matrix algorithm (OPSM) [3],
which attempts to find bi-clusters within a gene expression matrix that contains
genes having the same linear ordering of expression levels. Finally, we compare
to the method of Cheng and Church (CC) [4], which evaluates the quality of a
bi-cluster by a proposed merit score called mean squared residue, and then ap-
plies a greedy algorithm to find bi-clusters with a score greater than some given
threshold. the last three methods have all been highlighted and implemented in
a recent survey [19].

The remainder of this paper is organized as follows. Section 2 first introduces
the details of our SLLB method we propose. Then, Section 3 introduces the
quality measurements we will use to assess the bi-clustering results, provides an
experimental evaluation on synthetic data sets, and finally presents bi-clustering
results on two real datasets, namely yeast and e.coli. Section 4 then concludes this
work with some remarks on the advantages and disadvantages of the proposed
SLLB algorithm.

2 Methods

The goal of this work is that given a matrix M (n observations × p features),
find row-wise linear coherent bi-clusters so that each cluster exhibits row-wise
linear coherence under a subset of common features.

Let us first consider a pair of 1×p observation vectorsmi: andmj:. Heremi: is
defined as the ith row vector of matrix M . Other row/column vectors appearing
later in this section will be written in the same way. For a given subset of features
we can always find the linear regression of this pair of observations in a 2D space
that gives us least sum of residuals. We denote the linear regression by slope aij
and intercept bij . Now the problem is to select a subset of feature so that the
sum of residuals from the best regression is minimized. For the bi-cluster that
is generated based on the ith observation, we introduce a 1× p feature selection
vector si ∈ {0, 1}, where sik = 1 if the kth feature is selected and 0 otherwise.
Without any constraint, this problem will always give a trivial solution si = 0,
yielding a zero sum of residuals. Therefore, we add a regularizer β1∥1− si∥1 to
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penalize any solution with too few sik = 1 values, where 1 denotes a vector of
all 1s and β1 is the coefficient of the regularizer. In the subsequent formulations
we choose the L1 norm because it gives us a sparse solution in 1− si once si has
been relaxed to [0, 1]. For a single row i, the problem can then be formulated as
an optimization as follows:

min
si,aij ,bij

∑
k

sik(mik − aijmjk − bij)
2 + β1∥1− si∥1

s.t. sik ∈ {0, 1}
(1)

Now, consider the whole matrix M from which we want to detect a set of row-
wise linear coherent bi-clusters. We introduce a n × n binary matrix W , where
wij = 1 indicates there is strong linear coherence between the observation pair
(i, j) and wij = 0 otherwise. By extending 1 in terms of the whole matrices M ,
S, A, B and introducing W , we obtain the complete formulation:

min
W,S,A,B

∑
i,j

wij

∑
k

sik(mik − aijmjk − bij)
2

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ {0, 1}, sik ∈ {0, 1}

(2)

where W can be interpreted as observation (data) selection matrix, and S can
be interpreted as the feature (sample) selection matrix. β2 is the coefficient
of the W -wise regularizer. Here S is a n × p binary matrix with the ith row
corresponding to the feature selection vector for the ith observation. Note that
the sparse regularizer β1∥1− si∥1 becomes β1∥1 · 1T − S∥1,1. Similarly, we add
another sparse regularizer β1∥1 · 1T −W∥1,1 to penalize trivial solutions where
W is set too close to the zero matrix.

We want to favor the case that the scatter points (feature points) of a pairwise
2D plot do not stick together so as to exhibit better linear coherence. Towards
this end, we introduce a n × n × p matrix D, where dijk ∈ [0, 1] indicates the
importance of the kth feature under the observation pair (i, j). In the gene
expression matrix case, because it is desired to favor co-up-regulated and co-
down-regulated gene expression samples, we assign dijk = ed

′
ijk , where d′ijk is

the Euclidean distance of the kth data point to the central point (m̄i:, m̄j:).
Different prior knowledge can be introduced to form D from other data sources.
Therefore, after relaxing W ∈ {0, 1} to W ∈ [0, 1] and S ∈ {0, 1} to S ∈ [0, 1],
we get:

min
W,S,A,B

∑
i,j

wij

∑
k

sik
1

dijk
(mik − aijmjk − bij)

2

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ [0, 1], sik ∈ [0, 1]

(3)

By introducing some new notation, we can re-express this problem in an equiva-
lent form that proves to be more convenient for formulating an efficient iterative
procedure below. Let ⊗ denote Kronecker product, let △(m) denote putting a
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vector m on the main diagonal of a square matrix, and let ÷ denote component-
wise division. Then 3 can be equivalently re-written in terms of si: and wi: as:

min
W,S,A,B

∑
i

∥∥∥△(wi:)
1/2(1⊗mi: −△(ai:)M −△(bj:)1⊗ 1T )÷D∗

i△(si:)
1/2
∥∥∥2
F

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ [0, 1], sik ∈ [0, 1]
(4)

where D∗
i has the same dimension as Di with each element equal to the square

root of the corresponding element in Di.
Unfortunately, 4 is not jointly convex in W , S, A and B, so we are currently

unable to formulate an efficient global optimization procedure. Nevertheless, an
efficient iterative procedure can be devised that finds a reasonable local solution.

2.1 Initialization:

Because of the potential difficulty of local minima, initialization of W , S, A, and
B becomes very important for solving 4 iteratively. To simplify the initialization,
and allow a generally effective approach, we first normalize the data matrix M so
that each row mi: ∈ [0, 1]. In the case of gene expression analysis, A is initialized
to 1 · 1T since a gene pair that has strong correlation will have a sufficient
number of samples (features) under which the gene pair has a co-up-regulated
and co-down-regulated pattern, which implies that on normalized data, the slope
is near 1. The intercept bij is normalized in a way that the linear regression line
for each observation pair passes through the central point (m̄i:, m̄j:) with slope
aij . After A and B are initialized, si: is initialized such that sik = 1 if the
distance d′ijk of kth data point of the (i, j) pair to the line (aij , bij) is within
some threshold. Since the data is normalized, an appropriate threshold can be set
for data of the same type and will not affect the results to a large extent. In the
case of gene expression data, since we want to favor sample points that are far
away from the central point (m̄i:, m̄j:), we set the threshold as a monotonically
increasing function of the distance d′′ijk between (m̄i:, m̄j:) and the projection
of the (mik,mjk) on the regression line. We do not initialize W as it will be
immediately determined from the initial S, A, and B.

2.2 Iterative update of W , S, A and B:

Updating W. Denote the objective function in 4 by f(W,S,A,B). Assume that
S, A, and B are fixed (initialized as mentioned above for the first iteration). Then
the objective function is a convex (linear) function of W and we can optimize
W element by element in a closed form. In particular, for each wij , by ignoring
constant terms, the problem is equivalent to minimizing f(wij):

min
wij

wij

(∑
k

sik
dijk

(mik − aijmjk − bij)
2 − β2

)
s.t. wij ∈ [0, 1]

(5)
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Because f(wij) is a linear function of wij , we obtain wij = 1 if
∑

k
sik
dijk

(mik −
aijmjk − bij)

2 < β2 and wij = 0 otherwise.

Updating S. When W , A, and B are fixed, f(W,S,A,B) becomes a convex
(linear) function of S, so similar to updating W , we can update S element by
element in a closed form. In this case, sik can be calculated by minimizing f(sik)
as follows:

min
sik

sik

∑
j

wij

dijk
(mik − aijmjk − bij)

2 − β1


s.t. sik ∈ [0, 1]

(6)

Hence, sik = 1 if
∑

j
wij

dijk
(mik − aijmjk − bij)

2 < β1 and sik = 0 otherwise.

Updating A and B. When W and S are fixed the minimization over A and
B becomes a standard least squares linear regression problem for each observa-
tion pair. In particular, we have:

(aij , bij)
T = (XT

ij△(si: • dij:)Xij)
−1XT

ij△(si: • dij:)yij (7)

where • denotes inner product, Xij = (1,mj:
T ), and y = mi,:

T

Finally, each of W , S, A, and B are iteratively updated until the objective
function converges. Algorithm 1 in Appendix gives the details of the SLLB algo-
rithm. Note that the time complexity of the SLLB is O(n2) per iteration. Later
experiments on synthetic datasets show that SLLB converges after 6-8 iterations,
which takes less than 10 seconds in total. On real datasets, good results can be
obtained after 10-20 iterations, which take tens of hours.

3 Results and Discussion

We compare the SLLB with seven existing representative bi-clustering algo-
rithms, QUBIC, LinCoh, LCBD, CC, OPSM, ISA, and MSBE on synthetic
datasets and two real gene expression microarray datasets on Saccharomyces
cerevisiae (yeast) and Escherichia coli (e.coli) respectively. The parameter set-
tings for the compared algorithms mostly follow the previous works [19, 15, 23].

3.1 Synthetic datasets

On synthetic datasets, Prelić’s observation (gene) match score and overall match
score [19] are adopted to evaluate the ability of bi-clustering algorithms in dis-
covering the implanted (true) bi-clusters. Let C and C∗ denote the set of output
bi-clusters from an algorithm and the set of true bi-clusters for a dataset respec-
tively. The observation match score of C with respect to the target C∗ is defined

as scoreG(C, C∗) = 1
|C|
∑

(G1,S1)∈C max(G∗
1 ,S

∗
1 )∈C∗

|G1∩G∗
1 |

|G1∪G∗
1 |
, which is the average of

the maximum observation match scores of bi-clusters in C with respect to the
target bi-clusters. The feature match score scoreS(C, C∗) can be similarly defined
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by replacing observation sets with the corresponding feature sets in the above.
The overall match score is then defined as their geometric mean, i.e.

score(C, C∗) =
√
scoreG(C, C∗)× scoreS(C, C∗).

As for the parameter setting of SLLB, we set β1 = 0.1, β2 = 0.3 on all
the overlapping experiments, and we set β1 = 0.1, β2 = 0.05 on all the noise
resistance experiments.

Overlapping test: Bi-clusters may overlap in terms of either observations or
features. Take gene expression as an example, some genes can participate in mul-
tiple biological processes which result in bi-clusters that overlap with common
genes in an expression matrix. It is also the case in sample overlapping. This
experiment intends to examine the ability of bi-clustering algorithms in recover-
ing overlapping bi-clusters. We again consider type-(f) linear coherent bi-clusters
and type-(d) additive bi-clusters, at a fixed noise level of ℓ = 0.1. We generate
ten 100× 50 matrices based on a standard normal distribution. In each matrix,
two 10× 10 bi-clusters are embedded, with overlapping size: 0× 0, 1× 1, 2× 2,
3 × 3, 4 × 4, and 5 × 5. In the case of gene expression, we assume that these
overlapping genes obey a reasonable logic such as the AND gate and the OR
gate which leads to a behavior of union and an additive respectively. So the over-
lapped entries in the union overlapping area preserve linear coherency in both
bi-clusters and in the additive overlap model, these entries are assigned by the
sum of the gene expression levels from both bi-clusters. The observation match
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Fig. 1. The observation match scores of the eight algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the adding overlap model.

scores of the eight bi-clustering algorithms in this adding overlapping experi-
ment are shown in Figure 1. Figures 9 and 10 in the Appendix plot the overall
match scores and observation discovery rates under the adding overlap model.
The results of the additive overlap model are shown in Figures 11, 12, and 13 in
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the Appendix. From all these results, we can conclude that SLLB outperformes
the other seven algorithms. LinCoh’s performance is slightly worse than SLLB;
QUBIC, OPSM and MSBE perform worse, but similarly to each other; LCBD
and CC performed the worst; and ISA demonstrates varying performance.

Noise resistance test: This experiment investigates the ability of different
bi-clustering algorithms in recovering implanted bi-clusters with different noise
level. Following Prelić’s testing strategy, we first generate a 100×50 background
matrix based on a standard normal distribution and then embed ten 10 × 5
non-overlapping linear coherent bi-clusters along the diagonal. Then, for each
vector of the five expression values, we set the first two to be down-regulated,
the last two to be up-regulated, and the middle one to be non-regulated. Lastly,
we add noise of six different levels (ℓ = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) to the
embedded bi-clusters by perturbing the entry values so that the resultant values
are ℓ away from the original values. The generation is repeated ten times. Based
on the same simulation process, we generate additive bi-clusters on synthetic
datasets when we compare the bi-clustering algorithms on their performance in
discovering additive bi-clusters only (which is a special case of linear coherent
bi-clusters).

Figure 6 in Appendix shows the observation match scores of the bi-clusters
discovered by the eight algorithms at six different noise levels. Figures 7 and 8 in
the Appendix demonstrate their overall match scores and observation discovery
rates (defined as the percentage of observations in the output bi-clusters over all
the observations in the true bi-clusters). From these figures, it is clearly shown
that SLLB outperformes all the other seven algorithms; QUBIC, LinCoh and ISA
rank the second, third, and forth, and the other three performed quite poorly.
Note that by simply outputting more bi-clusters, observation discovery rate can
be trivially lifted up. Therefore it is only a useful measurement in conjunction
with match scores.

3.2 Real datasets

On real datasets, the quality of bi-clusters is evaluated by known biological
pathways, defined in the GO functional classification scheme [1], the KEGG
pathways [12], the MIPS yeast functional categories [20] (for yeast dataset),
and the EcoCyc database [13] (for e.coli dataset), in order to obtain their gene
functional enrichment score as implemented in [14]. The average correlation
coefficient is also used for evaluating the generated bi-clusters on real datasets.

We obtain the yeast dataset from [8]. It contains 2993 genes on 173 samples;
the e.coli dataset is obtained from [6], (version 4 built 3). It contains initially
4217 genes on 264 samples. For the e.coli dataset, after removing genes with
too small expression deviations, we get 3016 genes. This pre-process ensures
that all eight bi-clustering algorithms can be run on the dataset. We use the
gene functional enrichment score [14] to measure the performance of different
algorithms. First, the P -value of each output bi-cluster is defined using its most
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enriched functional class (biological process). The probability of having r genes
of the same functional class in a bi-cluster of size n from a genome with a total
of N genes can be computed using the hypergeometric function, where p is the
percentage of that functional class of genes over all functional classes of genes
encoded in the whole genome. Numerically [14],

Pr(r|N, p, n) = ( pNr ) · ( (1−p)N
n−r )/(Nn ).

Such a probability is taken as the P -value of the output bi-cluster enriched with
genes from that functional class [14]. The P -value of the output bi-cluster is
defined as the smallest P -value over all functional classes. The smaller the P -
value of a bi-cluster the more likely do its genes come from the same biological
process. We calculate for each algorithm the fraction of its output bi-clusters
whose P -values are smaller than a significance cutoff α. As for the parameter
setting of SLLB, we set β1 = 0.3, β2 = 1.5 for the yeast dataset, and β1 = 0.1,
β2 = 0.5 for the e.coli dataset.

In Figure 2 the eight algorithms are compared using six different P -value
cutoffs, evaluated on the GO database. Results on the KEGG, MIPS, and Regu-
lon databases are in Figures 14 and 15 in Appendix. These results indicates that
SLLB performs consistently well; QUBIC and LinCoh performs stable but worse
than SLLB, OPSM and ISA does not perform consistently on the two datasets
across databases; and that LCBD, MSBE and CC does not perform as well as
the other three algorithms.
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Fig. 2. Portions of discovered bi-clusters by the eight algorithms on the two real
datasets that are significantly enriched in the GO biological process, using six different
P -value cutoffs.

One potential issue with the P -value based performance measurement is that
P -values are sensitive to the bi-cluster size [14]; in general, this measurement
favors bi-clusters with a larger size. For example, in Table 1, it is shown that
OPSM finds bi-clusters that contain extremely large number of genes and very
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few samples. Bi-clusters of this kind are close to trivial bi-clusters (gene or sample
set size close to 0) but with large number of gene, its enrichment P value can
be easily lifted up. On the contrary, although our SLLB algorithm generates
bi-clusters with large number of genes, the number of samples it generates is
also large which indicates more confident linear coherence. In the last column of
the Table 1, the numbers of unique functional terms enriched by the produced
bi-clusters are listed. When measured by the gene enrichment significance score,
OPSM performed very well on yeast dataset (Figure 2, left), but its bi-clusters
only cover one functional term on the GO and KEGG databases and two terms
on MIPS database. This suggests that the bi-clustering result can be biased to
a group of correlated genes, which are missed by the P -value based significance
test.

Considering these two potential issues, we can see that the P -value based
evaluation is meaningful but has limitations. So we propose using the average
absolute correlation coefficient over all gene pairs in a bi-cluster as an alternative
assessment of the quality of a linear coherent bi-cluster. However, note that
the numbers of samples in the bi-clusters generated by some algorithms are
much smaller others, Table 1. Therefore, to compare algorithms in a less sample-
size biased way, we replaced for each bi-cluster its average absolute correlation
coefficient by the 99% confidence threshold using the number of samples in the
bi-cluster [21, 23]. These values are plotted in Figure 3.
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Fig. 3. Box plots of the average absolute correlation coefficients obtained by the eight
bi-clustering algorithms on yeast and e.coli datasets, respectively.

Figure 3 shows that SLLB, LinCoh, and OPSM have similarly good perfor-
mance while QUBIC, LCBD, MSBE, CC, and ISA performs worse than these
three. Note that due to noise effect when profiling genes, itt is hard to reach a
very large value of the correlation coefficient.
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4 Conclusion

In this article, we proposed a novel bi-clustering algorithm, SLLB, that can dis-
cover linear coherent bi-clusters based on a sparse learning optimization model.
The experimental results on both synthetic and real datasets indicate that SLLB
is not only able to discover linear coherent bi-clusters effectively, but able to dis-
cover meaningful linear coherent bi-clusters that can be verified by biological
ground truth. Actually, for many bi-clusters discovered by SLLB, all their cor-
responding gene groups (with size 30-100) belong amazingly to the same gene
ontology term. The time complexity of the SLLB algorithm is O(n2k) where
n is the number of observations and k is the number of iterations that SLLB
takes to converge, which is very fast compared to algorithms like LinCoh. Note
that while discovering linear coherent bi-clusters, SLLB favors data points cor-
responding to features that are far away from each other in the observation pair
2D space. This nice property can be used for downstream data analysis such as
feature clustering, observation-feature relation studies and observation/feature
selection.

To set appropriate values for β1 and β2, We binary searched β1 ∈ [0, 1000]
and β2 ∈ [0, 1000] and found the value ranges that produce non-trivial bi-clusters
are β1 ∈ [0, 0.5] and β2 ∈ [0, 1.5]. We then tested different combinations of
β1 = [0.1, 0.5, 1] and β2 = [0.1, 0.5, 1, 1.5] and found the results are quite robust
to different settings. The final β1 and β2 are chosen so that SLLB performs
best. When come to practice, considering that β1 actually controls the size of
observation and β2 controls the size of features in the result bi-clusters, β1 and
β2 can be determined when prior knowledge of bi-cluster size is known.

We suggest that the SLLB algorithm can be used in other machine learning
applications such as image clustering, document clustering, and other biology
and health care data clustering, as long as observations of the same group have
linear coherence under a subset of features, and for different clusters, different
feature sets need to be selected.

As for future work, we will test SLLB on other applications such as document
bi-clustering and image bi-clustering. We will also extend SLLB to consider other
relations between observations in addition to the linear coherent relations.
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Appendix
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Fig. 4. The six different types of bi-clusters: (a) constant block bi-cluster; (b) con-
stant row bi-cluster; (c) constant column bi-cluster; (d) additive coherent bi-cluster;
(e) multiplicative coherent bi-cluster; (f) row-wise linear coherent bi-cluster



14 Sparse Learning Bi-clustering

Algorithm 1 The SLLB Algorithm

Input: M , β1, β2, ϵ.
Output: a set of linear coherent bi-clusters.

A = 1 · 1T

bij = m̄i: − aijm̄j: for i, j ∈ [1, 2, ...n].

sik = 1 if d′ijk <= ed
′′
ijk − 1, sik = 0 otherwise, for i ∈ [1, 2, ...n], k ∈ [1, 2, ...p].

while ∆L > ϵ do
for each i, j do

if
∑

k
sik
dijk

(mik − aijmjk − bij)
2 < β2 then

wij = 1
else

wij = 0
end if

end for
for each i, j do

if
∑

j

wij

dijk
(mik − aijmjk − bij)

2 < β1 then

sik = 1
else

sik = 0
end if

end for
for each i, j do

(aij , bij)
T = (XT

ij△(si: • dij:)Xij)
−1XT

ij△(si: • dij:)yij

end for
Calculate loss change ∆L.

end while
Construct bi-clusters from W , S and remove redundant bi-clusters.
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Fig. 5. Scatter plots for the expression level of two different gene pairs across samples.
Here each point (x, y) represents a sample in which the two genes have expression
levels x and y respectively. (a) illustrates two yeast genes YIL078W and YLL039C that
have negative expression correlation under a subset of conditions; the red conditions
provide a stronger evidence than the blue conditions, whereas the green conditions do
not suggest any correlation. Similarly in (b), genes YIL078W and YIL052C show a
positive expression correlation.
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Fig. 6. The observation match scores of the eight algorithms on recovering linear co-
herent bi-clusters and additive bi-clusters at six different noise levels.
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Fig. 7. The overall match scores of the eight algorithms for recovering linear coherent
and additive bi-clusters, at six different noise levels.
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Fig. 9. The whole match scores of the eight algorithms for recovering the overlapping
linear coherent and additive bi-clusters, under the adding overlap model.
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Fig. 10. The observation discovery rate of the eight algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the adding overlap model.
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Fig. 11. The observation match scores of the eight algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the union overlap model.
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Fig. 12. The whole match scores of the eight algorithms for recovering the overlapping
linear coherent and additive bi-clusters, under the union overlap model.
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Fig. 13. The observation discovery rate of the eight algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the union overlap model.
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Fig. 14. Portions of discovered bi-clusters by the eight algorithms on the two real
datasets that are significantly enriched in the KEGG pathway, using six different P -
value cutoffs.
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Fig. 15. Portions of discovered bi-clusters by the eight algorithms on the two real
datasets that are significantly enriched in the MIPS pathway experimentally verified
REGULONS, respectively, using six different P -value cutoffs.



20 Sparse Learning Bi-clustering

#Terms enriched
(GO, KEGG,

#Bi-clusters µ|gene| σ|gene| µ|sample| σ|sample| MIPS/regulons)

Yeast:
SLLB 101 83.40 36.40 85.56 25.98 3, 7, 5
QUBIC 100 119.08 59.69 23.21 6.21 3, 2, 3
LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5
LCBD 132 46.46 17.53 13.35 4.58 10, 6, 11
ISA 47 67 34.54 8.4 1.78 15, 13, 18

OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2
MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6
CC 10 297.7 304.18 60.8 23.46 6, 4, 8

E.Coli:
SLLB 52 43.79 16.23 106.58 51.70 8, 11, 13
QUBIC 100 73.91 33.45 33.51 14.51 14, 8, 15
LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22
LCBD 155 485.05 366.63 15.37 22.95 23, 22, 33
ISA 34 124.21 42.18 13.88 6.11 11, 10, 13

OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5
MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4
CC 10 309.9 950.15 31.4 81.74 2, 2, 2

Table 1. Statistics of different algorithms’ bi-clustering results and the numbers of
functional terms enriched on different databases.


