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Abstract—In this paper, we consider the minimum data rate
problem for linear system stabilization under noiseless commu-
nication channels. Previous results indicated that having a data
rate very approaching the entropy bound leads to large delays
and data buffer sizes. In analogy, the entropy bound in Shannon’s
source coding theorem in traditional information theory displays
this behavior, where the data rate can be arbitrarily close to the
entropy bound but only at the cost of boundlessly enlarging the
blocklength. However, in this work, we show the analogy is not
strict. We prove that it is possible to stabilize a linear system
at a rate equal to the entropy bound with zero delay, that is,
where each system state is encoded and decoded within one time
unit. We establish a set of sufficient conditions for guaranteeing
zero-delay entropy-achieving codes. Following this we design an
entropy-achieving code with finite blocklength satisfying the set
of sufficient conditions, where the codeword length is uniformly
bounded.

Index Terms—Linear system control, stabilization, minimum
data rate, entropy-achieving code, finite blocklength, zero delay.

I. INTRODUCTION
A. Motivation

The minimum data rate problems for stabilizing Networked
Control Systems (NCS) have been studied nearly 20 years with
the earliest results appearing in [1] and [2]. By achieving the
minimum data rate (i.e., the entropy bound), the NCS is able to
most efficiently utilize the limited communication bandwidth.
However, there is a drawback in that for existing entropy-
bound-achieving methods the blocklength! goes to infinity
when the data rate approaches the entropy bound (see [3],
[4] for examples). As a result, if a data rate gets closer to
the minimum data rate, each codeword needs the information
from more time units to be encoded, and the NCS will face
two serious problems: (i) the system delay is unacceptably
large, and (ii) the data buffer for codeword storage is also
unacceptably large. Unfortunately, it is impossible to reduce
the blocklength while approaching the entropy bound using
the methods in the literature, even for the simplest scalar (one-
dimensional) linear systems. Even though some efforts were
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'In this paper, the blocklength is the number of system states in adjacent
time units to encode a codeword. The length of one time unit refers to the
sample period of a NCS.

made for reducing the cost caused by finite blocklength coding
(e.g., [5]), it is still not able to achieve the entropy bound
in general. For this reason, the minimum data rate problems
have been studied incompletely for stabilizing NCSs. This
incompleteness comes from the fact that the encoding and
decoding methods used are informed from Shannon’s source
coding theorem (see Chapter 5 in [6]), where the encoder
encodes every k system states x; (a.k.a. source symbols) to a
packet as follows?
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In Shannon’s source coding theorem, it is well known that the
larger the blocklength k is, even though the closer the data rate
will get to the entropy bound, the longer the codeword will
be. This fact implies that if we still follow the framework of
Shannon’s source coding theorem, any attempt to reduce the
blocklength will eventually become a compromise so that the
data rate is pushed away from the entropy bound. Therefore,
it is necessary to jump out of the conventional framework and
find a completely different way to study the minimum data
rate for stabilizing NCSs.

In this work, we examine the linear system stabilization
problem where the entropy bound can be achieved (with-
out any gap) by using finite blocklength codes. Actually, if
abandoning the view “encoding more system states is the
only way to reduce the data rate”, we can achieve this goal.
Surprisingly, encoding only one system state at each time unit,
i.e., the blocklength is £ = 1 in (1), is enough to achieve this
goal, which means the system delay can be zero for entropy-
achieving codes.

B. Related Work

Generally speaking, in source coding design® for stabiliza-
tion, the data rate reflects the ability to eliminate the system
uncertainties: if the uncertainties gradually vanish under a
sufficiently high data rate while the control law asymptotically
pushes the system towards a fixed point (or a given region),
then the system will be stabilized. For all those data rates that
can guarantee system stabilization, there is a tight lower bound
called the entropy bound, and minimum data rate problems
seek this entropy bound and/or propose the coding method to
achieve this bound.

2Since the existing works are based on Markov systems, encoding the last
symbol (e.g., x, which contains the uncertainty from x1 to x) is equivalent
to encoding all the symbols in one block.

3The channel is assumed to be noiseless.



For discrete-time MIMO linear control systems with/without
bounded disturbances, the minimum data rate for stabilization
was obtained in [7], where the asymptotic observability was
utilized to calculate a lower bound of minimum data rate
which was then proved to be tight. In [8], an identical lower
bound was derived for stabilizing linear stochastic systems
in the mean square sense, and any data rate strictly greater
than this lower bound can be achieved by using finite-
dimensional coder-controller with periodic alphabet. Surpris-
ingly, this lower bound (given in [7], [8]) has the same form as
the topological entropy for linear mappings first introduced in
1965 by [9], and the topological entropy measures the average
number of distinguishable orbits over time for a control-free
dynamical system [10], [11]. Actually, the minimum data
rate for stabilization equaling the topological entropy is a
coincidence, since the former corresponds to the orbits related
to stabilization (i.e., towards a fixed point or region) rather
than all the orbits generated by an uncontrolled system as
the latter corresponds to. In other words, the minimum data
rate for stabilization reflects the local property of a mapping,
while the topological entropy represents the global property.
The reason why this coincidence happens for linear control
systems is that: the uncertainties are always generated with
the same speed regardless of where the uncertainty region
is, because local property means global property in linear
mappings. But for nonlinear systems, it is not the case.
To describe the minimum data rate for stabilizing nonlinear
control system, we need another kind of topological entropy,
and this entropy was established in [12], named Topological
Feedback Entropy (TFE). In [12], the TFE provided a strict
way to describe the minimum data rate for stabilizing discrete-
time linear/nonlinear control systems, and as an example the
TFE for the locally uniformly asymptotically stabilization
was calculated. Afterwards, a topological entropy called the
invariance entropy [13], [14] was defined to determine the
minimum data rate for stabilizing continuous-time control
systems. Different from the discrete-time control systems, the
control law is designed as a continuous-time function (rather
than a constant value during a sampling interval), and it is
immediately updated when receiving a new codeword [15],
just like the event-triggered control strategy. The invariance
entropy also works on discrete-time control systems, and the
comparison with the TFE was fully discussed in [16].

All above studies are about the minimum data rate for
all possible classes of quantizers. But if one only considers
the logarithmic quantizers (a very important class of quantiz-
ers [17]), what should the minimum data rate for stabilization
be? In [18], this problem was completely solved for discrete-
time linear control systems.

Thanks to these seminal studies, the foundation of the
minimum data rate stabilization theory was well established.
However, as stated in Section I-A, the coding methods they
used are all with the form of (1). That means, practically
speaking, when approaching the entropy bound, the data rate
results in an unacceptable system delay and an unacceptably
large data buffer size for real-time control systems. Mathemat-
ically speaking, all the existing results just consider the case
that R > H, where R is the data rate of a designed coding

method and H is the entropy bound, and these works are not
able to study the case R = H.

C. Our Contributions

In this work, we study the source coding theory for
stabilizing discrete-time MIMO linear control systems, and
propose a finite blocklength entropy-bound-achieving code for
stabilization. The main contributions are: We establish a zero-
delay framework of encoding-decoding designs where each
system state is encoded and decoded within one time unit,
i.e., the blocklength is 1. More importantly, in this framework
we propose a set of sufficient conditions for entropy-achieving
codes that once an encoding-decoding design satisfies this
condition, then its data rate achieves the entropy bound without
any gap. Based on this set of sufficient conditions, an entropy-
achieving code with zero delay is designed, where the lengths
of all the codewords are uniformly bounded.

D. Paper Organization

Section II gives the preliminaries of this paper, and it has
four subsections: Firstly, the system model is given in Sec-
tion II-A. Secondly, in Section II-B a coding-quantizing frame-
work is established. Thirdly, a zero-delay encoding-decoding
framework is proposed in Section II-C. Finally, in Section II-D
the problem description is provided. In Section III, we propose
a set of sufficient conditions for zero-delay entropy-achieving
codes as a criterion for coding designs. Based on this criterion,
an entropy-achieving code with bounded codeword length is
designed in Section IV. Concluding remarks are given in
Section V.

E. Notation

Throughout this paper, R, Z,, and Z, denote the sets
of real numbers, non-negative integers, and positive integers,
respectively. R™ stands for the n-dimensional Euclidean space.
tn(A) is the Lebesgue measure on a measurable set A C R™.
D(B) denotes the diameter of a compact set B C R”
with D(B) = max, yep ||z — y||. Symbol O represents the
number zero or zero matrices (including vectors) with proper
dimensions. The limit superior and limit inferior are denoted
by lim and lim, respectively. For a square matrix A € R"*",
the spectrum is spec(A), and the spectral radius is p(A). | - |
denotes the magnitude of a complex number. If not specified,
|| - || refers to the Euclidean norm. For a € R, (a)* returns
max{0, a}.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. System Model

Consider the fully observed, time-invariant, linear system
DN

Tiyr1 = A,fCt + .B’LLt7 te Z+, (2)

where the state is z; € X = R", and the input is u; €
U = R™. The system matrix and input matrix are A € R™"*"
and B € R™*™, respectively. Without loss of generality, we
assume the magnitudes of all eigenvalues in A are not less



than 1, and pair (A, B) is controllable [4], [7].* The feedback
control system is shown as Fig. 1, where the initial state x
is deterministically unknown in a compact set Xy C X’ with
pn(Xo) > 0. Initially, state o is unknown to the encoder-
decoder pair, but X is known to the encoder-decoder pair.

u[
Sensor
Encoder-Decoder Pair
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Fig. 1. Networked control system with a noiseless channel, where the
dynamics of the plant are governed by (2).

Controller

Noiseless Channel

At each time t € ZJr, the encoder obtains the state x; from
the sensor and the decoder passes the quantized state Z; to
the controller. The controller applies the control signal v, =
¥¢(Z¢) to the plant which affects the state z;,q at time ¢ + 1
through (2), where ¢, : X — U is known to the encoder-
decoder pair. We can see that, without the encoder-decoder
pair (in this case, Z; = x;), the system in Fig. 1 becomes a
classic discrete-time linear control system. With the encoder-
decoder pair, the system in Fig. 1 is referred to as the quantized
system.

At each time t, the encoder encodes the information from
state x; to a codeword, i.e., a bit string (see Fig. 1), and sends
it to the decoder through a noiseless channel. After receiving
this codeword, the decoder decodes it to get the quantized
state T;, which is used by the controller. This process (from
t = 0 towards oo) is called the encoding-decoding process
with blocklength 1, because each codeword depends only on
the system state at one time. Since the codeword is encoded
and decoded within one time unit, the system delay is zero,
i.e., any Z; can be obtained by the controller at time ¢. In
this paper, we focus on how to design the encoding-decoding
process and the control law to stablize the quantized system
of (2) with minimum data rate and blocklength 1 (i.e., zero
delay).

B. Coding-Quantizing Framework

This framework tells how a point a¢ in a compact set A,
called coding range, is encoded to a codeword, and how it is
quantized. Briefly speaking, the main idea is to use a set of
compact sets to cover A. Then, each compact set is endowed
with a unique bit string. For each compact set, we select one
point as its representative, as the quantized value.

In general A may be hard to succinctly characterize so we
introduce an easy-to-describe superset B and divide it into
some regions (which may include parts not in .4). In fact these
divisions are a cover, and Definition 1 furnishes the necessary
notations and terminology, illustrated in Fig. 2.

Definition 1 (Coding Cover, Coding Cell, and Coding Scale).
Given a coding range A C R", which is a compact set, the

4Since the magnitudes of all eigenvalues in A are not less than 1, pair
(A, B) is controllable means it is stabilizable.
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Fig. 2. Tllustrations of coding cover and codeword. The shaded area is the
coding range A and the area 3 enveloped by the thick lines is a superset of .A.
The coding cover Q(.A) (the grided parallelogram) is the set of all coding cells
(") (A) (the parallelogram) whose joint (i.e., the area B) contains .A. For
point a, it falls into four coding cells o(*) (A) (k € K¢ = {x*, k', k2, k3}),
and the encoder-decoder pair has a consensus on choosing U(”*)(A) as the
coding cell that point a located in. Then, the codeword is chosen as the same
as the cell code of o(+")(A). Since k* = (3,2), the codeword is 01010,
where the first two bits 01 represent 2 (since it starts from 1 rather than 0),
and for the same reason the last three bits 010 stand for 3.

coding cover Q(A) is a finite set of compact sets o*)(A)
with the index set K > k and the bijective r — ") (A),
when satisfying the following three conditions:
() pn (0™ (A)) >0, Vs € K;
(i) Uper o™ (A4) 2 A;
Gii) o () (A) N (A)) = 0, VK, K" € K (i #
K//,).
We call ") (A) as the coding cell of A with index . We define
D := max.ecx D (a(“)(A)) as the coding scale of coding
cover Q(A).

In Definition 1, a coding cover needs to satisfy three
conditions: (i) every coding cell has a positive volume in R";
(ii) any point in coding range A must fall in at least one coding
cell; and (iii) any overlap between two coding cells is with zero
volume. The coding scale reflects the worst-case diameter for
the coding cells in the coding cover. An illustrative example
of the coding cover is given in Fig. 2.

Note that the encoder and the decoder should have a
consensus on the coding range A and the coding cover Q(A).

Definition 2 (Selected Coding Cell). Given a coding cover
Q(A) and a point a € A, the selected coding cell of a is a
mapping S : A — Q(A) such that

S(a) =
o) (A),if a € o*)(A) holds for only one € K,
o) (A),if a € ") (A) holds for more than one k € K,
(3)

where the encoder and the decoder have a consensus on
choosing K*.

The role of selected coding cell is indeed to classify all the
points in set A into different cases (i.e., different coding cells).
It builds up a link between any point a € A and coding cells
o) (A) € Q(A). Based on this link, the encoder can classify
a given point a € A to the coding cell S(a) which corresponds



to a unique bit string, called codeword (see Definition 3).
Through decoding this codeword, the decoder knows which
coding cell is selected by the decoder, i.e., the decoder can
obtain S(a).

Based on the selected coding cell in Definition 2, we define
the codebook and the codeword as follows.

Definition 3 (Codebook and Codeword). Given a coding
cover Q(A) with #9(A) > 1 (or equivalently #K > 1),
each o) (A) is endowed with a unique string of L =
log, [#Q(A)] bits, called the cell codeword

e (QUA), 0 ™(A)) =biba... by, 0

where by € {0,1} (I € {1,...,L}) is the I™ bit of the
codeword, and L is the codeword length. All cell codewords
form the codebook C(Q(A)), ie.,

c(Q() = {e(QM). e () ke k). ©)
Then, the codeword of point a € A is
c(Q(A),a) :=2(Q(A),S(a)), (6)

where S(a) is the selected coding cell (see Definition 2).

If #Q(A) = 1 (or equivalently #K = 1), the codebook is
C(Q(A)) = 0, and there are no generated codewords of Va €
A. In this case, the codeword length is L = log, #Q(A) = 0.

In Definition 3, different coding cells have different cell
codewords, and all the cell codewords form the codebook.
According to condition (ii) in Definition 1, any point a in
coding range A must fall into at least one coding cell, and this
guarantees that any a € A must have a codeword. From (6),
we know that this codeword is exactly the cell codeword of
selected coding cell S(a).

Through decoding a codeword, the decoder can have a
consensus on S(a) with the encoder, even though the decoder
does not know point a. For control systems, furthermore, the
quantized value of point a is needed by the controller (see
Fig. 1), which is selected from S(a).

Before defining the quantized value, we introduce the def-
initions of the representative, the representative set, and the
representative mapping.

Definition 4 (Representative, Representative Set, and Repre-
sentative Mapping). Given a coding cover Q(A), point 3% is
a representative of coding cell o) (A), if ) € o) (A). A
representative set is the set of the representatives of all coding
cells in the coding cover, i.e.,

B(Q(A)) = {ﬁ(”): K€ /c} : %

Then, the representative mapping is p: Q(A) — B(Q(A))
such that
p(o(A)) = 5. ®)

Definition 4 says that any point in a coding cell can be its
representative. Once the representatives of all the coding cells
are selected, these representatives form the representative set.
Then, the representative mapping, which must be common to
the encoder and decoder, matches each coding cell with its

representative. We can now define the quantized value of any
point a € A.

Definition 5 (Quantized Value). Given a coding cover Q(A)
and a representative mapping p, the quantized value of any
point a € A is a = p(S(a)).

C. Zero-Delay Encoding-Decoding Framework

In this subsection, we establish the zero-delay encoding-
decoding framework where each codeword is encoded and
decoded in only one time unit. This contrasts with existing
frameworks which use multiple time units to generate one
codeword (see Section I-A).

Now, we start describing the encoding-decoding process
from time ¢ = 0. At time ¢ = 0, the very parts to be designed
are the coding cover Qy(X), the codebook Co(Qo(Xy)), and
the representative mapping po: Qo(Xo) — B(Qo(Xo)). The
encoding-decoding process at time ¢ = 0 has three design
stages.

In stage 1, the coding range X, is determined for time
t = 0: Since both the encoder and the decoder know ?0, the
coding range is determined automatically.

In stage 2, the codeword is encoded and decoded: At
time t = 0, the encoder obtains zy from the sensor (see
Fig. 1). Through the selected coding cell (see Definition 2),
the encoder knows which coding cell the state x( falls in.
We label this coding cell as Xp, and call it the selected
coding cell at time ¢t = 0, ie., Xy = So(zg). By Defi-
nition 3, the codeword ¢(Qo(Xo), o) is then encoded via
c(Qo(Xo), o) =(Qo(Xo), Xp) by the encoder. Afterwards,
the encoder sends this codeword to the decoder. Through de-
coding\ this codeword, the decoder knows the selected coding
cell &y, since one codeword uniquely corresponds to one
coding cell.

In stage 3, the quantized state 7 is determined: Since both
the encoder and the decoder know Xp, they calculate the
same quantized state Ty via Zo = po(Xp), where pg is the
representative mapping at ¢ = 0. After deriving Zy, the decoder
passes T to the controller which generates the control signal
ug = Yo (Zo). o

At time t = 1, the coding range X'; is determined by both
encoder and decoder in stage 1 through

Xy = {F1: 71 = Ao + Byo(To), o € Xo}. (9

Then, the remaining stages for time ¢ = 1 follow those at time
t = 0, (with subscript 1).

Proceeding similarly, we can establish the whole encoding-
decoding process for t € Z,. Next, we give the rigorous
description of the encoding-decoding process. The following
definitions strictly describe the coding range and the selected
coding cell at each time t.

Definition 6 (Coding Range at t). At time t € Z, the coding
range is

Xy = {fti Ty = ATy + B (Te—1), Ti—1 € )/(\'t—l}
(10



The coding range includes all possible states that can be
Eached by system (2) and X;_1. At time t = 0, we define
X (the range of initial state) as the coding range.

Definition 7 (Selected Coding Cell at ?). Az time t € Zy,
the selected coding cell X; is the selected coding cell (see
Definition 2) of state xy, i.e., Xy = Se(x4).

From Definition 6 and Definition 7, we can observe that
the coding range and the selected coding cell are defined
iteratively inAtime. For example, X, relies on X;_;, and
conversely, X; is dependent on the coding range X, (see
Fig. 3).

Remark 1 (Distinguishing four notations of system state xy,
Ty, Ty and Ty). The actual state of system (2) at time t is
x4, Which is known to the encoder, but cannot be obtained
by the decoder. Even though the decoder does not know x,
it can know which coding cell x; belongs to, and we use T,
to represent a point in this selected coding cell, i.e., in X;.
For Ty, it composes the coding range Xy. As for Ty, it is the
quantized value of ;.

t=1

Fig. 3. Coding ranges and selected coding cells. The shaded ellipse in the
left-hand side is Xg which the initial state xo lies in. At time ¢ = 0, in
stage 1, the coding range X is determined. At time ¢ = 0, in stage 2, the
selected coding cell Xy is determined by the state xo at the encoder and
the decoder sides, respectively, where the coding range Xo is ‘divided” by
the coding cover into 16 congruent parallelograms and X is one of these
parallelograms. At time ¢ = 1, the coding range is determined through (10)
at the encoder and the decoder sides, respectively, and the selected coding
cell is derived similar to that at t = 0. This process goes iteratively as time
goes by.

Now, we strictly describe the encoding-decoding process at
each t € Z., for a given design of the coding cover Q;(X;),
the codebook C;(Q;(X;)), and the representative mapping
pe: Qi(Xy) — B(Qi(X})). This is summarized in Table I,
which includes three stages:

Stage 1) Determining coding range. Both the encoder
and the decoder determine the coding range X; through
Definition 6.

Stage 2) Encoding and decoding. The encoder derives
the selected coding cell A} through Definition 7. Then,
the encoder encodes c(Qy(X;), z¢) via c(Qy(X4), x¢) =

2(Q4(X}), X,), and sends the codeword c(Qy(X,),x;)

to the decoder. Through decoding this codeword, the
decoder obtains the selected coding cell A;.

Stage 3) Generating quantized state. Both the encoder
and the decoder use the representative mapping p; to
derive the quantized state Z;. The quantized state is used
for the control signal u; = (%) on the decoder side,
and this signal is known to both encoder and decoder.

D. Data Rate and Problem Description

Conventionally, the data rate is defined in the asymptotically
time-average sense (see also [4], [12])

1 T=1
R:= lim — log, My, (11)
T~>ooT ; 2 ’

where M, is the cardinality of the coding alphabet at time £,
which means the noiseless channel transmits log, M; bits in
the ¢ time unit.

In the zero-delay encoding-decoding framework, each code-
word is decoded in one time unit, and thus log, M; equals
the codeword length L; = [logy, #Q;(X;)]. For the rigor-
ousness of our results, we specify the data rate definition
in the zero-delay encoding-decoding framework as follows.
Given a system X defined in (2), initial set X, coding-
cover sequence (Q,:(Tt))tez+ =: £, codebook sequence
¢ = (Ct(Qt(?t)))tEZJr, representative mapping sequence
II = (pt),e7, - and control law sequence ¥ = (¢;) the
data rate is expressed as

t62+ ’

R(3,X0,0Q,¢,11,¥) := lim

=
= L. (12)
T—o0 T ; !

Next, we give the definition of stability for quantized
system.

Definition 8 (Stability). Given system Y, initial set X,
coding-cover sequence 9, codebook sequence €&, represen-
tative mapping sequence 11, and control law sequence W, if
Vo € X, the system state x, satisfies limy_,oo ©; = 0, then
the quantized system is stable; Otherwise, it is unstable.

This paper focuses on how to design coding-cover sequence
£, codebook sequence €, representative mapping sequence II,
and control law sequence V¥ (i.e., the coding cover, codebook,
representative mapping, and control law at each time ¢ € Z )
to stabilize the quantized system of (2) with minimum data
rate under our zero-delay encoding-decoding framework.

III. ENTROPY-ACHIEVING ANALYSIS

In this section, we propose a set of sufficient conditions for
an entropy-achieving design and with finite codeword length.
That means the rate will be equal to the entropy?

HA) = Y

A€spec(A)

logy |Al, 13)

and the codeword length L; (¢t € Z. ) is bounded.

S5This entropy is known as the topological feedback entropy [12], or the
invariance entropy [13], [14], and it is numerically equal to the topological
entropy [9] for linear mappings.



TABLE I
ENCODING-DECODING PROCESS IN EACH TIME UNIT

Decoder

1. determine X'; via Definition 6

1. receive ¢(Qq(Xt), xt)
2. decode ¢(Q+(X4), ) to determine X}

Encoder

Stage 1) 1. determine X; via Definition 6

Stage 2) 1. determine X} via z; obtained from the sensor
2. encode ¢(Q¢(X't), w¢)
3. send C(Qt(Xt),JZz)

Stage 3) 1. calculate Z; = pt()/(\t)

1. calculate z; = pt()?t)
2. pass T to the controller

Firstly, we give an important lemma to lower bound all
data rates for linear system stabilizations. This lower bound is
exactly the entropy H(A).

Lemma 1 (Lower Bound). For any linear system %, and any
initial set Xo C X, the data rate for stabilization is lower
bounded by

R(27Y07D57¢S7H87\I’S) > H(A)) (14)

where the superscript s in Q°, €5, II5, and V® means the
coding-cover sequence, the codebook sequence, the represen-
tative mapping sequence, and the control law sequence to
stabilize system (2).

Proof: The proof follows a standard volume argument,
which can be found in e.g., [7] and [4]. [ |

Remark 2. The entropy H(A) represents the rate of gener-
ated uncertainties by a given system Y.; while the data rate
R(X, Xg, Q%, € 115, U®) reflects the speed to eliminate those
uncertainties. Lemma 1 tells that to stabilize a system, the
speed of eliminating uncertainties cannot be slower than the
speed of generating uncertainties.

Lemma 1 gives the fundamental limit of data rate for
stabilizations, which is similar to the Shannon entropy in
source coding theory (see [6]). In the literature, this similarity
inspired the researchers to use the same idea from source
coding theory to derive entropy-achieving codes. To be more
specific, all the existing results package multiple time units’
system states into one codeword [see (1) in Section I-A] and
approach the entropy bound through enlarging the blocklength.
As a result, the existing methods can only achieve rates
R(%, X, 0%, ¢, 11°, ¥%) > H(A). When the data rate equals
the entropy bound H(A), the blocklength is infinite, which
means the codeword length and the system delay are also
infinite.

Indeed, it is possible to achieve the entropy bound with finite
blocklength, even in the zero-delay framework proposed in
Section II-C. We give a sufficient set of conditions for entropy-
achieving codes in Theorem 1. Before that, we give a special
class of coding covers as follows.

Definition 9 (Perfect Coding Cover). A coding cover Q(A)
is perfect if the following two conditions hold:
() V', 5 € Ky pin (00 (A)) = pin (0(A));
) U o™(A) = A

KEK

Remark 3. In Definition 9, condition (i) means all the coding
cells have the same Lebesgue measure. Condition (ii) implies
a perfect coding cover partitions® the set A.

Theorem 1 (Entropy-Achieving Criterion). A quantized sys-
tem is stabilized with data rate

R(%, X0, Q°%, ¢ I1°,U®%) = H(A), (15)

and uniformly bounded codeword length, if the following five
conditions are satisfied in system designs:

(i) ¥4(Ty) = —K7Ty such that p(A — BK) < 1;

(i1) tlirrolo D; = 0 [Dy is the coding scale of coding

cover Qi(X4)];

(ii) 3t € Zy, s.t., Qi(X}) is perfect for all t > t;

(iv) 3L: Vt € Z,, s.t., logy #9:(X:) € Z4 N[0, L];

(v) lim }logy pn(o}" (Xe-1)) = 0.

Proof: See Appendix A. [ ]
Remark 4 (Illustrations of the Five Conditions). In Theo-
rem 1, condition (i) means that the control law to stabilize a
quantized system is just as to stabilize a linear system using
linear feedback. Condition (ii) requires the coding scale of
Q(X;) converges to 0 as t goes to infinity, which means
the decoder asymptotically observes the system state x;. If
conditions (i) and (ii) are satisfied, then the quantized system
is stabilized (see the proof of Theorem 1).

Condition (iii) means that once t is large enough, the coding
cover must be perfect, which means the coding range X,
is equally partitioned. As for condition (iv), the numbers of
designed coding cells should be integer powers of 2 and
bounded for all t € 7. The most important condition is (v),
and it is related to the convergence rate/speed of coding scale
Dy. To be more specific, D, cannot converge exponentially fast
(i.e., lim % logy, Dy < 0 cannot hold), otherwise condition (v)

will be violated.:

(r log, @, D

o 1082 0 (0127 (1))
1m

t—o0 t

< lim

 t—oo

<0,
(16)
where w,, is the volume of the n-dimensional ball of radius
1.7 If conditions (iii)—(v) are satisfied, then the data rate is
H(A) [i.e., (15) holds], and the codeword length is bounded.

Rigourously speaking, a perfect coding cover is not a partition of A,
since the intersection of two coding cells can be non-empty, even though the
intersection are with measure zero [see condition 3) in Definition 1].

TWe note that w,, = 272 /T (%), where T'(+) is the Gamma function.



Note that any system design satisfying the five conditions
in Theorem 1 will result in a finite blocklength entropy-
achieving code whose blocklength is 1, i.e., with zero delay.
In Section IV, we design a zero-delay entropy-achieving code
by using Theorem 1.

Before giving this design in Section IV, we examine the
convergence rate of x; in Theorem 1. Through condition (v)
in Theorem 1 and the corresponding discussions in Remark 4,
one can observe that z; cannot converge exponentially fast,
since the worst case ||x;|| cannot be smaller than half of
the coding scale D, (see Appendix B for a detailed proof).
Actually, when the data rate is equal to the entropy, no entropy-
achieving code can achieve exponential convergence. This
result is given in Proposition 1, which can be regarded as
the converse of Theorem 1 w.r.t. condition (v).

Proposition 1 (Rate Gap of Exponential Convergence). If x;
converges exponentially fast, i.e., I > ||zol|, 8 > 1 such that

o]l < aB~F, tEZy, a7
then the data rate R defined by (11) satisfies
R > H(A) +nlog, B, (18)

where nlog, (3 is the rate gap of exponential convergence.
Proof: See Appendix C. ]

Remark 5. The result in Proposition 1 holds for all possible
encoding-decoding processes, not only for the cases in the
zero-delay encoding-decoding framework. This result tells us
that there is a non-zero rate gap if one wants x; to converge
exponentially fast, i.e., B > 1. A faster convergence rate, i.e.,
a larger B, requires a larger rate gap. In other words, it is
impossible to have exponential convergence while having zero
rate gap to the entropy. Our result in Theorem 1 makes § = 1
as guaranteed by condition (v).

IV. ENTROPY-ACHIEVING SYNTHESIS

In this section, we propose the method to stabilize the
quantized system of (2) with data rate H(A) in zero-delay
encoding-decoding framework. From Section IV-A to Sec-
tion IV-D, we give the details about how the coding cover,
the codebook, and the representative mapping are designed
at each t € Z+ in our method. Based on above designs, we
design the detailed encoding-decoding process at the encoder
and decoder sides in Section IV-E.

Note that there are two novel aspects in our design method:

o We directly design the coding cover in the original (state)
space by introducing the parallelepiped-shape coding
cells (see Section IV-A). Thus, there is no need to make
any transformation between the original space and the
transformed space in each time unit.

o We introduce the edge-length constraint which can ac-
curately control the convergence process of coding cells
w.r.t. time (see Section IV-E). Therefore, condition (v)
in Theorem 1 can be satisfied. In contrast, the existing
methods in the literature, e.g., [3], [4], [7], cannot satisfy
condition (v) in Theorem 1.

To facilitate the readers to understand the proposed method,
we would like to mention that: (i) A high-level description of
the proposed encoding and decoding designs is given in Ta-
ble I. The encoder design has three stages, namely, determining
coding range, encoding, and generating quantized state. The
decoder design also has three corresponding stages, namely,
determining coding range, decoding, and generating quantized
state. (ii) The detailed designs of encoder and decoder are
described in Algorithm 1 and Algorithm 2, respectively, in
Section IV-E. Detailed explanations are also given for each
stage in the encoder/decoder design after each algorithm.

A. Coding Cover Design

Most of previous studies design hyper-rectangular coding
cells in a transformed space related to the real Jordan form,
and then transform these coding cells back to the original space
(e.g., [4], [7], [12]). We call these indirect designs, since this
forward and back transformations have to be done in every
time unit. In contrast, our coding cell design is directly made
in the original space, i.e., no transformations related to the real
Jordan form are required in every time unit.

Now, we give a description of a n-dimensional paral-
lelepiped generated by n + 1 points.

Definition 10 (Parallelepiped). Vo), . .. , 0™ € R™ such that
v — 0@ ) — ) gre linearly independent, then the
parallelepiped generated by these n + 1 points is

PO, ...

{ 3 0,09 —0®) 40 0y,...,0, € [0, 1]}. (19)
=1

7v(n)) —

We call v, ... v the generating points of the paral-

lelepiped in (19).

In contrast to the traditional definition of the parallelepiped,
which depends on 7 linearly independent vectors (see [19]),
Definition 10 requires n + 1 generating points so that the
coding cell design can be simplified.

Lemma 2 describes the form of transformed parallelepiped
by invertible affine mappings.

Lemma 2 (Parallelepiped Under Invertible Affine Transfor-
mation). Let ¢ : R™ — R™ be any invertible affine mapping,
then the transformed parallelepiped is o(P(v(®), ... v()) =
Plp(0®),...,0(v™M)).

Proof: See Appendix D. [ ]

Remark 6 (Two Facts of Transformed Parallelepiped). From
Lemma 2, we can observe that any parallelepiped is still
parallelepiped after applying any invertible affine mapping.
Furthermore, the transformed parallelepiped has an easy-to-
compute form w.r.t. Definition 10 by simply transforming each
0@ in P ... 0™ 1o p(v®).

Remark 7 (Preservation of Parallelepiped-Shape). Remark 6
implies that if the selected coding cell X, at time t is a
parallelepiped P(v(?), ... v"™), then the coding range X1
at time t+1 is also a parallelepiped P(o(v(?), ... p(v™)),



where o(v") = Av) + Buy for i € {1,...,n}. Therefore,
it is important to discuss how to get the parallelepiped-
shaped X, for all t € Z. This is given as follows: At time
t = 0, even though X is generally not a parallelepiped,
we can find n 4+ 1 generating points v ,...,Eé") such
that Xy C P(@éo),...,@én)). To satisfy condition (iii) in
Theorem 1, we partition P(ﬁéo),...,ﬁgn)) into congruent
parallelepiped-shaped coding cells with edge length d(i),
where ||Egi) - igO)H/déi) = Egi) € Zy, for i € {1,...,n}
The symbol Eéi) is the maximum number of partitioning sets
w.r.t. the axis ﬁéi) — f&o), and is always a power of 2. The
index set of the coding cells has the following form

o= o= (onf?):
e (L mY ie (L nt) @)

Now, each coding cell JOK'O) (Xo) can be uniquely determined
by index ko € Kq, and the coding cover can be expressed as
Qo(Xo) = {U(()F”O)(fo): ko € Ko}. A 2-dimensional example
for the partition is given in Fig. 4. Since each coding cell
Uémo)gyo) (ko € Kyo) is a parallelepiped, the selected coding
cell Xy is parallelepiped-shaped. At time t = 1, according
to Lemma 2, we can derive X1 C P(§§O)7 .. ,ﬁgn)), where
@Y) = Aiél) + Bug (i € {1,...,n}), and the other parts are
the same as those at time t = Q. N

Proceeding forward, we can readily obtain that X; is
parallelepiped-shaped for all t € Z. and so obtain X, for
all t € Z,. Furthermore, ¥t € Z ., we have

U Uﬁ“”(?t) =Xy,
Kt €t

2y

which together with the congruent coding cells implies condi-
tion (iii) in Theorem 1 holds with t = 1.

Fig. 4. Parallelepiped coding cells in 2 dimensions. The parallelepiped
P(Ego),ﬁ(()l),ﬁéz)) (see the parallelogram enclosed by thick lines) is par-
titioned into 8 X 4 parallelepiped-shaped coding cells with lengths d(()l) and
df)z) (see the parallelogram pointed to by large yellow arrow). Symbols o and
O(iéo),ﬁéw — Eéo), e ,Eén) - Eéo)) represent the origins of the original
coordinate system and the affine coordinate system, respectively. The blue
(shaded) area in P(E(()O),Uél),ﬁé2)) is Xp = aéHO (X1), where the index
kg is calculated by (29) and (30).

Remark 8 (Coding Cell Design). Based on X, =
P(@§°),...j§")), the parallelepiped-shaped coding cell is

expressed as
Kt) /o ~(k¢,0 ~(K¢,m
Ut( )(Xf):P(Ut( )7"'71}15 ))a

forallt € 7, and k; € Ky [K; is with a similar form to (20)
for Kqo], where

(22)

0 0 N G ) T = T
v =1, Jant d; T —T I

j=1 vy — o |l
(¢ —(0
Fo) ) — 5"

’V(Mﬂ') _ ~(Kt;0)
v ORI

ie{l,...,n}.

(23)
Fig. 4 provides an illustrative case for n =2 and t = 1.

Note that the coding cover Q;(X;) is uniquely determined
when the coding cells are designed.

B. Codebook Design

This subsection gives the detailed design of the codebook,
which assigns each coding cell (designed in Section IV-A)
with a unique cell codeword.

If #K; > 1, Vky = (nﬁo),‘..,nft”)) € K, the cell
codeword of o™ (X,) is

E(Qt(?t)a O_Em)(yt)) _ bgm) B b(m) o b(m) b(m)

) L1 L”n,—1+1 e Ln ?

=(1)

log, %, e

log, R
. _ (24)
where ¢; = 375_, log, 7 e Z, fori € {1,...,n}, specifi-
cally, v, = L. Note that ¢; gives the last index corresponding
to k). Letsg :=0and Vi € {t;i_1+1,...,0} G € {1,...,n})
the bit b; in (24) is

(%) l—ui_
Kk; ' — 1)mod 2"~ 41
b = {( i~ 1) J (25)

2l—/,i_1—1
It can be verified that, in this cell codeword design, every
coding cell is endowed with a unique cell codeword. If #K; =
1, then we set

C (Qt(?t), xt) = HUH,

which means the codeword length is L; = 0.
Note that the codebook C;(Q;(X't)) is uniquely determined
when the cell codewords are designed.

(26)

C. Representative Mapping Design

We choose the centroid of a coding cell as its representative,
and the representative set has the following form

By (Qi(X1)) =

K K 1 & ~(Kt,1 ~(Kk¢ ~(Kk
{bg t). bg ) _ 52 (’U,g t )_,UIS 70))+Ut( 1,70)’ Ky € Kt}
i=1

27)

Thus, the representative mapping is p;: (X)) —
B:(Q4 (X)) such that

(Be? — o) 10 (28)
1

Ke) 5 1
pt(a§ )(Xt)) = 5

n
1=



D. Control Law Design

We design the control law u; = —K7; for the controller
such that p(A— BK) < 1 holds. Note that the feedback matrix
K is known to the encoder and the decoder. The control law
design satisfies condition (i) in Theorem 1.

E. Encoding-Decoding Process

In this subsection, we describe the encoding and decoding
processes such that the quantized system of (2) is stabilized
with zero-delay entropy-bound-achieving code, based on the
designs of coding cover (see Section IV-A), codebook (see
Section IV-B), representative mapping (see Section IV-C), and
control law (see Section IV-D).

Algorithm 1 gives the details about what the encoder does
at each time ¢. Before starting Algorithm 1, two more things
should be stressed: Firstly, this algorithm needs a buffer to
store n + 1 generating points EEU), e (n) for the transited-
state set X'; and 7+ 1 generating pomts v( )., 5™ for the
selected coding cell Xt, which are replaced with the generating
points at time ¢+ 1, respectively. Thus, the buffer size is finite.
Secondly, the initial generating points U(()O), . j(()") at time
t = 0 are not arbitrarily given if we want to achieve the entropy
bound H(A), as we discuss in the following remark.

Remark 9 (Initial Points). Let J = W 1AW & R™*"
be the real Jordan form (see Chapter 3.1.4 in [20]) of
A, where the transformation matrix is W € R"™ ™ Note
that Voo € Ry, aW is still a transformation matrix, since
(@W)~tA@W) = J. Then, select U,EO) and @ such that
Xy C P(véo),vé )Jracoll(W), . )+acol (W), where
coly(W) is the i" column of W Now the other n gen-
erating points are determined by E((JZ) = v((JO) + @col; (W)
(i € {1,...,n}). We stress that only the initial points are
related to the real Jordan form which will not be used for
subsequent times t € 7.

Algorithm 1 Encoder Design

Input: z:. -
Olltpllt C(Qt(Xt) t)-

1: if ¢t == 0 then
—(0) —(n)

: Use (29) and (30) to derive k; = (n:(l), Cey n:(n));

: Calculate U(O), .. ,'ﬁin) by (32);

. Send c(Qt(Xt), x¢), which is calculated from (24) or (26) with k¢ =
k¥, to the decoder.

: 7+ (33);

2: vy ,.-.,0g  are given by Remark 9;
3: else
4 o\ = A0, — BK#;_1,i€{0,...,n}, where p(A— BK) < 1;
5: e
&5W HJ”—ﬁPW&+UJG{LHWM;
(i) — i +
7 df® = ot — 5Oyl Qo272 7 21/8) ] e g1, my;
8
9
0

—_

—_
—_

The line-by-line explanation of Algorithm 1 is given as
follows. Firstly, the input and the output for the encoder
is the current state x; obtained from the sensor and the
corresponding codeword (see the encoder block in Fig. 1).
Secondly, the three stages in Table I from the encoder side
are:

1) Determining codlng range. From Line 1 to Line 5,
generating points vt +1 (1 € {1,...,n}) are calculated:

for ¢ = 0, Line 2 gives the initial points v( ) ...,@é")
through Remark 9. for ¢ € Z, Line 4 calculates gener-
ating points EEO), e ,@g’” for determining the transited-
state set X;, which follows from Remark 7. Line 6 and
Line 7 give a method to choose the edge-length constraint
5,57:) and the edge length d( ) fori € {1,...,n} such that
d(Z < (5 . Note that with properly de51gn1ng the edge-
length constraint 5t , the convergence process of the edge
length d( “) can be accurately de51gned In this work, we
just provide a special case of 6
2) Encoding. Lines 8 and 9 ﬁnlsh the process of the
coding cell selection based on the current state x; ob-
tained from the sensor. Firstly, the encoder calculates
the coordinate of z; in the affine coordinate system
(Uio),vgl) — EEO), e ,@ﬁ’” - ﬁ(o)) by solving
=) _ —(0)

n
>l y(vt .

which is a group of linear equations with a unique

solution agl),...,ain) € R,. Secondly, the encoder
derives k= (k7. k™) via
t = Ry e Ky
@) o
Ky = Ei) , ie{l,...,n}. (30)
dt
Thus, the selected coding cell X, = Ui'{’*)(?t) is
expressed as (23) with x;, = &} and v(m’J) ,Ej)
(G €{0,...,n}), ie.,
X =PE",....5"), 31)
where
(9) _ (0
50— 5 4 z ) 40) v~
¢ [ =) f(O)H
(1) _ (0)
0 v v .
U,S) ()—l—d()H’Z) EO)H, ie{l,...,n}.
U
(32

In Line 10, the codeword c(Q(Xy),z) =
(Q4(Xy), (K’)(Xt)) is encoded by (24) or (26)
with k; = K}, and then is sent to the decoder.

3) Generating quantized state. In Line 11, the quantized
state T; is determined by

n

N N 1 (i)~ ~
Ty =p(X) = 5 Z (U§ ) _ U§(1)) + Ut(O)7

i=1

(33)

which follows from Section IV-C and X; = GEF“ )(X ).

Algorithm 2 gives the details of the decoder design. Similar
to Algorithm 1, this algorithm also needs a finite size buffer
to store : te 750 =(n) (0) ~(n)

generating points v; ’,...,0, ~ and v; ,...,0; ,
and the initial points 7y, ... are the same as those in
Algorithm 1.

The line-by-line explanation of Algorithm 2 is given as

follows. Firstly, the input and the output for the decoder

_(n
» Vo



Algorithm 2 Decoder Design

Input C(Qf(Xf/), {L't).

Output T¢.

: The same as Lines 1-7 in Algorithm 1;
:if #K: > 1 then

Use (34) to obtain k;

Derive 5.7, ..., 5™ by (32);
else )

5§1) = BEZ) fori € {0,...,n};
end if

PNk 5‘?'\’?

: Pass Ty < (33) to the controller;

is the codeword c(Q;(X;),z¢) and the estimated-state 7;,
respectively, which can be found in the decoder block in Fig. 1.
Secondly, the three stages in Table I from the encoder side are:

1) Determining coding range. This stage is shown in
Line 1, which is the same as the determining coding range
stage from the encoder side.

2) Decoding. From Line 2 to Line 7, the generating points of
selected coding cell Xt are determined by decoding the
codeword ¢(Q;(X;),x;) sent from the encoder: When
#K; > 1, the index k} = (/@I(l),..., f(n)) of corre-

sponding coding cell is uniquely determined by

*(7 Z b2l Li—1— 1+1

l=v;1+1

ie{l,...,n}.
(34

Then, the selected coding cell )?t is determined by (31).
When #K,; = 1, the decoder does not do any decoding,
since the encoder sends nothing. In this case, we have
Xt = yt.

3) Generating quantized state. In Line 8, the quantized
state is determined by (33), and then is sent to the
controller.

Note that both Algorithm 1 and Algorithm 2 have low
computational complexity. For Algorithm 1, the complexity
is at the level of O(n?®), which is due to solving the linear
equation (29). For Algorithm 2, the complexity is O(n), i.e
with linear complexity.

We would highlight an important part in our design, i.e., the
edge-length constraint 5 ") which non- exponentlally converges
to 0. On the one hand, it makes sure d < (5 always holds
such that condition (ii) in Theorem 1 is satisfied. On the other
hand, it also guarantees d > 6 / 2 when t is sufficiently
large [see (76) in Agpendlx E], which ensures non-exponential
convergence of d , so as the measure of each coding cell.
We can see that the constraint from 5§ I is bidirectional, i.e.,
51@ /2 < dgi) < 6,@. Note that the edge-length constraint
design is very different from the existing methods. In the
literature, the edge (usually in a transformed space) decreases
periodically (every 7' time units, where 1 is the period) which
has to be exponentially convergent; while our design can make
the edge decrease in every time unit controlled by 6,52). This
difference is similar to that between the time-triggered and
event-triggered controls, where the edge-length constraint 6 2
triggers the change of d( ?) and also determines how much d( 2
should be reduced in each time unit.

Now, we prove that the encoding-decoding process in Algo-
rithm 1 and Algorithm 2 stabilizes the quantized system of (2)
with finite length entropy-bound-achieving code.

Theorem 2 (Achieving Entropy Bound with Uniformly
Bounded Codeword Length). Under the designs in Sec-
tion 1V-A, Section 1V-B, Section IV-C, and Section IV-D, the
quantized system of (2) is stabilized by Algorithm 1 and
Algorithm 2, with date rate equaling H(A), and the codeword
length is upper bounded by

Ly < nflogy(2|AlD], teZs. (35)

Proof: See Appendix E. [ ]

Remark 10 (Extension to Handling Interfering Signals). Con-
sider system (2) with interfering signal w;:

Ti41 = Axy + Buy + Bywy, (36)

where B, € R"*? and wy € RY is a q-dimensional exogenous
signal generated by an exosystem of the form

= Awwt7 (37

Wi1

in which A,, € R™*"™ is marginally stable (i.e., the interfering
signal wy is bounded) with its eigenvalues satisfying |\, = 1,
and the initial state wq is deterministically unknown to the
decoder® in a compact set Wy. The design is given as follows:

1) Controller: We use the static feedback control law [21]
w =—Kz, — Kw@t, (38)

where T, and w; are the quantized x; and w,, respec-
tively; K € R™*"™ and K,, € R™*4 are control gains.

ii) Encoding-decoding process for w;: The encoder and de-
coder designs are the same as that in Algorithms I and 2,
respectively, except for the system equation bemg 37
(i.e., Line 4 in Algorithm 1 becomes vg D= Aw'ﬁt(l 1)-

iii) Encoding-decoding process for x;: At each t, we encode
and decode w; first so that Wy is derived. Then, we
still use Algorithms I and 2 to encode and decode x,
respectively, where Line 4 in Algorithm 1 is replaced by:

o) = {1 + Dl(f&l)} AT — BKZy_ 1 — ByK, @4
1

for i € {0,...,n}, where p(A — BK) < 1 and

BK, = B,

It is not hard to prove lim;_, o, xy = 0 with R = H(A). Here
we give an outline of the proof: Firstly, we need to guar-
antee limy_, . xy = 0 by applying the input-to-state stability
technique to the closed-loop system x;11 = (A — BK)x; +
BK(.’Et —ZU\t) + (Bw — BKw)’l/,l}t —I—BKw(wt _@t) with Tt —/{E\t
and wy—W; regarded as the inputs, where (B,,— BK,,)w; = 0
as BK, = By. Note that limy_,o(z; — T;) = 0 and
lim; oo (wy — W) = 0 hold since ii) and iii) give the
asymptotic observations of w; and x,, respectively. Secondly,
we need to prove R = H(A). For ii), its data rate is 0,
as H(A,) = 0. For iii), the data rate is H(A), which can

A By

[ A el o
can observe w; within finite time steps. Without loss of generality, we assume
wo is known to the encoder.

8We assume the pair is observable. The decoder



be proved by making contradictions to assuming any data
rate greater than H(A), since limy_,oo D(Wi—1) = 0 and
[Aw| = 1.

V. CONCLUSION AND FUTURE WORK

In this work, we have designed entropy-achieving codes
with finite blocklength 1 (i.e., zero delay) for linear system
stabilization, and such a design has no precedent in the
literature. A coding-quantizing framework established the rela-
tionship between the system state, codeword, and quantization.
More significantly, an encoding-decoding framework has been
provided such that each system state is encoded and decoded
within only one time unit. With this zero-delay framework, we
have proposed a set of sufficient conditions as a criterion for
obtaining a zero-delay entropy-achieving code. Finally, by our
proposed criterion, an entropy-achieving code with zero delay
is designed, where the quantization is directed conducted in
the original space rather than the transformed space (related
to the real Jordan form), and all the codeword lengths are
uniformly bounded.

For future work, we will consider a realistic constraint
on the maximum number of bits that can be transmitted
in every time unit. Note that the constraint on the number
of bits can be caused by the limited amount of energy
available at the encoder side in each time unit. Even though
in Theorem 2 the codeword length is uniformly bounded by
L = n|log,(2||Al|)], further consideration is required when
less than L bits are permitted for transmission in every time
unit. In that case, our encoding-decoding framework cannot
achieve zero delay anymore, since there always exist some
codewords which cannot be fully transmitted in one time unit.
Therefore, it is very interesting and practical to consider such
a constrained case in our future work.

APPENDIX A
PROOF OF THEOREM 1

To start with, we give a lemma for the matrix power norm
bound as a preparation, which is an enhanced version of
Theorem 3.5 in [22] and can be proved by using a similar
idea.

Lemma 3. Given F' € R"j”, for each v > p(F), there exists
M, > 1, such that Vk € Z, | F*|| < MAﬁk holds.

Now, we can prove Theorem 1. This proof contains two
steps: the first step proves that the quantized system is sta-
bilized by conditions (i) and (ii); and the second step proves
that the data rate spent by the stabilized system is exactly the
entropy bound H(A) under conditions (iii)—(v).

1) Since pair (A, B) is controllable, there exists linear
feedback matrix K € R™*™ such that p(A — BK) < 1,
which implies condition (i) is satisfiable. For any K satisfying
condition (i), we set T; = x; — (x4 — T;), and system (2) can
be rewritten as
(A—BK)ZL't+BK(1't—EE\t)7 t€Z+

Ti41 — (39)

The solution to (39) is

t—1
2y =(A— BK)'zo+ Y _(A— BK)" """ BK(x, — &),
7=0
t—1
=(A - BK)'zg+ Y (A- BK)"""""BK(x, — &)
7=0
t—1
+Y (A- BK)" """ BEK(z, - Z,),
T=t

(40)

where the first item goes to 0 as ¢ — oo, and similarly the
second item also goes to 0 as ¢ — oo for any ¢ € Z,. Now,
we prove the third item also goes to O for a proper t € Z.
Since p(A — BK) < 1, it follows from Lemma 3 that for any

€ (p(A— BK), 1), there exists a M, > 1 such that ||(A —
BEK)!=1=7|| < M,»*~'~". Then, Ve > 0, there exists a ¢ €
Z such that V7 > t, || BK (¢, —Z,)| < e(1—~)/M,. This is
because lim,_, o ||x-—Z,|| = 0, which is guaranteed by ||z, —
Z.| < D,_y and lim, o, D,_; = 0 [see condition (ii)].
Then, the norm bound of the third item in the right-hand side
of (40) is

H ti(A ~ BEK)"“"TBK(z, — %)

t—1
<> (A= BK)"'"TBK(x, - 2,)||, @D
T=t
c1-v) @
t—1—71 —
S(;Mw )T < &

where inequality (a) follows from Zi;lt =T <
STt 41T = 1/(1—7). Inequality (41) means the third
item in the right-hand side of (40) also goes to 0 as ¢ — oo.
Hence, the quantized system is stabilized.

2) We label those coding-cover sequences satisfying condi-
tions (ii)~(v) as Q = (QF (X)), ¢z, » Where the superscript a
refers to the achievability. By Definition 3 and condition (iv),
the codeword length at time ¢ is

Ly = logy [#Q7 (Xy)] = logy #Q7 (Xy).

In addition, with condition (iii), we can derive that V¢t > t,

(42)

,U/n(?t)
im0 (1))
holds for all k; € K; Noticing that i, (X;)

|det(A)|,un(XAt_1) [with (10) and observing that u;_; =
Yi—1(Ty—1) is a constant w.r.t. Z;_1], we have

log, #Qj (X+) 43)

= log,

det(A)|pn X,
ZIOgQ #Q (X)) = log, H | ,‘ff W)
t=t t=t+1 ,Un(Ut (Xt)
| det(A)" 4 L pn (X)

:1 2 P = )
pin (05T “(XT 1)



where T' > t 4 2. Then, the data rate [defined in (12)] under
the coding-cover sequence Q7 is

R(2, X, Q% ¢, 11, 1)

1T—l
_ I]7

= lim
T— o0

T—1
a 1 45
@ 3 L, )
T—o00 t—t+1
® 1 | det (A)" 1 i (A)
= hiIn 710 2 ("'€ ) )
T—oo pn(op (X 7-1))
where equality (a) follows from
1 t
Jim ; L, =0. (46)

Equality (b) in (45) is derived from (42) and (44). Note that

10gs tn(X2) ()

lim ————= =0,

T—o0 T (’{T_l) o (47)
_logy pn (o7 (Xr-1)) (d)

lim =0,

T—o0 T

where (c¢) follows from T' — oo and —oo < log, un(/fﬁ) < 00
[since 0 < f1,,(X;) < pn(Xo)]. Equality (d) is established by
condition (v). Then, with (47), we can rewrite (45) as

R(Z7y07 Qa? €a7 Ha \I/a)

= log, | det(A)| = (48)

>

A€spec(A)

10g2 |)‘|7

where W refers to the control law sequence satisfying condi-
tion (i), and € stands for the coding cover sequence satisfying
condition (ii). Since the quantized system is stabilized under
conditions (i) and (ii) [see step 1) in this proof], (15) holds.
According to condition (iv), we have L; =
log, (#Q%(X;)) < L, ie., the codeword lengths for the
entropy-achieving codes are finite. |

APPENDIX B
PROOF OF THE NON-EXPONENTIAL STABILITY IN
THEOREM 1

Firstly, we give a lower bound on the worst case ||x;|| (after
decoding) in the following lemma.

Lemma 4 (Lower Bound of ||z¢||). For t € Z, we have

D
max  max |z > =t (49)
K€K ItGJEHt)(?t) 2
Proof: For o\"*)(X,), where t € Z.,., we have
D™ (@)= max fr—yl, (50

zycol™ (X,)

i.e., the maximum ||z — y|| gives the diameter of coding cell

O'Eﬁt)(?t). We select a maximizer (z*,y*) such that

(z%,y") = argmax [z —yl, (51)

z,ycol" (X,)

which means ||z* — y*|| = D(0\"*(X,)). Then, we have

D(a{"™ (X)) = [l2* + (—y*)],

< "l + lly" |,
< 2max{||z*|], |y}, (52)
=2 max thH»
ree{x*,y*}
<2 max [l
xtEGEM)(?t)
This implies
1 ki)
max ||z > 5D(a§ (X)) (53)

xtGJiNt)(?t)

Noticing that max,, e, D(Ji”")(yt)) = D;, we get (49). m

Since x; can possibly be in any coding cell a,ﬁ”‘”(?t) after
decoding, the worst case ||a|| is not smaller than D;/2 as
given in Lemma 4. If we assume x; converges exponentially
fast, then the following would hold

logy Dy

0> max max log, ||z > T

(54)
Kt €K zteggﬁt) (*y)

which indicates log, D; < 0. From our discussions in Re-
mark 4, we know that it will contradict condition (v) in
Theorem 1. Therefore, x, converges asymptotically but not
exponentially. ]

APPENDIX C
PROOF OF PROPOSITION 1

We use a similar way as Proposition 3.2 in [7] to give this
proof. If x; converges exponentially fast, then (17) holds. At
t € Z4, we define the following set

Qe = {zo: |lze]| < af'}, (55)

,,,,,

X indicates the set of 2y € X satisfying (17) under control
sequence ug,...,u;. To control all the initial values xy €
X to satisfy (17), we need several control sequences such
that the union of their corresponding €, .. ., contains Xo.,
since otherwise there would exist z( € ?O\UUO»---JH
violating (17). Thus, Hi:o M, (recall that M is the coding
alphabet at time 7) must be no less than the number of sets
Qug,...,u, to cover X,. Observe that the measure of Q.o uy
is

t

T ({@es loell < aB7'Y)

—twn(aﬂ—t)n.

Then, a lower bound of R; := % Zi;lo log, M- can be derived
by using the measures:

(56)

1 /ln(fo)
R; > —log ,
' 3 2 | det(A)|7tw’ﬂ (aﬁit)n (57)
1 X
= H(A) +nlog, 5+ - log, M.
t o™
It combined with R = lim, ,  R; gives (18). |



APPENDIX D
PROOF OF LEMMA 2

= F-+b, where F' € R**"
L0i(v ) — (0))

As ¢ is invertible, we have ¢(-)
is invertible, and b € R”. This means (>

vO) = P30, 0: (v =) 40 @) 4 b = 3" 0, [(Fo®+
B)— (PO T B+ (o 1) = S 6o (o1 — (o ®)] +
©(v(®). Thus,
p(P©, ... ,vM))
= {2 bule )=o) 400 ): 61,0, € 0.1]}.
= (58)

Since F is invertible, vectors @(v®) — p(v®) (i €

{1,...,n}) are linearly independent, thus the right-hand side
of (58) is P(p(v®),..., p(v™)). [
APPENDIX E

PROOF OF THEOREM 2

Before start, we give the following lemma to calculate the
measure of any parallelepiped in Definition 10, which can be
easily obtained from Corollary 1 in [19].

Lemma 5 (Measure of Parallelepiped). Given a parallelepiped
PO, ... v™), its measure is

pin (P, 0™M)) =
et ([ —o® o™ = O])]. (59)

In this proof, we prove that by the control law u; = — K
with p(A — BK) < 1, Algorithm 1, and Algorithm 2, all the
five conditions in Theorem 1 are satisfied.

Satisfying condition (i). Since we use the control law u; =
— K7 such that p(A — BK) < 1, condition (i) in Theorem 1
holds.

Satisfying condition (ii). According to Line 6 and Line 7
in Algorithm 1, we know that Vi € {1,...,n} and Vt € Z,,
dgi) < 6@ holds. As lim;_, o 51@ = 0, we can derive
limieod” = 0 for all i € {1,...,n}. This means
lim;_, oo Dy = 0, because D; < Z?:l df’) always holds.

Satisfying condition (iii). Since the coding cells are congru-
ent for any given time (see Remark 7), with (21) in Remark 7,
we know that condition (iii) in Theorem 1 holds with ¢ = 1.

Satisfying condltlon (iv). By Line 7 in Algorithm 1, for
any axis vg 2 ) (i € {1,. n}) the maximum number

— vf
satisfies log, /{,E € Z.. More specifically,

of partitions H,E 2

17t (%)
oo () |

(60)
For t = 0, we can obtain |\ 2 <
AN — w7 < 14llwy " 7y | = 14ll6¢7,
and thus log, %y’ = [(logy(|[v )_U1 ||/5(Z Nt <
[(ogy(IA1)*] = [ogy(JAI)] holds. For t € Z,.
we have [7i) — 77| < [lAldY, < JAfe,
and ti)l/ét(i) (t + 1)/t, which implies

log, " < [logy[||Al|(t +1)/4]] < [log,(2[|A[)]. Therefore,

for L = n[log,(2[|Al|)], we can derive logy(#Q: (X)) =
logy(#K1) = Yijlog,®” € ZyN[0, L], which
establishes condition (iv) in Theorem 1. Additionally, because
L; < L holds for all t € Z,, we can derive (35) in
Theorem 2.

Satisfying condition (v). We divide this part of the proof
into three steps: In the first step, we derive an important
inequality in (73) to describe the relationship among the
“total uncertainty”, the edge length of a coding cell, and the
maximum number of partitions, in each axis. In the second
step, based on (73), an upper bound in (78) is given for the
number of all potential coding cells. In the third step, we
complete the ent(ir)e pro(o)f.

(0) ~(1) _

Step 1: Letw;’ =v; " —v; ' and w, ’17,@ - ES’) for all
ie{l,...,ntand t € Zy. For t € Z,
a 1 i b 1 ~(1
o @ e @ aa?, (61)
K1 K41

where ng )1

vg le — Uir)p and (a) follows from the congruence of coding

cells. Equality (b) is established by Line 4 in Algorithm 1.
With (61), we get

is the maximum partition number for axis Efle =

(HK())N(Z AT, tezy, ie{l,....n}. (62
Then, we define®
4 t
o' =@l H (63)
With (62) and (63), we have
W =Aw, tezy, ic{l,... n} (64)
From Remark 9, we know that
W= [wg”,...,ag")} (65)

is a transformation matrix such that J = W~'AW. By
Theorem 3.4.1.5 in [20], the real Jordan form is a real block
diagonal matrix

(66)

where the spectrum of each J; € R"=*"= has only one element
As € C, ie., spec(Js) = {As}. By (64), (65), and (66), the
following is obtalned

[wt“), . ,u“)t(”)} At[ v ,1175")] —WJt. (67
We group the columns of W as
W= [Wé”, N .,Wgﬂ, (68)

9We note that w( R

by the coding cells o
1tot.

corresponds to the i edge of the parallelepiped formed

(%) indexed by all potential codewords from time steps



where Wés) = [@g's’l“), . ,@(()”)] (s €{1,...,5}) and
ro := 0. Then, with (66) and (67), we have
W= a0 = At
=WOJt, sefl,....S}. (69)

For any column ﬁ;gi) in Wt(s) (se{l,...

) = 7t
< TR 2 et =

,S}), we have

= l2] - 70
where e(l "s=1) ¢ R” is a column vector whose (i—rs_1)h
entry is 1 and other entries are 0. Note that in (70) s = s(i)

is a function of 7, and it has the following form
s(i) =1(1) +1(i —r1) +

where 1(-) is the Heaviside step function. In the rest of this
proof, we use s instead of s(i), for the sake of simplicity. Since
the real Jordan form Jg is similar to one (or two) complex
Jordan block(s), for sufficiently large ¢ € Z., its power norm
has the following bound'”

4 1(i—rg_y), (T1)

[TH <t A5 t>t (72)
Hence, inequality (70) can be rewritten as
o] < 7 AW | >t (73)

Step 2: Recall that u“)(i) = N(i) Ht 1 Eg) [see (63)], Where
E(T') is either equal to 1 (no part1t10n1ng occurs for axis wr ))
or greater than 1 (partitioning occurs). Now, we define the
time set of partitioning occurring w.r.t. axis Egl) as

740

Ahiion = {t € Zas 7 > 1}, (74)

which is non-empty!!. We label the &™ smallest element in

7;(a1)rt1tlon as tg ;. Thus, V¢ > max{t,t1;}, we can find a k €
Zy such that t € [ty ;,tkt1,4), and
t 23 wis)
ot H
(%) (1) < Wo F
[T = [T € S0
=1 =1 ||wtk,i
()
e | A [F||W
~(4)
@y,

where (c) follows from (63) and (73). Now, we want to find
a lower bound on ||w .|| to upper bound the right-hand side

10T [12], a similar but tighter bound can be found, while our bound is
simpler and good enough for this proof.

"'We can show that T

partition is a non-empty set by contradiction: If

—(4)
we assume 7;)art1tlon

is an eigenvector w.r.t. [As| > 1) is non- decreaqmg witht € Z,
i @ 1 = 14BN = 1@y 1| = s llB(21] > e = -
Noticing that lim¢ o0 6,51) = 0 (Line 6 in Algorithm 1), we know that
partitions must occur. It contradicts the no partitioning assumptlon Thus,

) must be non-empty. Furthermore, we can verify that ’T

partition
a countably infinite set.

is an empty set, i.e., no partitioning occurs, then w;

(where w{

partition 18

of (75), which relies on rewriting Line 7 of Algorithm 1 that

~ (i logs ([@y,, ,11/6;
i1 = i 1 o] i 05, )
( ) lo wf 6t
Iz H/2( g2 (Il 1768 )] 6)
(i ) _ (i
© S 0wl |
= tps+1) ~ 2(t+1)
where the substitutions d,(f:) = ||1Et(: .|l and ||w ) A= ||Utk .
@S) || are made in the first line; equality (b) holds since IQ( RS
1 (partitioning occurs) at ¢ ; so that Hwtk) | = *§1 L‘St(z)i >

5t(k: ; inequality (e) follows from [-] < - + 1; equality (f) is
established by Line 6 in Algorithm 1. Then, inequality (75)
can be rewritten as

ﬁ =) < 20+ e )\S|t||W((]S)HF
T [y

=1
t1,}, the following holds

; (77

which means V¢ > max{t,t11,...,

t t n
[T =TT
T=1

T=14=1

moo(t+ e AT

< H —(4)
Iy

i=1

(78)

Step 3: For the measure of each coding cell at time ¢ = 0,
we have

po (04 (0)) = pa (P, 7)) = [ det(7)],

(79)
which follows from (65) and Lemma 5. Vt € Z,, we have

) Lin (P 5(0)7_ E(")
i (015 )(Xt)) _ (P( t#]ct )
_ [ det(@)|pn(PE”,...5™))
B #Ky '
By (79) and (80), the measure of each coding cell at any given
time ¢ is

(80)

o ) = 9100

Combining it with (78), we can derive

(81)

(ke)
logs pn (71" (%) togy (| det(A)]!|det ()}
t - t
w7 (s)
n 10g2 (72‘““/;?1) ‘|||F (t + 1)trs )\slt)
_ Z 0 ; . (82)
=1

We stress that as ¢ — oo limit exists in the right-hand side
of (82) and equals 0, since when ¢ — oo both the first and
second items go to | det(A)|. Note that in the second item, s
is a function of ¢ [see (71)] such that each s appears exactly r;
times for i € {rs_1 +1,...,75}. As t — oo, the second item
goes to Zle rslogy |As| = log, |det(A)|. Then, observing
that logy ft,, (ai”t)(yt)) /t < 0 holds for sufficiently large t,
we can obtain condition (v) in Theorem 1. |
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