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Abstract—In this paper, we propose a two-tier communication
strategy to facilitate data collection in unmanned aerial vehicle
(UAV)-enabled massive Internet of Things (IoT) systems through
introducing ground access points (APs) to serve between the
UAV and IoT devices. In the first tier of our proposed strategy,
all IoT devices transmit their packets to their local APs via a
multi-channel ALOHA-based random access scheme, while in the
second tier, APs deliver their aggregated data to the UAV through
coordinated time division multiple access. Thus, our introduced
APs not only liberate the UAV from the potential massive IoT
congestion but also facilitate the design of UAV’s trajectory
based on the location of APs. To examine the performance of
our strategy, we propose a tractable framework to analyze the
average system throughput. We reveal that the average two-tier
throughput of each AP monotonically increases with its maximum
achievable throughput in the second tier, while the increasing
slope becomes steeper with a higher traffic load mean in the first
tier. Then, we formulate the joint design of UAV’s trajectory
and resource allocation as a non-convex optimization problem
to maximize the average system throughput while considering
the heterogeneous quality of service requirement of each AP.
To solve this problem, a low-complexity iterative algorithm is
devised based on successive convex approximation. Numerical
results demonstrate the substantial average system throughput
gain achieved by our proposed strategy and design in the context
of massive access, compared to the baseline schemes in the
literature.

Index Terms—UAV communications, massive Internet of
Things, performance analysis, trajectory design, resource allo-
cation.

I. INTRODUCTION

Driven by the proliferation of Internet of Things (IoT)
devices, massive IoT is envisioned to revolutionize our daily
life via building a networked world in the next generation
wireless network and beyond. In the future IoT systems, the
number of connected devices is expected to experience an
explosive growth and reach the order of billions [1, 2]. To
achieve this expectation, it is of paramount significance to
efficiently accommodate a massive number of devices in the
future IoT paradigm.
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One of the key enablers in supporting massive IoT is the
design of appropriate massive access schemes [3]. In [4, 5],
the grant-free random access schemes were proposed, where
the devices directly transmit their unique pilot sequences
following with data packets without a grant procedure and
the base station (BS) detects the active devices based on its
received preambles. As a result, both the intolerantly high
access latency and the prohibitively large signaling overhead
can be significantly reduced in the context of massive access.
However, due to the massive number of devices, the use of
non-orthogonal pilot sequences makes it challenging to detect
the active devices and to estimate their channels for grant-
free systems. By exploiting the sporadic traffic pattern of
IoT devices, the compressed sensing (CS) technique can be
employed for the joint device activity detection and channel
estimation [5]. In [6], the authors proposed a transmission
control scheme to further improve the performance of device
activity detection and channel estimation. Besides, the non-
orthogonal multiple access (NOMA) technique has also been
introduced for massive IoT in [7, 8]. In [7], the massive number
of IoT devices were spatially clustered and the NOMA was
applied within each cluster. In [8], the authors proposed a fully
non-orthogonal communication scheme in the context of mas-
sive access, where the non-orthogonal pilot sequences were
used to estimate the channel and the estimated channel was
used for the design of spatial beamforming for interference
cancellation. Despite the fruitful results in the literature, the
performance of massive access systems is still restrained by
the devices with weak communication links and the massive
IoT congestion.

The application of unmanned aerial vehicles (UAVs) serves
as a promising candidate for massive IoT, owing to the UAV’s
high mobility and the line-of-sight (LOS) dominated air-
ground channels. In fact, the UAV has been widely exploited
to data collection in wireless IoT systems [9–15]. In [9–
11], the UAV-enabled IoT techniques were reviewed, which
include those for data collection and information dissemi-
nation. [13] studied the UAV-enabled data collection system
to minimize the UAV’s flight time by jointly optimizing the
data collection intervals, the UAV’s speed, and the devices’
transmit power. However, [13] considered a one-dimensional
(1D) system where all devices are located on a straight line.
[14] further extended the 1D system with a two-dimensional
(2D) distribution of devices and UAVs. In [15], the maximum
energy consumption of all devices was minimized for the
UAV-enabled data collection system, by jointly optimizing the
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UAV’s trajectory and the wake-up scheduling for the devices.
An important limitation encountered in the aforementioned

studies lies in their assumption that the number of devices sup-
ported by the UAV is relatively limited. Thus, all the devices
can be effectively coordinated to perform their transmissions,
e.g. through the time division multiple access (TDMA) and
frequency division multiple access (FDMA). However, when
we consider the massive connectivity scenario, a large number
of IoT devices need to be supported by the UAV but their
traffic is typically sporadic [16–18]. Such a massive number
of IoT devices result in an unbearably large coordination
overhead. This hinders the operation of coordinated multiple
access, in particular for the UAV-enabled system with limited
cruise time. To avoid the large coordination overhead, unco-
ordinated multiple access becomes attractive for the massive
and sporadic connectivity system, such as ALOHA and its
enhanced variant, coded slotted ALOHA (CSA) [19, 20]. Un-
fortunately, without coordination, a large number of collisions
may occur in ALOHA and CSA, which significantly reduces
the connectivity efficiency. Furthermore, as the number of IoT
devices significantly increases, it becomes impractical to gath-
er and save the location of all IoT devices. This implies that
it becomes almost impossible to design the UAV’s trajectory
based on the location of massive IoT devices for improving
the system performance, such as the existing studies [12–15].
As a result, there is an emerging need for the deployment of
a new network architecture to fully unleash the potential of
UAV-enabled massive IoT systems.

To meet this emerging need, some existing studies proposed
a hierarchical network architecture for the massive connec-
tivity scenario, such as [21–24]. In [21], a two-hop cluster
access scheme based on slotted ALOHA was proposed and a
criterion was introduced for selecting the cluster head. Then
[22] extended this scheme to a multi-hop scheme and proposed
a hierarchical network to aggregate data. In [23], a coverage
probability-based optimal data aggregation scheme was de-
signed for the hierarchical network to minimize the average
total energy expenditure per unit area per unit time. In [24],
the interference and coverage performance were characterized
for the large-scale data aggregation system, where the data
aggregators deploy both resource scheduling and data delivery
to the base stations (BSs). We note that these studies mainly
considered static ground BSs but did not take into account the
UAV’s mobility.

In this paper, we propose a two-tier communication strategy
with the aid of ground access points (APs) for UAV-enabled
massive IoT systems. The transmission performance in the
proposed strategy is analyzed and the joint trajectory and re-
source allocation design problem is studied to further improve
the system performance. The main contributions of this work
are summarized as follows:

1) We propose to introduce multiple ground APs to form
a two-tier network architecture which helps the trans-
mission between the UAV and massive ground IoT
devices. In the first tier, the IoT devices transmit their
packets to their local APs, once they are active, via
a multi-channel ALOHA-based random access scheme,
which avoids the laborious coordination overhead. The

successfully detected packets are stored in the buffer
of APs, which in turn becomes the traffic load for the
AP to communicate with the UAV in the second tier.
In this tier, the APs deliver their aggregated data to
the UAV in a coordinated fashion, i.e., using TDMA.
Such a multi-AP aided architecture significantly reduces
the number of direct connections from IoT devices to
the UAV, thus decreasing the congestion and improving
the connectivity efficiency. Furthermore, the exploitation
of APs allows the UAV to communicate to a limited
number of APs, instead of massive IoT devices. This
implies that based on the location of APs, the UAV’s
trajectory can be efficiently designed to further enhance
the system performance.

2) To characterize the performance and to unveil useful in-
sights into the practical implementation of our proposed
strategy, we analyze the average system throughput
achieved by our strategy in the considered UAV-enabled
massive IoT system. Specifically, in order to analyze the
performance of random access from IoT devices to APs
in the first tier, we leverage the stochastic geometry to
obtain the signal-to-interference ratio (SIR) distribution
for active IoT devices and derive the probability that the
packet from IoT devices can be successfully detected by
its serving AP. Based on this packet detection probabil-
ity, the traffic load distribution of each AP is obtained,
which represents the number of its collected bits and is
found to follow a Poisson distribution. For the second
tier, we derive the maximum achievable throughput
from each AP to the UAV as a function of the UAV’s
trajectory and the resource allocation algorithm. We then
derive the average system throughput that connects the
performance of both tiers. Our analysis provides insights
into the interplay between the traffic load imposed by
the first tier and the maximum achievable throughput
supported by the second tier, as well as their joint impact
on the average system throughput.

3) Based on the obtained analytical results, we formulate
the joint design on the UAV’s trajectory and resource
allocation as a non-convex optimization problem to max-
imize the system throughput while taking into account
the heterogeneous quality of service (QoS) requirement
of each AP. Since the formulated problem is non-convex
which is generally intractable, we propose an iterative
algorithm based on the successive convex approximation
(SCA) technique to achieve a suboptimal solution. Ex-
tensive numerical results are presented to verify our per-
formance analysis and to evaluate the superior average
system throughput achieved by our proposed strategy
and joint design, compared to the baseline schemes
without AP or UAV’s trajectory design.

The remainder of this paper is organized as follows. In
Section II, we introduce the proposed two-tier communication
strategy for UAV-enabled massive IoT systems. The perfor-
mance analysis of the proposed strategy is provided in Section
III. In Section IV, we formulate an optimization problem
to maximize the average system throughput and propose an
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Fig. 1. Illustration of our proposed two-tier communication strategy for UAV-
enabled massive IoTs. The triangles represent APs and the circles represent
IoT devices.

iterative algorithm to achieve a suboptimal solution of the
formulated problem. Section V provides numerical results to
validate the effectiveness of our analysis and design. The paper
is concluded in Section VI.

Notations used in this paper are listed as follows. Bold-
face lower case letters are reserved for vectors. (·)T denotes
the transpose of a vector; |·| denotes the absolute value of
a complex scalar and ‖·‖ denotes the Euclidean norm of
a vector; Pr(·) denotes the probability of a random event
occurring and EX [·] denotes the expectation taken over a
random variable (RV) X . fX(·) denotes the probability density
function (PDF) of a RV X . Pois(λ) represents the Poisson
distribution with a mean of λ. The circularly symmetric
complex Gaussian distribution with mean µ and variance σ2 is
denoted by CN (µ, σ2). Unless otherwise stated, the notations
used throughout the paper are summarized in Table I.

II. TWO-TIER COMMUNICATION FOR UAV-ENABLED
MASSIVE IOT SYSTEMS

We propose a two-tier UAV communication strategy where
a single UAV serves as an aerial BS to collect data from a
massive number of ground IoT devices in a disc of a radius
R, as shown in Fig. 1. In our proposed strategy, the two-
tier architecture is formed by introducing M ground APs1

to help the transmission between the IoT devices and the
UAV. We assume that all the IoT devices are located within
M clusters. For each cluster, the IoT devices are spatially
distributed according to a homogeneous Poisson point process
(PPP) with density2 λd within a disc of a radius Rs, where
the location of this disc center is arbitrary but fixed. We also
assume that the AP is located at the center of its serving IoT
device cluster, where the location of AP m is denoted by
wm ∈ R2×1, and its service zone is the disc corresponding to

1Note that, the concept of ground APs has been exploited for wireless
sensor networks in [25–27]. However, they mainly considered that the sensors
transmit data to a static ground base station and employed multiple APs as
the cluster heads to reduce the sensors’ energy consumption.

2We assume that all IoT devices are static in this paper. When considering
the mobility of IoT devices, the density of each cluster varies across sub-
frames. This has a great impact on the system performance analysis and the
design of UAV’s trajectory, which will be studied in our future work.

Fig. 2. Data transmission in the proposed two-tier architecture, in which
K denotes the random number of IoT devices in each cluster following a
Poisson distribution with a mean λdπR2

s , and SF and TS denote subframe
and time slot for presentation simplicity, respectively.

this cluster. We also assume that the IoT devices, APs, and the
UAV are equipped with a single antenna3. The UAV is cruising
within a given area in the sky with a constant altitude of H ,
to collect data from ground IoT devices. The total cruising
period consists of T time slots with δt denoting the elemental
slot duration. Therefore, the cruising trajectory can be denoted
by a sequence {q [t]}Tt=1, where q [t] = [x [t] , y [t]]

T denotes
the ground projected coordinate of the UAV during time slot
t. Within each time slot, we assume that the distance between
the UAV and each AP is invariant since this distance is much
longer compared to the displacement of the UAV during δt
[11]. Thus, during time slot t, the distance between the UAV
and AP m is given by dUA

m [t] = ‖q [t]−wm‖. In addition,
we have q [1] = q [T ] as the UAV is cruising within an area.

The data transmission from each IoT device to the UAV
is achieved by the proposed two-tier architecture, as shown
in Fig. 2. We assume that the communications in the first
tier and the second tier employ orthogonal frequency bands4

with corresponding bandwidth of B1 and B2, respectively, and
B1 + B2 = B. As a result, the communications in the first
tier and in the second tier can be established simultaneously
without suffering from the inter-tier interference. In the first
tier, we assume that the AP keeps collecting and storing the
packets from IoT devices within one UAV cruising period. In
the second tier, the AP transmits its aggregated data within the
previous cruising period to the UAV. We note that the proposed
two-tier strategy is suitable for delay-tolerable data collection
systems, where one data packet may bear a delay ranging

3It is noted that the APs may have multiple antennas to support the massive
number of IoT devices in practice, while the IoT devices and the UAV usually
have a single antenna due to the limitation on the physical size, weight, and
deployment cost [28, 29]. It is intuitive that equipping multiple antennas at
the APs has a great impact on the design of massive access and the system
performance, e.g., the design of new beamforming strategy and the analysis
of SIR. The performance analysis and joint design of UAV’s trajectory and
resource allocation become challenging tasks for the case with multi-antenna
APs, which will be considered in our future work.

4In fact, the serving IoT devices of the non-scheduled APs can utilize the
total bandwidth B to increase the number of subchannels and to improve the
first-tier performance. However, such bandwidth utilization can result in the
mutual interference between the two tiers and accordingly reduce the average
system throughput.
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TABLE I
NOTATIONS FOR MAIN SYSTEM PARAMETERS.

Notations Physical meaning Notations Physical meaning
M Number of APs T Number of time slots in a cruising period
Am AP m α Path-loss exponent
R Radius of considered area Dk IoT device k
β0 Channel power gain at reference distance δt Slot duration
D Packet length N0 Power spectrum density of thermal noise
Rs Radius of each AP’s serving disc Cl Subchannel l
St Time slot t hk,m,l Small-scale channel fading from Dk to Am over Cl
wm Location of AP m Iintra

k,m,l Intra-cluster interference power of Dk at Am over Cl
δn Subframe duration γk,m,l SIR of Dk at Am over Cl
λd Density of IoT devices pa Activity probability
q[t] UAV’s ground projected coordinate in St L Number of subchannels
Iinter
k,m,l Inter-cluster interference power of Dk at Am over Cl Rk,m,l Achievable data rate from Dk to Am over Cl
B1 Bandwidth for the first tier ∆f Bandwidth of each subchannel
R0 Target data rate of IoT device xm[t] Scheduling indicator of Am in St
B2 Bandwidth for the second tier rk,m Distance between IoT device k to AP m
pm[t] Transmit power of Am in St gm[t] Channel coefficient from Am to the UAV in St
H Height of UAV’s trajectory Rm[t] Achievable data rate of Am in St
Um Maximum achievable throughput of Am Nm Number of collected packets in buffer of Am
η Detection threshold PDet[m] Packet detection probability at Am
Θm Average two-tier throughput of Am Θ Average system throughput
pmax AP’s maximum transmit power Vmax UAV’s maximum flying speed
N Number of subframes in a time slot τm Minimum required average two-tier throughput of Am

from 1 to 2T − 1 time slots5. We next detail the transmission
processes in the first tier and second tier.

A. First Tier Transmission
To facilitate the data collection in the first tier, each time

slot is further divided into N subframes where the duration
of each subframe is δn. In each subframe, every IoT device
becomes active to transmit one packet of D bits, according
to an activity probability pa. The activities among all the
IoT devices and the activities of each IoT device in different
subframes during different time slots are assumed to be
identical and independent distributed6 (i.i.d.). All active IoT
devices transmit their packets to their local APs according
to the multi-channel ALOHA-based random access scheme
[30–32]. In particular, all the IoT devices in all clusters
share L orthogonal subchannels. Each subchannel has a fixed
bandwidth of ∆f with B1 = L∆f . When an IoT device
becomes active in a subframe during a time slot, it randomly
selects one subchannel to transmit its packet to the AP. Due to
uncoordinated subchannel selection, more than one IoT device
may select the same subchannel at the same time. Let us
denote Am,l[t, n] as the set of active IoT devices in cluster m
transmitting packets through the l-th subchannel in subframe
n during time slot t. Thus, the received signal at AP m over
the l-th subchannel in subframe n during time slot t is given
by

yAP
m,l[t, n] =

√
Ptr
−α
k,mβ0hk,m,l[t, n]sk[t, n]

+
∑

k′∈Am,l[t,n]\{k}

√
Ptr
−α
k′,mβ0hk′,m,l[t, n]sk′ [t, n]

5To reduce the data collection delay, one AP can collect and transmit
data packets within the same cruising period. However, this collection and
transmission need a complicated and dynamic packet management protocol.
Thus, it will be considered in our future work.

6In this paper, we consider the homogeneous IoT devices with i.i.d.
activities in different subframes during different time slots. The proposed
scheme and performance analysis can be easily extended to the case where
all the IoT devices have independent but non-identical activity probabilities.

+
∑

k′′∈A
m′,l[t,n],

m′∈{1,...M}\{m}

√
Ptr
−α
k′′,mβ0hk′′,m,l[t, n]sk′′ [t, n] + nm,l[t, n],

(1)

where the three terms on the right-hand side correspond to
the desired signal, the intra-cluster interference signal, and
the inter-cluster interference signal, respectively, Pt is the
transmit power of each IoT device, rk,m is the distance from
IoT device k to AP m, α is the path-loss exponent, β0 is
the channel power gain at the reference distance of 1 meter,
hk,m,l[t, n] is the small-scale Rayleigh fading coefficient from
IoT device k to AP m over the l-th subchannel in subframe
n during time slot t, with hk,m,l[t, n] ∼ CN (0, 1), sk[t, n] is
the transmitted signal of IoT device k in subframe n during
time slot t with a unit power, i.e., E

[
|sk[t, n]|2

]
= 1, and

nm,l[t, n] is the thermal noise, with the power σ2
1 , at AP m

over the l-th subchannel in subframe n during time slot t, i.e.,
nm,l[t, n] ∼ CN (0, σ2

1). Here, we assume a quasi-static fading
channel where hk,m,l[t, n] remains constant in one subframe
but changes independently from subframe to subframe.

It can be seen that the transmission from one IoT device
may be interfered by the concurrent transmissions from other
active IoT devices who select the same subchannel. In this
work, such interference is referred to as the intra-cluster
interference if the interfering IoT devices are located in the
same cluster, or the inter-cluster interference if the interfering
IoT devices are located in other clusters. Without loss of
generality, we consider an arbitrary active IoT device k of
cluster m and its served AP m, m ∈ {1, . . . ,M}, as the
typical IoT device and the typical AP, respectively, in order to
characterize the impacts of both the intra-cluster interference
and the inter-cluster interference on the detection probability
of the transmitted packet from IoT device k to AP m. In a
specific subframe n during time slot t, the typical IoT device
k is assumed to be active and selects the l-th subchannel
for its data transmission to the typical AP m. Furthermore,
due to uncoordinated concurrent transmissions, the aggregate
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interference power at the AP dominates the thermal noise
power. Therefore, an interference-limited system is considered
by ignoring the thermal noise and the SIR is adopted to
evaluate the detection probability7. The SIR for detecting the
packet of IoT device k at AP m in subframe n during time
slot t is given by

γk,m,l[t, n] =
Sk,m,l[t, n]

I intra
k,m,l[t, n] + I inter

k,m,l[t, n]
, (2)

with

Sk,m,l[t, n] = β2
0Pt |hk,m,l[t, n]|2 r−αk,m, (3)

I intra
k,m,l[t, n] =

∑
k′∈Am,l[t,n]\{k}

β2
0Pt |hk′,m,l[t, n]|2 r−αk′,m, (4)

and

I inter
k,m,l[t, n] =

∑
k′′∈A

m′,l[t,n],

m′∈{1,...M}\{m}

β2
0Pt |hk′′,m,l[t, n]|2 r−αk′′,m, (5)

where Sk,m,l[t, n] is the desired received signal power,
I intra
k,m,l[t, n] is the aggregate intra-cluster interference power,

and I inter
k,m,l[t, n] is the aggregate inter-cluster interference pow-

er. Accordingly, the achievable data rate from IoT device k to
its served AP m is given by

Rk,m,l[t, n] = ∆f log2(1 + γk,m,l[t, n]). (6)

We assume the IoT device is transmitting its data with a
fixed target rate of R0, where R0 = D/δn. If the achievable
data rate is larger than or equal to the target rate R0, the
packet transmitted by IoT device k in subframe n during time
slot t can be successfully detected by its served AP m. In
this case, the detected packet would be stored in the buffer
of AP m until being delivered to the UAV. On the other
hand, if the packet is not successfully detected due to the
severe interference, it would be dropped and thus makes no
contribution to the system throughput. Due to the randomness
in the channel fading and subchannel selection, the successful
detection of a packet at the AP happens opportunistically. This
motivates our analysis of the packet detection probability in
Section III.

B. Second Tier Transmission

In the second tier, the UAV periodically cruises within
a given area and collects packets from all the APs in a
coordinated manner, i.e., the TDMA. Then, the UAV decodes
the received packets from APs and stores the decoded packets
into a data buffer of sufficiently large size. Afterwards, the
UAV offloads the stored packets to the central control station,
when completing its flying task8. Let us denote a binary
variable xm[t] as the AP scheduling indicator. If AP m is
scheduled to transmit its packet to the UAV during time slot

7In fact, the obtained results can be easily generalized to the case including
the thermal noise, which provides no significant difference.

8In this work, we focus on the packet collection process from IoT devices
to the UAV, since this is the performance bottleneck of the considered massive
access scenario. The process of offloading the collected data at the UAV to
the central control station is not considered in this work.

t, we have xm[t] = 1; otherwise, xm[t] = 0. Furthermore, we
assume that at most one AP is scheduled in each time slot,
i.e.,

∑M
m=1 xm[t] ≤ 1. Thus, the received signal at the UAV

during time slot t is given by

yUAV[t] =

M∑
m=1

√
pm[t]xm[t]gm[t]sm[t] + n[t], (7)

where pm[t] is the transmit power of AP m during time slot t,
gm[t] is the channel coefficient from AP m to the UAV, sm[t]
is the transmitted signal from AP m during time slot t with
a unit power9, i.e., E

[
|sm[t]|2

]
= 1, and n[t] is the thermal

noise, with the power σ2
2 = N0B2, at the UAV, where N0 is

the power spectrum density of the thermal noise and B2, as
aforementioned, is the bandwidth occupied by the AP in the
second tier. Finally, we assume that gm[t] is dominated by the
LoS link10 [11, 35], given by

gm[t] =
β0√

H2 + ‖q[t]−wm‖2
. (8)

We note that due to the adoption of a LoS channel model
between the AP and the UAV, each AP can predict its
channel gain to the UAV and obtain the maximum achievable
throughput.

Thanks to the adopted TDMA scheme and the orthogonal
frequency bands employed in the proposed two-tier strate-
gy, the transmission from each AP to the UAV enjoys an
interference-free channel. As such, the achievable data rate
of AP m during time slot t is obtained as

Rm[t] = B2xm[t] log2

(
1 +

pm[t]β2
0

B2N0(H2 + ‖q[t]−wm‖2)

)
.

(9)

Now, we define the maximum achievable throughput as the
maximum number of bits that can be supported from AP m
to the UAV during one cruising period of T time slots, i.e.,

Um (q[t], xm[t], pm[t], B2) =

T∑
t=1

Rm[t]δt, (10)

which is a function of the UAV’s trajectory and resource
allocation strategy.

As previously mentioned, each AP needs to deliver all the
collected packets during the previous T time slots to the UAV.
We denote the number of collected packets in the buffer of
AP m as Nm, whose distribution will be analyzed in Section
III. Here, we adopt the first-come-first-serve queuing model
for the stored packets at each AP. Given the packet size of D
bits, there are totally DNm bits to be delivered by AP m to the
UAV in the second tier, which is referred to as the traffic load

9Without causing notation confusion, sk[t, n] denotes transmitted signal
from IoT device k in subframe n during time slot t in the first tier and sm[t]
denotes the transmitted signal from AP m during time slot n in the second
tier.

10According to the field measurements [33, 34], the LoS channel model
gives a reasonable approximation of practical channels in a rural environment,
when the UAV’s flight height is 100 meters and the radius of the service disc
is 350 meters. Besides, as the first attempt to introducing APs for the UAV-
enabled massive IoT system, adopting the simple yet reasonably accurate LoS
channel model can provide better insights into the performance and the design
of the considered system.
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of AP m. Once AP m is scheduled to communicate with the
UAV during a time slot, it selects the data from its buffer based
on its maximum achievable throughput Um and transmits to
the UAV. Otherwise, AP m only sends the earliest received Um
bits of its total traffic load to the UAV and drops the remaining
bits so as to avoid the potential buffer overflow. Due to the
adoption of a coordinated access scheme, we assume that the
transmitted data can be successfully detected at the UAV in
the second tier. Hence, if DNm < Um, AP m can successfully
transmits all its traffic load DNm to the UAV. Otherwise, AP
m only sends Um bits of its total traffic load to the UAV.
Based on this, we can derive the average two-tier throughput of
each AP and optimize the average system throughput through
designing the UAV’s trajectory and resource allocation strategy
in Section III and Section IV, respectively.

III. PERFORMANCE ANALYSIS

In this section, we first analyze the statistics of the number
of successfully detected packets at each AP, i.e., packet detec-
tion probability, in the first tier. Then, we derive the average
two-tier throughput of each AP in the second tier, which
serves as a building block for the joint design of trajectory
and resource allocation of the UAV in Section IV.

A. Analysis of First Tier Transmission

Based on (6), we obtain the detection threshold from the tar-

get data rate of each IoT device as η = 2
R0
∆f −1. Accordingly,

the packet detection probability at AP m is written as

PDet[m] = Pr

(
Sk,m

I intra
k,m + I inter

k,m

> η

)
= Pr

(
|hk,m|2 >

(
ζk,mI

intra
k,m + ζk,mI

inter
k,m

))
= Erk,m

[
EIintra

k,m

[
exp

(
−ζk,mI intra

k,m

)]
× EIinter

k,m

[
exp

(
−ζk,mI inter

k,m

)]]
, (11)

where ζk,m =
ηrαk,m
β2

0Pt
. It is noted that the packet detection

probability is same for different subframes, time slots, as well
as subchannels. Therefore, the subchannel index l, the time
slot index t, and the subframe index n are omitted from (11)
for the simplicity of notation. Furthermore, the third step in
(11) is obtained based on the fact that |hk,m|2 ∼ exp(1)
and the independence between I intra

k,m and I inter
k,m . Additionally,

compared to the number of detected packets from an individual
IoT device, we are more interested in the total number of
detected packets at AP m since this total number determines
the traffic load for the second-tier. To this end, we derive the
packet detection probability at AP m in (11), through taking
the expectation over the distance distribution of IoT devices.

We observe from (11) that the packet detection probability
PDet[m] is determined by the Laplace transform of intra-
cluster interference I intra

k,m , i.e., EIintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
,

and the Laplace transform of inter-cluster interference I inter
k,m ,

i.e., EIinter
k,m

[
exp

(
−ζk,mI inter

k,m

)]
. In the following, we obtain

the Laplace transform of I intra
k,m and I inter

k,m and present them in
Lemma 1 and Lemma 2, respectively.

Lemma 1: Within cluster m, the Laplace transform of intra-
cluster interference experienced by the packet transmission
from the typical IoT device to AP m is given by

EIintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
= exp

[
−paλdπR

2
s

L

(
ξk,m

ξk,m + 1
+

ξk,m

(1 + 2
α )(ξk,m + 1)2

×2F1

(
1, 2;

2

α
+ 2;

1

ξk,m + 1

))]
, (12)

where ξk,m = ηrαk,mR
−α
s and 2F1(a, b; c;x) is the Gauss

hypergeometric function [36, Def. (9.100)].
Proof: Please refer to Appendix A.

We highlight that the Gauss hypergeometric function
2F1(a, b; c;x) used in (12) is readily available in standard
mathematical packages, such as Mathematica. Thus, the ex-
pression for EIintra

k,m

[
exp

(
−ζk,mI intra

k,m

)]
is practically closed-

form by computing 2F1(a, b; c;x) via Mathematica.
Apart from the intra-cluster interference, the packet trans-

mitted from the typical IoT device is also affected by the
inter-cluster interference, due to the random selection of
subchannels for the devices in all the other clusters. We next
derive the Laplace transform of inter-cluster interference I inter

k,m

in Lemma 2.
Lemma 2: Within cluster m, the Laplace transform of inter-

cluster interference experienced by the packet transmission
from the typical IoT device to AP m is given by

EIinter
k,m

[
exp

(
−ζk,mI inter

k,m

)]
=

∏
m′∈{1,...M}\{m}

exp

[
−paλd

L

∫ Rs

0

∫ 2π

0

ηrαk,mrk′′,m′

ηrαk,m +$
α
2
dθdrk′′,m′

]
,

(13)

where $ = r2
k′′,m′ + r2

mm′ − 2rk′′,m′rmm′ cos(θ − θmm′),
rk′′,m′ is the distance from IoT device k′′ to its serving AP
m′, following the distribution frk′′,m′ (x) = 2x

R2
s

, and rmm′ and
θmm′ are the distance and the relative angle between AP m
and AP m′, obtained from the given location of AP m and
AP m′, respectively.

Proof: Please refer to Appendix B.
We note that the Laplace transform of I inter

k,m in (13) is
obtained via assuming that the location of IoT devices in
different clusters follows a homogeneous PPP. We further
clarify that (13) can be directly applied to a more general
scenario where the location of IoT devices in different clusters
follows independent but non-identical homogeneous PPPs.
Specifically, the result for this scenario can be obtained by
using different IoT device densities for different clusters in
(13).

Based on the definition of the packet detection probability
in (11) and the Laplace transforms of I intra

k,m and I inter
k,m , given

in Lemma 1 and Lemma 2, respectively, we now derive
the packet detection probability, PDet[m], and present it in
Theorem 1.
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PDet[m] =
2

R2
s

∫ Rs

0

exp

[
− paλdπR

2
s

L

(
ξk,m

ξk,m + 1
+

ξk,m

(1 + 2
α )(ξk,m + 1)2 2F1

(
1, 2;

2

α
+ 2;

1

ξk,m + 1

)

+
∑

m′∈{1,...M}\{m}

1

πR2
s

∫ Rs

0

∫ 2π

0

ηrαk,mrk′′,m′

ηrαk,m +$
α
2
dθdrk′′,m′

)]
rk,mdrk,m. (14)

Theorem 1: For cluster m, the probability that the packet
from an IoT device can be successfully detected by its serving
AP m, i.e., the packet detection probability, is given by (14).

Proof: We express (11) as

PDet[m] =

∫ Rs

0

[
EIintra

k,m

[
exp

(
−ζk,mI intra

k,m

)]
× EIinter

k,m

[
exp

(
−ζk,mI inter

k,m

)]]
frk,m(rk,m)drk,m.

(15)

By substituting the Laplace transform of intra-cluster inter-
ference I intra

k,m , derived in (12), and the Laplace transform of
inter-cluster interference I inter

k,m , derived in (13), into (15), and
using the PDF of rk,m given by frk,m(rk,m) =

2rk,m
R2
s

, we
obtain the packet detection probability, PDet[m], as (14).

By observing (14), we make three remarks as follows.
First, the packet detection probability, PDet[m], is a decreasing
function of pa and λd. This indicates that increasing the
activity probability pa or the IoT device density λd in a cluster
results in a larger interference, thereby decreasing the packet
detection probability at the AP in the first tier. Second, PDet[m]
is an increasing function of L. This indicates that using more
orthogonal subchannels in the first tier reduces the congestion
in each subchannel and thus increases the packet detection
probability at the AP. Third, PDet[m] is affected by rmm′ and
θmm′ . This indicates that the packet detection probability for
AP m depends on its relative distance and angle with respect to
(w.r.t.) all the other APs. Thus, each AP has a unique packet
detection probability. We note that while (14) involves two
nested integrals, the integral interval is finite and thus, the
integrals are not difficult to be numerically solved.

When considering the special case with α = 2, we derive
the packet detection probability, Pα=2

Det [m], as

Pα=2
Det [m] =

2

R2
s

×
∫ Rs

0

 M∏
m=1

2ηr2
k,m√

$̃2 + 4ηr2
mm′r

2
k,m + $̃

%r2
k,m

rk,mdrk,m.

(16)

where % = 1
Lpaλdπη and $̃ = ηr2

k,m +R2
s − r2

mm′ .
Proof: Based on (15), the packet detection probability for

the special case with α = 2 can be expressed as

Pα=2
Det [m] =

∫ Rs

0

[
Eα=2
Iintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
× Eα=2

Iinter
k,m

[
exp

(
−ζk,mI inter

k,m

)]]
frk,m(rk,m)drk,m
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Fig. 3. The CDF and PDF of AP m’s traffic load Nm.

=

∫ Rs

0

2rk,m
R2
s

exp

[
−paλd

L
πη

(
r2
k,m

χ1
+
r2
k,m

2χ2
1

2F1(1, 2; 3;
1

χ1
)

+r2
k,m

M∑
m′ 6=m

∫ Rs

0

2rk′′,m′√
r4
k′′,m′+χ

2
2 +2χ3r2

k′′,m′

drk′′,m′

 drk,m
=

∫ Rs

0

exp

[
−%r2

k,m

(
1

χ1
+

1

χ2
1

∫ 1

0

x

1− x
χ1

dx

+ ln

(√
$̃2 + 4ηr2

mm′r
2
k,m + $̃

2ηr2
k,m

)2rk,m
R2
s

drk,m, (17)

where χ1 = ηr2
k,mR

−2
s + 1, χ2 = ηr2

k,m + r2
mm′ and

χ3 = ηr2
k,m− r2

mm′ . We note that the second step is obtained
from [36, Eq. (3.645)] and the third step is obtained via using
the Euler integral representation [37] of 2F1(a, b; c;x), i.e.,

2F1(a, b; c;x) = Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1−t)c−b−1

(1−xt)a dt. By solving
the inner integral in (17), according to [36, Eq. (2.261)], we
obtain the packet detection probability for α = 2.

It can be seen from (17) that the intra-cluster inter-
ference and the inter-cluster interference are expressed to-
gether, which is due to the closed-form expressions for
Eα=2
Iintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
and Eα=2

Iinter
k,m

[
exp

(
−ζk,mI inter

k,m

)]
,

as well as the fact of rmm = 0.
Next, we prove that the number of detected packets at AP

m in a subframe follows a Poisson distribution and present it
in Theorem 2.

Theorem 2: The number of detected packets at AP m in
subframe n during time slot t, denoted by Nm[t, n], can be
modeled as a Poisson RV. Thus, the total number of detected
packets at AP m across N subframes during T time slots,
denoted by Nm, is also a Poisson RV. Mathematically, it is
given by

Nm =

T∑
t=1

N∑
n=1

Nm[t, n] ∼ Pois(λm), (18)
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where λm = NTPDet[m]paλdπR
2
s .

Proof: Since the active IoT device is considered to trans-
mit only one packet in a subframe, the number of transmitted
packets is the same as the number of active IoT devices in
a subframe within a cluster, which is a Poisson RV with the
mean of paλdπR2

s . On average, one packet can be detected
by AP m with a probability PDet[m]. As a result, the number
of detected packets at AP m in subframe n during time
slot t, denoted by Nm[t, n], can be modeled as a Poisson
variable with mean of PDet[m]paλdπR

2
s . Since the number of

detected packets Nm[t, n] is i.i.d. among different subframes
and different time slots, the total number of detected packets
at AP m during T time slots is a Poisson RV with the mean
of λm = NTPDet[m]paλdπR

2
s , which completes the proof.

We note that all APs face heterogeneous traffic load distri-
bution for the second tier, since different APs have different
packet detection probabilities. This will be exploited for the
trajectory design in Section IV. To demonstrate the correctness
of Theorem 2, we plot the analytical and simulation results
for the PDF and the cumulative distribution function (CDF)
of Nm in Fig. 3(a) and Fig. 3(b), respectively. It can be seen
that the analytical results well match the simulation results in
both figures, which verifies our statement in (18).

B. Analysis of Second Tier Transmission

As previously mentioned, we assume that the transmitted
data can be successfully detected at the UAV in the second
tier, owing to the adoption of a coordinated access scheme.
Specifically, when the maximum achievable throughput from
AP m to the UAV is larger than or equal to the traffic load of
AP m, i.e., Um ≥ DNm, AP m transmits all the aggregated
data to the UAV. Otherwise, AP m can only select Um bits
from its buffer and transmit to the UAV. Thus, we derive the
average system throughput as

Θ =

M∑
m=1

Θm, (19)

where Θm denotes the average two-tier throughput of AP m.
Mathematically, Θm is derived as

Θm = ENm [DNmPr(DNm ≤ Um) + UmPr(DNm > Um)]

= DλmQ(bκc, λm) + UmP (bκc+ 1, λm), (20)

where κ = Um
D , b·c is the floor function, Γ(·, ·) is upper

incomplete Gamma function, and Γ(·) is Gamma function, and
Q(a, λ) and P (a, λ) are the regularized upper and regularized
lower incomplete Gamma functions, defined as Q(a, λ) =
Γ(a,λ)
Γ(a) and P (a, λ) = 1− Γ(a,λ)

Γ(a) , respectively. Here, as Q(a, λ)
refers to the CDF of a discrete Poisson variable Nm and
Um is continuous, the floor function is applied in (20) to
ensure that the first parameter of Q(a, λ), i.e., a, is an integer.
Furthermore, we note that the throughput Θm in (20) is a
pairwise linear function of the continuous variable Um, since
the floor function is involved.

We find from (20) that the average two-tier throughput
of AP m is determined by both the mean of its traffic

load, Dλm, and the maximum achievable throughput from
AP m to the UAV, Um. In particular, when the maximum
achievable throughput overwhelms the mean of its traffic load,
i.e., Pr(DNm ≤ Um) → 1 and Pr(DNm > Um) → 0,
Θm is dominated by Dλm. Alternatively, when the considered
system is traffic demanding, due to the massive IoT of the first
tier, i.e., Pr(DNm > Um) → 1 and Pr(DNm ≤ Um) → 0,
Θm is mainly determined by Um. Additionally, we prove that
Θm is a strictly monotonically increasing and concave function
of Um, and present it in the following lemma.

Lemma 3: The average two-tier throughput of AP m, Θm,
is a strictly monotonically increasing and concave function
w.r.t. the maximum achievable throughput from AP m to the
UAV, Um. This reveals that for a fixed mean of traffic load, i.e.,
fixed Dλm, the benefit of increasing Um is firstly profound
and then vanishes with Um � λm.

Proof: Based on (20), we obtain the derivative of Θm
w.r.t. Um as

dΘm
dUm

=
λ
bκc
m exp(−λm)

(bκc − 1)!

∞∑
k=1

δ(bκc − k) + P (bκc+ 1, λm)

− Um
λ
bκc
m exp(−λm)

D (bκc)!

∞∑
k=1

δ(bκc − k)

= P (bκc+ 1, λm). (21)

Since Q(a, λ) > 0 with an integer input a is the CDF of
a Poisson RV, its derivative w.r.t. a equals to the PDF of a
Poisson RV, which leads to the first step in (21). Moreover,
since P (a, λ) > 0 for all positive a and λ, we obtain dΘm

dUm
> 0.

This implies that Θm is a strictly monotonically increasing
function of Um. In addition, we derive the second order
derivative of Θm w.r.t. Um as

d2Θm
dU2

m

=
dP (bκc+ 1, λm)

dUm

= −λ
bκc
m exp(−λm)

D (bκc)!

∞∑
k=1

δ(bκc − k) < 0. (22)

This indicates that Θm in (20) is a concave function of Um,
which completes the proof.

We next investigate the impact of the mean of traffic load,
Dλm, on the increasing slope of the average two-tier through-
put w.r.t. maximum achievable throughput. Specifically, we
take the derivative of P (bκc+ 1, λm) in (21) w.r.t. λm, which
gives

dP (bκc+ 1, λm)

dλm
=

e−λmλ
bκc
m

Γ (bκc+ 1)
> 0. (23)

We see that when Dλm becomes larger, the increasing slope
of Θm w.r.t. Um becomes steeper. As such, for the AP with a
larger mean of traffic load, increasing its maximum achievable
throughput to the UAV is more beneficial to improve its aver-
age two-tier throughput, which can be achieved by navigating
the UAV closer to and allocating more time slots to this AP.

Now we note the interesting trade-off for the performance
between the first tier and the second tier when B = B1 +B2

is given. On one hand, the larger B1 allows more subchannels
in the first tier, which leads to an increasing packet detection
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probability, PDet[m], and a higher mean of traffic load, Dλm,
which may in turn increase the average system throughput.
On the other hand, a larger B1 results in a smaller B2

and hence less maximum achievable throughput is produced
in the second tier, which may decrease the average system
throughput. This interesting trade-off calls for an optimal
bandwidth allocation between the two tiers to maximize the
average system throughput.

IV. JOINT DESIGN OF UAV’S TRAJECTORY AND
RESOURCE ALLOCATION

In this section, we first formulate the joint design of the
UAV’s trajectory and resource allocation to maximize the
average system throughput. We then develop an iterative
algorithm to produce a suboptimal solution to the formulated
optimization problem.

Based on the analytical results derived in Section III, we
formulate the joint design to maximize the average system
throughput as

max
q[t],xm[t],pm[t],B1,B2

M∑
m=1

Θm (24)

s.t. C1: xm[t] ∈ {0, 1},∀m, t,

C2:
M∑
m=1

xm[t] ≤ 1,∀t,

C3: pm[t] ≥ 0,∀m, t,
C4: pm[t] ≤ pmax,∀m, t,
C5: ‖q[t]− q[t− 1]‖ ≤ δtVmax, t ∈ {2, . . . , T},
C6: q[1] = q[T ],

C7: Θm (Um) ≥ τm,∀m.
C8: B1 +B2 ≤ B.

In (24), Constraint C2 means that within one cruising period,
there is at most one AP communicating with the UAV during
each time slot to avoid the interference among APs. Constraint
C4 guarantees that the transmit power of each AP during
each time slot cannot exceed its maximum transmit power
pmax, which is in general limited by the power amplifier
at the AP. Constraint C5 is imposed to limit the maximum
replacement of the UAV with its maximum flying speed Vmax.
Constraint C6 denotes that the initial location of the UAV
is exactly the final location of the UAV, i.e., it is cruising
in the considered area within a period of T time slots. In
Constraint C7, τm is a unique minimum required average two-
tier throughput for AP m within the cruising period, which
is introduced to guarantee the APs’ heterogeneous quality of
service (QoS) requirements. At the same time, introducing
the minimum required average two-tier throughput for each
AP implies that the UAV cannot keep visiting several same
APs during the cruising period. Constraint C8 limits the total
available bandwidth for bandwidth allocation between the
two tiers. We note that the problem formulated in (24) is a
mixed-integer non-convex optimization, such that its globally
optimal solution is generally difficult to obtain. In particular,
the non-convexity arises from the binary constraint in C1.

More importantly, the average two-tier throughput in (20)
is a complicated non-convex function w.r.t. the optimization
variables q[t], xm[t], pm[t], B1, and B2, which is a major
obstacle to solve the problem in (24).

It is known that the average two-tier throughput of AP m,
Θm, in the objective function of (24) monotonically increases
when Um increases, as proved in Lemma 3, and the maximum
achievable throughput Um is an increasing function of the
transmit power, according to (10). Thus, for any given value of
other decision variables, the maximum transmit power is the
optimal solution to maximize the average system throughput.
It follows that the variable pm[t] can be set as pmax, i.e.,
pm[t] = pmax, ∀m, t, in the following. Moreover, due to
the complicated expression for PDet[m] w.r.t. B1 = L∆f , as
analyzed in (16), it is non-trivial to allocate the bandwidth
between the two tiers through convex optimization. Fortu-
nately, we observe that Constraint C8 holds with equality
at the optimal point since the performance of the first tier
and the performance of the second tier increases with B1

and B2, respectively. Thus, the bandwidth allocation can be
optimized via one-dimensional exhaustive search. Of course,
we note that B1 can only take discrete values to ensure an
integer number of subchannels L, due to B1 = L∆f with a
fixed bandwidth ∆f . Additionally, we define a slack variable
dm[t] =

(
H2 + ‖q[t]−wm‖2

)−1
> 0 to facilitate our design

of UAV’s trajectory. Accordingly, given pm[t] = pmax and
the optimal bandwidth allocation, B∗1 and B∗2 = B −B∗1 , we
equivalently transform the formulated problem as

max
q[t],xm[t],dm[t]

M∑
m=1

Θm (Um (dm[t], xm[t] |pmax, B
∗
2 ) |B∗1 )

(25)
s.t. C1, C2, C5, C6,

C7: Um (dm[t], xm[t] |pmax, B
∗
2 ) ≥ Θ−1

m (τm) ,∀m,

C9: H2 + ‖q[t]−wm‖2 ≤
1

dm[t]
,∀m, t,

where Um (dm[t], xm[t] |pmax, B
∗
2 ) in the objective function

and Constraint C7 is obtained as

Um (dm[t], xm[t] |pmax, B
∗
2 )

= δtB
∗
2

T∑
t=1

xm[t] log2

(
1 +

pmaxβ
2
0dm[t]

B∗2N0xm[t]

)
. (26)

Recall that Θm is a strictly monotonically increasing function
of Um. In other words, there is a one-to-one mapping between
Θm and Um and thus, Constraint C7 can be equivalently
rewritten as Um ≥ Θ−1

m (τm), ∀m. Furthermore, we observe
that Um in (26) is a concave function w.r.t. dm[t] and xm[t].
Hence, the objective function is a concave function w.r.t. dm[t]

and xm[t] since ∂Θm
∂Um

> 0 and ∂2Θm
∂U2

m
≤ 0 [38].

Now the major obstacle to solve (25) is the binary Con-
straint C1 spanning a disjoint feasible solution set. To over-
come this obstacle, we rewrite Constraint C1 as two con-
straints, given by

C1a: xm[t] ∈ [0, 1] ,∀m, t, (27)
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C1b:
M∑
m=1

T∑
t=1

xm[t]−
M∑
m=1

T∑
t=1

(xm[t])
2 ≤ 0. (28)

Although xm [t] is relaxed to be real between zero and one
in C1a, the additional constraint C1b guarantees that xm [t]
must be zero or one, which is commonly adopted for user
scheduling design in the literature [39, 40].

With the aforementioned manipulation, the non-convexity
of the problem in (25) now arises from Constraints C1b and
C9 only. To address this, we employ an iterative algorithm
based on the SCA technique [39, 41] to achieve a suboptimal
solution for the joint design of UAV’s trajectory and resource
allocation. In particular, given a feasible solution, diter

m [t] and
xiter
m [t] in the iter-th iteration, we have

max
q[t],xm[t],dm[t]

M∑
m=1

Θm (Um (dm[t], xm[t] |pmax, B
∗
2 ) |B∗1 )

(29)
s.t. C1a, C2, C5, C6, C7,

C̃1b :

M∑
m=1

T∑
t=1

xm[t]−
M∑
m=1

T∑
t=1

(
xiter
m [t]

)2
+ 2

M∑
m=1

T∑
t=1

xiter
m [t]

(
xm[t]− xiter

m [t]
)
≤ 0,

C̃9 : H2 + ‖q[t]−wm‖2 −
1

diter
m [t]

+
dm[t]− diter

m [t]

(diter
m [t])

2 ≤ 0,∀m, t,

where constraints C̃1b and C̃9 are obtained via the first order
Taylor expansion on their non-convex terms in their left hand
side functions. As constraints C̃1b and C̃9 span a smaller
feasible solution set, compared to that of C1b and C9, the
problem in (29) provides a lower bound on the problem in
(25).

We find that the transformed problem in (29) is a con-
vex optimization problem given diter

m [t] and xiter
m [t], which

can then be solved efficiently by standard convex problem
solvers, such as CVX [42]. Therefore, based on the SCA
technique [39, 41], we propose an iterative algorithm to tight-
en the lower bound obtained from solving (29), which is
summarized in Algorithm 1. In this algorithm, the initial
cruising trajectory q1[t] is set as a circular trajectory in the
considered serving area as shown in Fig. 8 in Section V and
thus, d1

m[t] =
(
H2 + |q1[t]−wm‖2

)−1
, ∀m, t. Moreover,

the AP scheduling variables are initialized by selecting the
AP closest to the UAV during each time slot, i.e., x1

m[t] =
argmaxm d

1
m[t], ∀t. In the iter-th iteration, an intermediate so-

lution
(
qiter+1[t], diter+1

m [t], xiter+1
m [t]

)
is obtained by solving

the problem in (29) with given
(
qiter[t], diter

m [t], xiter
m [t]

)
. This

solution is then used for updating the problem in (29) for the
next iteration. The algorithm terminates when the maximum
iteration number is reached, i.e., iter = itermax, or the change
of optimization variables between adjacent iterations becomes
smaller than a given convergence tolerance ε. As proved in
[43], the proposed iterative trajectory and resource allocation

Algorithm 1 Iterative Trajectory and Resource Allocation
Algorithm
1: Initialization

Initialize the convergence tolerance ε, the maximum number of iterations
itermax, the iteration index iter = 1, and the initial feasible solution(
qiter[t], diterm [t], xiterm [t]

)
.

2: repeat
3: Solve (29) for a given

(
qiter[t], diterm [t], xiterm [t]

)
to obtain an inter-

mediate solution
(
qiter+1[t], diter+1

m [t], xiter+1
m [t]

)
.

4: Set iter = iter + 1.
5: until iter = itermax or∑M

m=1

∑T
t=1

(∣∣∣xiter+1
m [t]− xiterm [t]

∣∣∣+ ∣∣∣diter+1
m [t]− diterm [t]

∣∣∣) ≤ ε.

6: Return the solution (d∗m[t], x∗m[t],q∗[t]) =
(
diterm [t], xiterm [t],qiter[t]

)
.

TABLE II
PARAMETER VALUES FOR SIMULATIONS [14, 24, 44].

Notations Simulation value Notations Simulation value
R 350 m N0 −169 dBm/Hz
M 10 T 30-60
Rs 50 m τm 100T bits
D 10 bits N0 −169 dBm/Hz
pmax 15 dBm

algorithm is guaranteed to converge to a stationary point with
a polynomial time computational complexity.

V. NUMERICAL RESULTS

In this section, we present the numerical results to verify
our analysis and to evaluate the performance of our proposed
design. We consider a UAV-enabled massive IoT system
deployed in a rural environment, where little blockage or
scattering obstacles exist. In the simulations, we set the UAV’s
height as H = 100 m, the channel power gain at reference
distance 1 m as β0 = −50 dBW, and the maximum flying
speed as Vmax = 30 m/s [35, 45, 46]. The time slot length is
δt = 1 s and each time slot is further divided into N = 100
subframes [35, 47]. We assume that the subchannel bandwidth
is ∆f = 1 kHz and the target rate of each IoT device is R0 = 1
kbps, thereby leading to the spectral efficiency of 1 bit/s/Hz as
that in [48]. Unless otherwise stated, the parameter values are
given in Table II. To demonstrate the performance gain of our
proposed design, we consider three baseline schemes (BaSs)
for comparison, described as follows:
• BaS 1: One-tier system with a fixed ground BS located in

the center of the considered area. All the IoT devices di-
rectly communicate with the ground BS through a multi-
channel ALOHA-based random access scheme using the
total bandwidth B and the total time duration Tδt.

• BaS 2: One-tier system with a mobile UAV BS. All the
IoT devices directly communicate with the UAV through
a multi-channel ALOHA-based random access scheme
using the total bandwidth B and the total time duration
Tδt. In this system, a circular UAV’s cruising trajectory
is adopted.

• BaS 3: Our proposed two-tier system but with a circular
UAV’s cruising trajectory.
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Fig. 4. Analysis and simulation for the packet detection probability at AP
m.

A. Detection Probability

Fig. 4 plots the packet detection probability, PDet[m], versus
the number of available subchannels, L, in the first tier. From
this figure, we first observe that our derived analytical results
tightly match the simulation results, which demonstrates the
accuracy of our performance analysis. Second, we observe that
PDet[m] increases with L, particularly in the low to medium
regime of L. This is because that when there are a low number
of available subchannels, multiple IoT devices have a very high
chance to select the same subchannel. Thus, the intra-cluster
and inter-cluster interferences are severe when L is in the low
to medium regime, which implies that L profoundly affects
PDet[m]. Third, we observe that a larger path-loss exponent α
leads to an increase in PDet[m], due to the reduced intra-cluster
and inter-cluster interference caused by a larger α. Fourth,
we observe that when the active probability pa increases,
PDet[m] decreases. This is due to the fact that for a larger
pa, more IoT devices become active, which introduces more
severe interference.

B. Average System Throughput

Fig. 5 plots the average system throughput versus the den-
sity of IoT devices in each cluster, λd. First, we observe that
when λd increases, the average system throughput of the two-
tier systems, i.e., our design and BaS 3, increases while that
of the one-tier systems, i.e., BaS 1 and BaS 2, decreases. This
observation is not surprising, since for the one-tier systems, a
higher density of IoT devices causes more severe interference.
For the two-tier systems, introducing APs between IoT devices
and the UAV effectively reduces the potential congestion on
the same subchannel in the first tier. Although increasing the
density of IoT devices generates more severe interference at
the AP within each cluster, our proposed bandwidth allocation
between two tiers allocates more subchannels to the first
tier for accommodating additional IoT devices. Second, we
observe that our design achieves a much higher average
system throughput than BaS 3, and BaS 1 achieves a higher
average system throughput than BaS 2. This is because that
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Fig. 5. Average system throughput (bits) versus the density of IoT devices
in each cluster for B = 1 MHz and T = 50.
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Fig. 6. Average system throughput (bits) versus total available bandwidth
for λd = 5× 106 /km2 and T = 50.

for the two-tier system, our proposed design exploits the
heterogeneous traffic load distribution among different clusters
(or equivalently, APs) through designing the cruising trajectory
of the UAV, while BaS 3 does not. For the one-tier system,
each IoT device enjoys a LoS channel to the mobile UAV
in the sky in BaS 2; therefore, BaS 2 suffers from much
stronger interference than BaS 1 when the density of IoT
devices increases.

Fig. 6 plots the average system throughput versus the total
available bandwidth, B. We first observe that for our design
and three BaSs, the larger B leads to the higher average
system throughput. Second, we observe that BaS 3 achieves
a substantial throughput gain relative to BaS 1 and BaS
2, especially when the total bandwidth is limited. This is
because that in the one-tier systems, congestion occurs very
frequently due to the limited number of subchannels. In the
two-tier systems, introducing APs between IoT devices and the
UAV significantly liberates the UAV from the congestion and
yields a higher average system throughput. Third, we observe
that for the two-tier systems, the performance gain of our
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Fig. 7. Average system throughput (bits) versus the number of time slots
within one cruising period for λd = 5× 106 /km2 and B = 1 MHz.

proposed design over BaS 3 increases with larger B. This
is because our design of UAV’s trajectory provides a higher
channel power gain compared to BaS 3, which enables a more
efficient exploitation of the spectrum resource. Therefore,
more maximum achievable throughput can be achieved in the
second tier, which improves the average system throughput. In
addition to this reason, since a smaller bandwidth is required
due to the better channel condition in the second tier, there
are more available bandwidth saved for the multi-channel
ALOHA in the first tier. As a result, a higher packet detection
probability can be achieved at APs, which is also beneficial to
improve the average system throughput. Fourth, the increasing
slope w.r.t. the total bandwidth for the two-tier systems, i.e.,
our proposed design and BaS 3, is first higher and then lower,
while that of the one-tier systems, i.e., BaS 1 and BaS 2, is
almost constant. This is because that the traffic congestion
in the two-tier systems is much less than that in the one-
tier systems, due to the deployment of APs. Thus, when the
total bandwidth increases from small to medium, this increase
efficiently deals with the relatively low traffic congestion in
the two-tier systems, leading to a profound improvement in
the average system throughput. When the total bandwidth
becomes large, the performance of the first tier is already
good such that the increasing bandwidth only brings a limited
improvement in the average system throughput.

Fig. 7 plots the average system throughput versus the
number of time slots within one cruising period, T . First, we
observe that for our design and three BaSs, the increasing T
improves the average system throughput, since the UAV or
ground BS can collect more data when there are more time
slots. Second, we observe that our design achieves the best
performance compared to other BaSs, which demonstrates the
effectiveness of introducing APs and our proposed design of
UAV’s trajectory and resource allocation. Third, we observe
that the increasing slope of our design w.r.t. T becomes
slightly higher when T increases. This shows the benefit of
the additional degrees of freedom provided by the UAV’s
trajectory design. Fourth, we observe that the performance of
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Fig. 8. Geometry distribution of APs and the trajectory of UAV.

BaS 1, BaS 2, and BaS 3 almost linearly increases with T ,
since the system is static with increasing T . Fifth, we observe
that the increasing slope of BaS 3 is much higher than those
of BaS 1 and BaS 2, which demonstrates the performance gain
of introducing APs.

C. UAV’s trajectory

Fig. 8 plots the optimized trajectories with T = 30 and
T = 50 revealed by our proposed design to examine the
impact of T on the UAV’s trajectory. When T = 30, the
number of time slots is relatively limited. Thus, the UAV’s
trajectory design is stringent and it is difficult to provide a
high maximum achievable throughput in the second tier. It
follows that the UAV prefers to fly close to the AP having a
higher traffic load demand, in order to achieve a higher average
system throughput, such as AP 1 in Fig. 8. When T increases
from 30 to 50, the UAV’s trajectory design becomes more
flexible to provide a sufficiently large maximum achievable
throughput in the second tier. As proved in Lemma 3, the
average two-tier throughput of AP m, Θm, is a concave
function w.r.t. its maximum achievable throughput to the UAV,
Um. Therefore, further increasing Um for a sufficiently large
Um does not bring a significant gain in the average two-tier
throughput of AP m. It can be seen that the UAV with T = 50
prefers to cruise to each set of APs, rather than to the specific
AP with a high traffic load, as shown for the case with T = 30.

VI. CONCLUSIONS

This paper proposed a two-tier UAV communication strate-
gy where multiple APs are introduced to help a UAV for data
collection from massive ground IoT devices. In such strategy,
a multi-channel ALOHA-based random access scheme was
adopted in the first tier to accommodate the massive IoT
devices within each cluster, while APs were required to
transmit their aggregated data to the UAV through TDMA
in the second tier. The packet detection probability and the
traffic load distribution at each AP were analyzed to evaluate
the performance of the first tier transmission. Moreover, the
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average system throughput was derived for the proposed
strategy based on the maximum achievable throughput in the
second tier transmission. We found that the average two-
tier throughput of each AP monotonically increases with its
maximum achievable throughput in the second tier, while the
increasing slope becomes steeper with a higher traffic load
mean in the first tier. Furthermore, the joint design of UAV’s
trajectory and resource allocation was formulated as a non-
convex optimization problem and a low complexity iterative
algorithm was developed to achieve a suboptimal solution to
the formulated joint design problem. With extensive numerical
results, we demonstrated the accuracy of our proposed analysis
and identified the substantial performance gain of introducing
APs and our design in the context of massive access, compared
to the baseline schemes.

APPENDIX A
PROOF OF LEMMA 1

According to the independent thinning property of stochas-
tic geometry [49], for each cluster the location of active
IoT devices can be modeled as a homogeneous PPP with
the density paλd. Moreover, since the active IoT devices
select the subchannels randomly and uniformly, the location
of active IoT devices which select the same subchannel can
be modeled as a homogeneous PPP with the density paλd

L ,
denoted by Φm for cluster m. Thus, we exploit the probability
generating functional (PGFL) of homogeneous PPP and derive
the Laplace transform of Iintra as

EIintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
= EIintra

k,m

exp

−ηrαk,m ∑
k′∈Φm\{k}

|hk′,m|2 r−αk′,m


= E|hk′,m|2,Φm

[ ∏
k′∈Φm

exp
(
−η|hk′,m|2rαk,mr−αk′,m

)]
. (30)

By defining V = |hk′,m|2 which has the PDF given by
fV (v) = exp(−v), we express the expectation in the last line
of (30) as

exp

[
−paλd

L

∫ ∞
0

`fV (v)dv

]
, (31)

where ` is given by and derived as

` =

∫ 2π

0

∫ Rs

0

(
1− exp

(
−ηvrαk,mr−αk′,m

))
rk′,mdrk′,mdθ

= πR2
s

(
1− exp(−ηvrαk,mR−αs )

)
+ πη

2
α r2

k,mv
2
αΓ

(
1− 2

α
, ηrαk,mR

−α
s v

)
. (32)

where ξk,m is given below (12). Substituting (32) into (30) and
solving the resultant integral, we obtain the Laplace transform
of Iintra as

EIintra
k,m

[
exp

(
−ζk,mI intra

k,m

)]
= exp

[
−paλd

L
π

(
R2
s −

R2
s

ηrαk,mR
−α
s + 1

+
η

2
α r2

k,m(ηrαk,mR
−α
s )1− 2

α

(1 + 2
α )(ηrαk,mR

−α
s + 1)2

×2F1

(
1, 2;

2

α
+ 2;

1

ηrαk,mR
−α
s + 1

))]
. (33)

By rearranging (33), we obtain (12), which completes the
proof.

APPENDIX B
PROOF OF LEMMA 2

In the considered system, all IoT devices are spatially
distributed in a multi-cluster form. For each cluster, the
location of the IoT devices are assumed to follow an i.i.d.
homogeneous PPP, which is centered at the serving AP within
a finite area. Then, the distance from IoT device k′′ of cluster
m′, m′ ∈ {1, . . .M}\{m}, to the typical AP m is given
by rk′′,m =

√
$, where $ is given below (13). Moreover,

within cluster m′, the location of interfering IoT devices for
the typical IoT device is modeled as a homogeneous PPP
with the density paλd

L , denoted by Φm′ . Thus, according to
the PGFL of the homogeneous PPP, the Laplace transform of
I inter
k,m can be derived as

EIinter
k,m

[
exp

(
−ζk,mI inter

k,m

)]
= EIinter

k,m

exp

−ηrαk,m ∑
k′′∈Φm′ ,m

′∈{1,...M}\{m}

|hk′′,m|2r−αk′′,m


=

∏
m′∈{1,...M}\{m}

E|hk′′,m|2,Φm′

 ∏
k′′∈Φm′

exp
(
−ηrαk,m|hk′′,m|2r−αk′′,m

)
(34)

By defining Ṽ = |hk′′,m|2 which has the PDF given by
fṼ (ṽ) = exp(−ṽ), we express the expectation in the last line
of (34) as

exp

[
−paλd

L

∫ Rs

0

rk′′,m′

∫ 2π

0

˜̀dθdrk′′,m′

]
, (35)

where ˜̀ is given by and derived as

˜̀=

∫ ∞
0

(
1−exp

(−ηrαk,mṽ
$

α
2

))
fṼ (ṽ)dṽ=

ηrαk,m
ηrαk,m+$

α
2
. (36)

Finally, we substitute (36) into (35) and then into (34) to obtain
the Laplace transform of Iinter as (13), thus completing the
proof.
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