
A Derivation of Eq.(7)

First we introduce a basic lemma from calculus of variation [24] below:

Lemma 1 (The Euler-Lagrange equation) Let F (α, β, γ) be a function with continuously first
and second partial derivatives with respect to (α, β, γ), S = {x ∈ C1[a, b]|x(a) = ya, x(b) = yb}
where C1[a, b] denotes the space of one time continuously differentiable functions in [a, b]. Let
I : S → R be a function of the form:

I(x) =

∫ b

a

F (x(t), x′(t), t)dt .

If I has an extremum at x0 ∈ S, then x0 satisfies the Euler-Lagrange equation:

∂F

∂α
(x0(t), x′0(t), t)− d

dt

(
∂F

∂β
(x0(t), x′0(t), t)

)
= 0,

for t ∈ [a, b].

Derivation of Eq.(7) Substituting the L into (6), it is easy to see that (6) is equivalent to

inf
q(Θ)

KL(q(Θ)||p(Θ))− EΘ∼q(Θ) [log p(X|Θ)] + 2c
∑
i

EΘ∼q(Θ)

[
max

(
0, max
k:k 6=yi

ζik

)]
=⇒ inf

q(Θ)

∫
Θ

log
q(Θ)

p(Θ)
q(Θ)dΘ−

∫
Θ

log p(X|Θ)q(Θ)dΘ + 2c
∑
i

∫
Θ

[
max

(
0, max
k:k 6=yi

ζik

)]
q(Θ)dΘ

Let F in Lemma 1 be:

F (q(Θ), q′(Θ),Θ) = log
q(Θ)

p(Θ)
q(Θ)− log p(X|Θ)q(Θ) + 2c

∑
i

[
max

(
0, max
k:k 6=yi

ζik

)]
q(Θ) .

Applying Lemma 1 and simplifying we get

q(Θ) ∝ p(Θ|X)
∏
i

exp(−2cmax(0, max
k:k 6=yi

ζik)) .

Now with similar idea as the slice sampler [39], we augment the state Θ with some auxiliary vari-
ables (si ∈ [K])ni=1 such that the conditional probability of si is:

p(si = s|others) = δarg maxk:k 6=yi ζik
(s) ,

where δx() is a spike at location x. Combining the above probability, the augmented posterior is
then given by

q(Θ, {si}) ∝ p(Θ|X)
∏
i

exp(−2cmax(0, ζisi)) ,

which is exactly Eq.(7). Note this augmentation allows us to sample Θ and {si} via Gibbs sampler:

• Conditioned on {si}, sample Θ. This results in simple conditional distributions similar to
the 2-class case.

• Conditioned on Θ, update {si} (possibly jointly sample (yi, si) as is done in this paper),
with si simply takes the value: si = arg maxk:k 6=yi ζik.

B Posterior formulas for the DPMMGM model

The posterior of the DPMMGM model is obtained by multiplying the pseudo likelihood and the
prior in the generative process in Section 4. We use MCMC for posterior inference since it has been
shown quite efficient [17]. After integrating out the mixing weights w, the variables that need to
be sampled are C := Θ ∪ {si, λi}i = {µk,Λk,ηk}k ∪ {yi, si, λi}i. Substituting the DPGMM
posterior into (8) we can derive the following updates for the variables.
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Sampling ηk This can be done by expanding related φ̃i(λi|Θ) terms in (8). Clearly the terms
associated with ηk are those i’s such that yi = k or si = k. First expanding the squared term in
φ̃i(λi|Θ), we have

(λi + cζisi)
2

=
(
λi + c`− c (ηyi − ηsi)

T
xi

)2

= (λi + c`)
2 − 2c (λi + c`) (ηyi − ηsi)

T
xi + c2ηTyixix

T
i ηyi + c2ηTsixix

T
i ηsi − 2c2ηTyixix

T
i ηsi

Now sum over all i’s such that yi = k or si = k and multiply by − 1
2λi

inside φ̃i(λi|Θ), we have the
terms inside the exponent being:

=⇒

 ∑
i:yi=k

(
c

λi
(λi + c`) xTi +

c2

λi
ηTsixix

T
i

)
−

( ∑
i:si=k

(
c

λi
(λi + c`) xTi −

c2

λi
ηTyixix

T
i

))ηk
− c2

2
ηTk

 ∑
i:yi=k||si=k

xix
T
i

λi

ηk .
This corresponds to the first order and second order terms of a Multivariate normal distribution.
Re-arranging terms it is easy to see that ηk is a multivariate normal distribution as:

q(ηk|C\ηk) ∼ N (ηk; B−1A,B−1), where

A = c2

 ∑
i:yi=k

(`κi +
1

c
)xi

−( ∑
i:si=k

(`κi +
1

c
)xi

)
+
∑
i:yi=k

κixix
T
i ηsi +

∑
i:si=k

κixix
T
i ηyi


B =

1

v
I + c2

 ∑
i:yi=k or si=k

κixix
T
i

 , (11)

with κi := λ−1
i for notation simplicity, and K is the current number of active clusters.

Sample λi It is easy to see that λi has posterior

q(λi|C\λi) ∼ GIG
(
λi;−

1

2
, 1, c2

(
`− (ηyi− ηsi)

T
xi

)2 )
,

where GIG(x; p, a, b) ∝ xp−1 exp
(
− 1

2

(
b
x + ax

))
is a generalised inverse Gaussian distribution

with parameters (p, a, b). So λi can be sampled efficiently via the technique proposed recently by
[40].

Sample (µk,Λk) With a Gauss-inverse Wishart prior for (µk,Λk) in (9), the posterior is still a
Gauss-inverse Wishart [26]. Let x̄k = 1

nk

∑
i:yi=k

xi where nk =
∑
i I(yi = k) is the current

number of observations in cluster k. Then the update formulae of parameters are

rk = r + nk, νk = ν + nk, mk =
rm + nkx̄k
r + nk

,

Sk=S +
r · nk
r+nk

(m−x̄k)(m−x̄k)T+
∑
i:yi=k

(xi−x̄k)(xi−x̄k)T.

Sample (yi, si) jointly with w integrated out Our model is nonparametric Bayesian, allowing
new components to be born while sampling yi, as is done in DPGMM. We sample yi in a collapsed
fashion by integrating out the weights w, which has been shown more efficient [41]. Because of
the non-conjugacy between the pseudo likelihood and the prior, we adopt an auxiliary state MCMC
algorithm called Reused Algorithm, developed by [27] recently. The idea is similar to Algorithm
8 of [41] by introducing some augmented empty components into the MCMC states, but the effi-
ciency is much improved. Since si depends on yi, we will sample (yi, si) jointly. The algorithm is
summarised in Algorithm 1.
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Algorithm 1: Reused Algorithm for sampling yi
1: Initialise {y1, · · · , yn}. Assign H (set to 3 in the experiments) auxiliary empty clusters

(µt,Λt,ηt)
T
t=1.

2: Remove yi from the statistics (denote the current cluster parameters as (µk,Λk,ηk)):
3: if the current cluster contains only xi then
4: Randomly sample a cluster from the H auxiliary empty clusters;
5: Assign the selected auxiliary empty clusters with parameters (µk,Λk,ηk);
6: end if
7: Sample (yi, si) jointly from its posterior distribution:

q(yi = k, si = τ(k)|C\(yi, si)) ∝ βkf(xi| · · · ),
where τ(k) = arg maxk′:k′ 6=k ζik′ , f(·) is defined in (10), βk = nk if nk > 0, and α

H otherwise.
8: if yi is assigned to an auxiliary empty cluster then
9: Move the cluster out of the auxiliary empty cluster.

10: Draw the cluster parameters for the corresponding auxiliary empty cluster from the prior
distribution.

11: end if

C Posterior formulas for the MMCTM model

We first derive the posterior for the CTM (the one without maxi-margin constraint). This corre-
sponds to Figure 1 (right) with {ηk} and the arrow between yi and wi` removed. We can write down
the posterior of CTM by first integrating out the γ and {φt} latent variables using the Dirichlet-
Multinomial conjugacy. The hierarchical Dirichlet distribution part does not embody a close form
posterior, but we can represent the posterior in a sequential way, e.g., we assume the words are gen-
erated sequentially, then we multiply the probabilities of generating each word to form the posterior.
Before giving the posterior formula, we first define the following statistics:

• mtw: the number of times that a word w is sampled from topic t.

• Ck: the number of documents in cluster k.

• nit: the number of words in document i with topic t.

• gkt: the number of documents in cluster k with topic t.

• ht: the number of clusters included in topic t.

We further use ‘dot’ to represent marginal sum, e.g., ni· :=
∑T
t=1 nit. Superscript “¬l” means the

statistics excluding word l, e.g., Z¬l :={zil′}i,l′ 6=l. Based on these statistics, the posterior of CTM
can be written as

p(W, {mtw}, {Ck}, {nit}, {gyt}, {ht}|α0, α1, α, ω, ν, β)

=

∏T
t=1 Γ (mt· + β)

Γ (m·· + βV )

∏K
k=1 Γ (Ck + ω)

Γ (C· + ωK)

D∏
i=1

Nd∏
l=1

p (zil|yi, others) , (12)

where

p (zil|yi, others) =
n<izil + α

g<yizil
+α1

h<zil
+α0/T

h<· +α0

g<yi·+α1

n<i· + α
.

Here superscript “<” means the statistics up to the current word in the current document, and
p (zil|yi, others) represents the probability of generating the word wil.

According to the Bayesian max-margin clustering framework in Section 3, the posterior of the
proposed MMCTM is simply multiplying the above CTM posterior (12) with the terms φ̃i(λi|Θ)
defined in (8) induced by the max-margin constraints, and with the features xi defined as latent:
xi

M
= z̄i ∈ RT , where the t-th element is simply 1

Ni

∑Ni
l=1 I(zil = t).
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C.1 Posterior inference

The variables needed to be sampled are C = ({ηk}, {λi}, {zil}, {yi, si}), the conditional distri-
butions can be derived from the posterior q({ηk}, {λi}, {zil}, {yi, si}). Based on the posterior
analysis above, the sampling proceeds simply goes as:

Sampling ηk: This is similar to the DPMMGM case since the original posterior
p(W, {mtw}, {Ck}, {nit}, {gkt}, {ht}|α0, α1, α, ω, ν, β) does not impact the ηk directly. So the
form of the conditional distribution for ηk is the same as the DPMMGM (but note here xi is latent):

q(ηk|C\ηk) ∼ N (ηk; B−1A,B−1), where

A = c2

 ∑
i:yi=k

c`+ λi
cλi

xi

−( ∑
i:si=k

c`+ λi
cλi

xi

)

+
∑
i:yi=k

xix
T
i

λi
ηsi +

∑
i:si=k

xix
T
i

λi
ηyi


B =

1

v
I + c2

 ∑
i:yi=k||si=k

xix
T
i

λi

 ,

and K is the current number of active clusters.

Sampling λi: This is also similar to the DPMMGM case. By taking related terms out of φ̃i(λi|Θ)
induced by the max-margin constraint, we get the posterior as

q(λi|C\λi) ∼ GIG
(
λi;−

1

2
, 1, c2

(
`− (ηyi− ηsi)

T
xi

)2 )
.

Sampling zil: When sampling zil, we first remove the word l from document i out of the statistics,
and then add it in topic t = (1, 2, · · · , T ). This would change the statistics, and so as the latent
feature xi of document i in the max-margin term φ̃i(λi|Θ). By careful simplification, we get the
resulting posterior as:

q(zil = t|wil = w, others)

∝p
(
zil|yi,Z¬l, others

) (m¬ltw + β
)

m¬lt· + βV
exp

(
At
Ni

+
Btt + 2

∑T
t′=1Btt′n

¬l
it′

N2
i

)
, (13)

where

A =

(
c+

c2`

λi

)
(ηyi − ηsi) ,

B = − c2

2λi
(ηyi − ηsi) (ηyi − ηsi)

T
,

p
(
zil|yi,Z¬l, others

)
=
n¬lizil + α

g¬lyizil
+α1

h¬lzil
+α0/T

h¬l· +α0

g¬lyi·
+α1

n¬li· + α
.

Here the first and second terms in (13) come from (12) by variable elimination, the third term comes
from the φ̃i(λi|Θ) terms induced by the max-margin constraints.

Sampling (yi, si): Because yi relates to all the words in document i, to get its conditional pos-
terior, we first remove all the words in document i out of the statistics, then add them in one by
one again following their topic assignments {zil}. This would cause a likelihood change, i.e.,∏Ni
l=1 p (zil|yi, others) in (12). Another term what would change in (12) is the term

∏K
k=1 Γ(Ck+ω)

Γ(C·+ωK) .
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Finally, combining the terms in φ̃i(λi|Θ) by the max-margin constraints, we get the joint conditional
posterior of (yi, si) as:

q(yi = k, si = τ(k)|others) ∝ (Ck + ω)f(yi|Θ) ,

where τ(k) = arg maxk′:k′ 6=k ζik′ , f(yi|Θ) is the pseudo likelihood defined as

f(yi|Θ) :=

Ni∏
l=1

p(zil|yi, Z<(i,l), others)×

exp

{
− 1

2λi

(
λi + c

(
`− (ηyi − ηsi)

T
xi

))2
}
,

where the subscript < (i, l) means the statistics up to word l in document i because here the words
are added in sequentially.

D Additional results

D.1 Influence of NMI scores by hyperparameters in Bayesian nonparametric cluster models

We demonstrate how the hyperparameters affect the NMI scores in two Bayesian nonparametric
clustering models in Figure 6 and Figure 7.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

r

N
M

I

Dirichlet process Gaussian mixture model (DPGMM)
influence of NMI scores by r

Figure 6: Influence of NMI score by hyparameter r (see Figure. 1 (left) in the main text for the
definition) in DPMMGM [10] on the Wheat Kernel dataset used in [35] ( the whole dataset). Other
hyperparameters (refer to Figure. 1 (left) in our paper) are set as S = I7,m = 0, ν = 37, which are
empirically performed well. We can see that the NMI performance varies significantly with respect
to r. It was not optimal even if we sampled it by placing another hierarchical prior on it.

D.2 CPMMC vs. DPMMGM

In this section we compare the max-margin clustering model [7] with our DPMMGM in Table 3.

D.3 Cluster embedding

For better view of the document clustering embedding results with the MMCTM, Figure 8 re-plots
the figures in a larger size, from which we can see clearly that MMCTM clusters documents by
inducing larger margins between clusters.
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Figure 7: Influence of NMI score by hyparameter L (see Section 2.1.4 in [35]) in DCP [35] on the
same dataset using the code from the authors. We varied the L hyperparameter between 0.1 to 3,
and sampled all the other other hyperparameters. Again we can see that the NMI performance varies
significantly with respect to L. It was not optimal even if we sampled it (the red curve).

Datasets CPMMC DPMMGM
Digits 0.5350 0.5386
Glass 0.0693 0.1173

Half cicle 0.4291 0.4726
Iris 0.0186 1

Letter 0.2008 0.6987
MNIST 0.9229 0.8506

Satimage 0.8558 1
Segment’n N/A 1

Vehical 0.0607 0.0626
Vowel 0.0044 0.0129
Wine 0.8428 0.9128

Table 3: Comparison of CPMMC [7] and DPMMGM in term of NMI scores. For each dataset, we
randomly chose 2 classes out of the datasets. The first dataset is the one used in the demonstration
of their code by the authors, the rest are the datasets used in our paper. For each dataset, related
parameters of CPMMC were manually tuned so that it obtained the best NMI scores. “N/A” in
the table means infinite loop for the dataset thus no result produced. Obviously our DPMMGM
outperforms CPMMC.

D.4 T-test on the clustering results of SVM and MMCTM

To further illustrate the differences between our proposed MMCTM model, we do t-test with the
state of the art non-probilistic model – SVM. The results are shown in Table 4, from which we can
see that MMCTM∗ with optimal parameter settings is mostly significantly better than SVM, while
MMCTM with fixed hyperparameters is at least as good as SVM, and in some cases it is significantly
better.

D.5 Convergence speed

This section shows the convergence speed of the MMCTM in term of clustering accuracy on the two
datasets. Figure 9 plots the curves on the 20NEWS dataset, and Figure 10 plots the curves on the
Reuters-R8 dataset. The results are means and standard derivations over 5 repeated runs with random
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Figure 8: Clusters embedded in 2-dimensional space with tSNE. Different colours correspond to
different clusters. Best view in colour.

initialisations. We can see that in general the accuracies converge after 30 iterations, demonstrating
the efficiency of our sampler.

D.6 Topic illustrations

In this section we show 5 clusters and their associated top 5 topics in each cluster on the Reuters-R8
dataset in Table 5. We can see from the table that in general each cluster corresponds to specific
theme, with several junk topics consists of stop words. Note we did not remove the stop words, and
believe it performs even better after removing them.
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L SVM MMCTM MMCTM∗

20NEWS

5 37.13± 2.9 56.70± 1.9 (h = 1, p = 0.0006) 57.86± 0.9 (h = 1, p = 0.0001)
10 46.99± 2.4 54.92± 1.6 (h = 1, p = 0.0102) 56.56± 1.3 (h = 1, p = 0.0018)
15 52.80± 1.2 55.06± 2.7 (h = 0, p = 0.1962) 57.80± 2.2 (h = 1, p = 0.0152)
20 56.10± 1.5 56.62± 2.2 (h = 0, p = 0.7057) 59.70± 1.4 (h = 1, p = 0.0347)
25 59.15± 1.4 55.70± 2.4 (h = 0, p = 0.0668) 61.92± 3.0 (h = 1, p = 0.0456)

Reuters-R8

5 78.12± 1.1 79.18± 4.1 (h = 0, p = 0.6597) 80.86± 2.9 (h = 0, p = 0.1943)
10 80.69± 1.2 80.04± 5.3 (h = 0, p = 0.8265) 83.48± 1.0 (h = 1, p = 0.0341)
15 83.25± 1.7 85.48± 2.1 (h = 0, p = 0.0683) 86.86± 2.5 (h = 0, p = 0.0823)
20 85.66± 1.0 82.92± 1.7 (h = 0, p = 0.0742) 83.82± 1.6 (h = 0, p = 0.1711)
25 84.95± 0.1 86.56± 2.5 (h = 0, p = 0.2213) 88.12± 0.5 (h = 1, p = 0.0005)

Table 4: T-test results for the best non-probalistic algorithm SVM and the proposed MMCTM.
h = 1 means significantly different from SVM, while h = 0 means not significantly different, p is
the corresponding p-value in the t-test. Bold means significantly better.
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Figure 9: Accuracy vs. the number of iterations for MMCTM on the 20NEWS dataset. L is the
number of landmarks.
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Figure 10: Accuracy vs. the number of iterations for MMCTM on the Reuters-R8 dataset. L is the
number of landmarks.

Cluster 1: tax

T 1 mln cts Net loss shr Reuter dlrs qtr year revs

T 2 dlrs share for cts and per quater company earnings results

T 3 year and dlrs for company will quater mln pct earnings

T 4 mln billion profit Net dlrs loss tax shr pretax extraordinary

T 5 cts Net shr loss mln revs profit qtr Reuter inc

Cluster 2: stock

T 1 for and offer dlrs share company that will not inc

T 2 and shares pct company stock group dlrs Reuter common stake

T 3 and corp sale unit mln inc Reuter will company dlrs

T 4 that analysts not market analyst stock American spokesman comment last

T 5 general and gencorp inc for partners dlrs taft mln acquire

Cluster 3: trade

T 1 that and for not will told this had meeting world

T 2 trade and reagan house bill countries gatt congress talks states

T 3 Japan Japanese trade officials pact united Washington tariffs semiconductor last

T 4 trade billion exports dlrs and surplus imports deficit Taiwan year

T 5 and foreign for companies government industry year sources this years

Cluster 4: agriculture

T 1 grain Soviet agriculture farm tonnes usda certificates mln corp and

T 2 that and for not will told this had meeting world

T 3 year and dlrs for company will quarter mln pct earnings

T 4 and foreign for companies government industry year sources this years

T 5 trade and reagan house bill countries gatt congress talks states

Cluster 5: bank

T 1 dollar exchange currency and baker west Paris rates accord German

T 2 that and for not will told this had meeting world

T 3 bank stg mln market money bills England pct today Reuter

T 4 and markets budget government dollar that economy policy exchange prices

T 5 and foreign for companies government industry year sources this years

Table 5: Top 5 topics in each cluster.
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