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Abstract—We consider the problem of secure communication
in wireless fading channels in the presence of non-colluding pas-
sive eavesdroppers. The transmitter has multiple antennas and
is able to simultaneously transmit an information bearing signal
to the intended receiver and artificial noise to the eavesdroppers.
We obtain an analytical closed-form lower bound for secrecy
capacity, which is used as the objective function to optimize
transmit power allocation between the information signal and
the artificial noise. Our analytical and numerical results show
that equal power allocation is a simple and generic strategy
which achieves near optimal capacity performance. We also find
that adaptive power allocation based on each channel realization
provides no or insignificant capacity improvement over equal
power allocation.

I. INTRODUCTION

Security is a fundamental problem in wireless communi-
cations due to the broadcast nature of the wireless medium.
Traditionally, secure communication is achieved by using
cryptographic technologies such as encryption. However, the
perfect secrecy of encryption cannot be guaranteed if the
eavesdroppers have infinite computational power. On the other
hand, the studies from an information-theoretic viewpoint
have found conditions for reliable secure communication.
In the pioneering works on information-theoretic security,
Wyner introduced the wiretap channel for single point-to-point
communication [1], which was extended to broadcast channels
by Csiszár and Körner [2]. The results in these early works
showed that a positive secrecy capacity can be achieved if the
receiver has a better channel than the eavesdropper.

Recently, various physical-layer techniques were proposed
to achieve secure communication even if the receiver’s channel
is worse than the eavesdropper’s channel. One of the main
techniques is the use of interference or artificial noise to
confuse the eavesdropper. With two base stations connected
by a high capacity, typically wired, backbone, one base station
can simultaneously transmit an interfering signal to secure the
uplink communication for the other base station [3, 4]. In the
scenario where the transmitter has a helping interferer, the
secrecy level can also be increased by having the interferer
to send random codewords at a rate that ensures it can be
decoded by the receiver but not by the eavesdropper [5].
When multiple antennas are available at the transmitter, it
is possible to simultaneously transmit both the information
bearing signal and artificial noise to achieve secrecy in a
fading environment [6–8]. In this multi-antenna scenario, the
transmit power allocation between the information signal and

the artificial noise becomes an important design parameter,
which has not been investigated in [6, 7]. A sub-optimal power
allocation strategy which achieves a target signal to interfer-
ence and noise ratio (SINR) at the receiver was proposed
in [8]. However, it is not clear whether this strategy performs
well in terms of the secrecy capacity or not.

In this paper, we study the problem of secure communica-
tion in fading channels with a multi-antenna transmitter capa-
ble of generating artificial noise. We derive an exact closed-
form expression for the average secrecy capacity lower bound
in Section III. Using the closed-form capacity expression as the
objective function, we investigate the optimal transmit power
allocation between the information bearing signal and the
artificial noise in Section IV. Our results show that the equal
power allocation is a simple yet near optimal strategy at any
SNR values for systems with any practical number of transmit
antennas. In addition, we find that adaptive power allocation
based on each realization of the channel gain provide no or
insignificant capacity gain over the equal power allocation.

Throughout the paper, the following notations will be used:
Boldface upper and lower cases denote matrices and vectors,
respectively. [·]∗ denotes the complex conjugate operation, and
[·]† denotes the conjugate transpose operation. The notation
E{·} denotes the mathematical expectation. | · | denotes the
absolute value of a scalar, and ‖ · ‖ denotes the norm of a
vector.

II. SYSTEM MODEL

We consider that the transmitter (A) has NA antennas
(NA > 1) and the receiver (B) has a single antenna. This
scenario is representative, for example, of downlink trans-
mission in cellular systems and wireless local area networks
(LAN). In addition, we allow non-colluding eavesdroppers
(E) to individually overhear the communication between A
and B without any central processing. We also assume that
the eavesdroppers are passive, hence they cannot transmit
jamming signals. We denote the channel between A and B
and the channel between A and E as h and g, respectively,
both of which are 1 × NA vectors. The elements of h and
g are independent and identically distributed (i.i.d.) complex
Gaussian random variables. The knowledge of h can be
obtained at A either from uplink (or reverse) training if channel
reciprocity holds or using a feedback link from B to A. Similar
to [6], we assume that the knowledge of both h and g is
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available at E, which makes the secrecy of communication
independent of the secrecy of channel gains.

The key idea of guaranteeing secure communication using
artificial noise proposed in [6] is described as follows. The
transmitter utilizes multiple antennas to transmit the informa-
tion bearing signal into the receiver’s channel, at the same
time generating a noise-like signal into the null space of the
receiver’s channel. We let an NA×NA matrix W = [w1 W 2]
be an orthonormal basis of C

NA , where w1 = h†/‖h‖. The
transmitted symbol vector at A is given by x = w1u+W 2v,
where the variance of the information symbol u is σ2u and the
NA−1 elements of v are i.i.d. complex Gaussian random vari-
ables each with variance σ2v . Therefore, the received symbols
at B and E are given by, respectively,

yB = hx+ n = hw1u+ hW 1v + n = ‖h‖u+ n, (1)

yE = gx+ e = gw1u+ gW 2v + e, (2)

where n and e are the additive white Gaussian noises (AWGN)
at B and E with variance σ2n and σ2e , respectively. We see in
(1) that W 1 spans the null space of h, hence the artificial
noise v does not affect the received signal at B.

We consider a total power per transmission denoted by P ,
that is, P = σ2u+(NA−1)σ2v . We refer to P/σ2n as the transmit
signal to noise ratio (SNR). One important design parameter is
the ratio of power allocated to the information bearing signal
and the artificial noise. We denote the fraction of total power
allocated to the information signal as φ. Hence, we have the
following relationships:

σ2u = φP, (3)

σ2v = (1− φ)P/(NA − 1). (4)

In the rest of this paper, we investigate the optimal values
of φ by first deriving a closed-form expression for an average
secrecy capacity lower bound, and then employing this lower
bound as the objective function.

III. SECRECY CAPACITY LOWER BOUND

The secrecy capacity is the maximum rate of transmission at
which the receiver can decode the data with arbitrarily small
error while the eavesdropper’s error probability of decoding
approaches one. It is bounded from below by the difference
in the capacity of the channel between A and B and that
between A and E [2].

The capacity of the channel between A and B is given by

C1 = Eh{log2(1 + σ2u/σ2n‖h‖2)}
= Eh{log2(1 + φP/σ2n‖h‖2)}. (5)

Since h is known at the transmitter, the power allocation
parameter φ can be designed based on each realization of
h. We refer to this strategy as the adaptive power allocation
strategy. Alternatively, the transmitter can choose a fixed value
for φ regardless of the channel gain, which we refer to as the
non-adaptive power allocation strategy.

Without loss of generality, we normalize the variance of
each element of h to unity. It is then easy to see that

‖h‖2 follows a Gamma distribution with parameters (NA, 1).
Therefore, for systems with non-adaptive power allocation
strategy, we can rewrite (5) in an integral form as

C1 =
1
ln 2

∫ ∞

0

ln(1 + φP/σ2nx)xNA−1 e−x

Γ(NA)
dx,

where Γ(·) is the Gamma function. Using the following
identity from [9]∫ ∞

0

ln(1 + bx)xc−1e−xdx =
(c− 1)!
e−1/b

c∑
k=1

Ek(1/b),

where En(·) is the generalized exponential integral, b ≥ 0 and
c ≥ 1, we get

C1 =
exp(zσ2n/P )

ln 2

NA∑
k=1

Ek(zσ2n/P ), (6)

where we have defined z = φ−1.
Next, we obtain an upper bound on the capacity of the

channel between A and E. When multiple eavesdroppers are
present, the noise at each eavesdropper may be different.
Similar to [7], we consider the worst case scenario, where
the noise at E is arbitrarily small, e.g., σ2e → 0. Therefore,
the capacity of the channel between A and a typical E can be
bounded from above by

C2 = Eh,g1,g2

{
log2

(
1 +

σ2u|g1|2
σ2v‖g2‖2

)}

= Eh,g1,g2

{
log2

(
1 +

φ(NA − 1)|g1|2
(1− φ)‖g2‖2

)}
, (7)

where we have defined g1 = gw1 and g2 = gW 2. The
expectation over h in (7) is due to the fact that φ may be
dependent on h. We see in (7) that the variance of each
element of g does not affect the upper bound C2. Hence, C2

in (7) is valid for any eavesdropper’s channel and we can
normalize the variance of the elements of g to unity without
loss of generality.

Since W is a unitary matrix, gW = [g1 g2] has the
same distribution as g, i.e., a multivariate Gaussian distribu-
tion. Also, g1 and the elements of g2 are orthogonal due
to the orthogonality between w1 and the columns of W 2.
Therefore, we conclude that g1 and the elements of g2 are
independent. Consequently, |g1|2/2 and ‖g2‖2/(2NA − 2)
have independent Chi-square distributions, and their ratio
follows an F-distribution with parameter (2, 2NA − 2). The
probability density function of a random variable X having
an F-distribution with parameter (2, 2NA − 2) is given by

fX(x) =

√
(2x)2(2NA−2)2NA−2

(2x+2NA−2)2NA

xB(1, NA − 1)
=

(NA − 1)NA

(x+NA − 1)NA
,

where B(y, z) = Γ(y)Γ(z)
Γ(y+z) is the Beta function. Therefore, we

can rewrite (7) in integral form as

C2=Eh

{ ∫ ∞

0

log2
(
1 +

φ

1− φ
x
)
fX(x)dx

}

=Eh

{ (NA−1)NA

ln 2

∫ ∞

0

ln
(
1+

φ

1− φ
x
) 1
(x+NA−1)NA

dx
}
.
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Fig. 1. Average secrecy capacity lower bound C versus SNR P/σ2
n with

different power ratios φ and numbers of transmit antennas NA. The lines
(solid and dashed) are obtained using the closed-form expression in (10). The
markers (circles and squares) are obtained from Monte-Carlo simulations.

Using the following identity derived in Appendix A∫ ∞

0

ln(1 + bx)
(x+ a)c

dx =
bc−1

(c− 1)2 2
F1(c− 1, c− 1; c; 1− ab),

where b ≥ 0, c > 1 and 2F1(·) is the Gauss hypergeometric
function, we get

C2=Eh

{ (NA−1)NA−2

(z−1)NA−1 ln 2 2F1
(
NA−1,NA−1;NA;

z−NA

z−1
)}

,

(8)

where we have used z = φ−1.
Therefore, a lower bound on the average secrecy capacity

is given by C = C1 − C2. For systems with adaptive power
allocation, the average secrecy capacity lower bound is given
as

C =
[
Eh

{
log2(1 + z−1P/σ2n‖h‖2)−

(NA − 1)NA−2

(z − 1)NA−1 ln 2

× 2F1
(
NA−1, NA−1;NA;

z −NA

z − 1

)}]+
, (9)

where [a]+ = max{0, a} and z is a function of h. For sys-
tems with non-adaptive power allocation, the average secrecy
capacity lower bound is given as

C =
[exp(zσ2n/P )

ln 2

NA∑
k=1

Ek(zσ2n/P )− (NA − 1)NA−2

(z − 1)NA−1 ln 2

× 2F1
(
NA−1, NA−1;NA;

z −NA

z − 1

)]+
, (10)

where z is a constant independent of h.
Fig. 1 shows the average secrecy capacity lower bound in

(10) versus SNR. The results are shown for different power
allocation ratios as well as different numbers of transmit anten-
nas. We see that the markers match perfectly with the lines for
all cases. Therefore, the analytical closed-form expression in

(10) is exact and can be used to optimize the power allocation
between the information signal and the artificial noise.

IV. OPTIMAL POWER ALLOCATION

In this section, we study the optimal power allocation
between the information bearing signal and the artificial noise.
The objective function for this optimization problem is the
average secrecy capacity lower bound. As we have discussed,
the power allocation strategy can be either adaptive or non-
adaptive. The former depends on each realization of the chan-
nel gain while the latter is fixed for all channel realizations.
In particular, we investigate the following two practical design
questions:

• Is there a simple and generic power allocation strategy
which gives near optimal performance in terms of the
average secrecy capacity lower bound?

• How much secrecy capacity improvement can one
achieve by adopting the adaptive power allocation strat-
egy over the non-adaptive strategy?

The closed-form capacity expressions derived in the previ-
ous section greatly reduce the computational complexity of the
optimization process. Furthermore, these capacity expressions
enable us to analytically find the optimal power allocation in
the high SNR regime as follows.

In the high SNR regime, i.e., P/σ2n → ∞, (5) can be
approximated as

C1 ≈ log2(φP/σ2n‖h‖2) = κ− ln z

ln 2
, (11)

where κ is some constant independent of z. It is clear from
(11) that the optimal value of z is independent of h. The
derivative of C1 w.r.t. z is equal to −1/(z ln 2).

Using the derivative of the Gauss hypergeometric func-
tion [10], we obtain the derivative of C2 in (8) as

dC2

dz
=
(NA−1)NA−1

(z−1)NA ln 2

( (NA−1)2
NA(z−1) 2F1(NA,NA;NA+1;

z−NA

z−1 )

− 2F1(NA−1, NA−1;NA;
z−NA

z − 1
)
)
. (12)

Therefore, the solution to the optimal power allocation at
high SNR satisfies

dC
dz

= − 1
z ln 2

− dC2

dz
= 0, (13)

where dC2
dz is given in (12).

In the special case of NA = 2, we have [10]

2F1
(
NA−1, NA−1;NA;

z −NA

z − 1

)
= 2F1

(
1, 1; 2; 1− 1

z − 1

)

=
z − 1
z − 2

ln(z − 1).

Therefore, (8) reduces to

C2 =
1
ln 2

1
z − 2

ln(z − 1). (14)

And (13) simplifies to

−1
z
− 1
(z − 2)(z − 1)

+
ln(z − 1)
(z − 2)2

= 0. (15)
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Fig. 2. Optimal ratio of power allocation φ versus SNR P/σ2
n for different

numbers of transmit antennas NA. The average secrecy capacity lower bound
in (10) is used as the objective function, hence the non-adaptive power
allocation strategy is used. The values of φ are shown for SNRs at which
the secrecy capacity lower bound is positive.

The solution to (15) is given by z = 2. It can be shown that
limz→2

d2C
dz2 < 0. Hence the optimal ratio of power allocation

is given by φ = 0.5, that is to say, equal power allocation
between the information signal and the artificial noise is the
optimal strategy in the high SNR regime for NA = 2.

Fig. 2 shows the optimal values of φ using the non-adaptive
power allocation strategy for systems with different numbers
of transmit antennas. The values of φ are shown for SNRs at
which the average secrecy capacity lower bound is positive.
The general trend is that more power needs to be allocated
to the information signal as SNR increases. In the high SNR
regime, we see that the optimal values of φ converge to some
constant values. For NA = 2, the optimal value of φ converges
to 0.5, which agrees with our analytical result. Furthermore,
this constant value only increases slightly with NA. For
example, the optimal value of φ at high SNR ranges from 0.50
to 0.55 for NA ranging from 2 to 16. This observation suggests
that a near optimal yet simple power allocation strategy at
moderate to high SNR values is the equal power allocation
between the information signal and the artificial noise.

Fig. 3 shows the average secrecy capacity lower bound
with the optimized φ using the non-adaptive strategy for
systems considered as in Fig. 2. For comparison, we also
include the capacity lower bound with equal power allocation,
i.e., φ = 0.5, indicated by the solid lines. We see that the
equal power allocation strategy achieves nearly the optimal
capacity performance in all cases over the entire range of SNR
values. This confirms that equal power allocation is a simple
and generic strategy which yields close to optimal capacity
performance.

Fig. 4 shows the average secrecy capacity lower bound with
the optimized φ, using both the adaptive and non-adaptive
power allocation strategies, for systems with different numbers
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Fig. 3. Average secrecy capacity lower bound C in (10) versus SNR
P/σ2

n for different numbers of transmit antennas NA. The non-adaptive
power allocation strategy is used. The average capacity lower bound with
equal power allocation for each case (i.e., the solid line) is also shown for
comparison.
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Fig. 4. Average secrecy capacity lower bound C versus SNR P/σ2
n for

different numbers of transmit antennas NA. Both the adaptive and non-
adaptive power allocation strategies are used, indicated by the markers and
the lines, respectively.

of transmit antennas. We see that there is no or insignificant
difference between the capacity achieved by the adaptive
and non-adaptive strategies in all cases over the entire range
of SNR values. This result suggests that the non-adaptive
power allocation strategy is sufficient to achieve almost the
best possible capacity performance. Furthermore, from the
observations in Fig. 3, it is clear that the use of equal power
allocation achieves nearly the same capacity performance as
that achieved by both the adaptive and non-adaptive power
allocation strategies.
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V. CONCLUSION AND FUTURE WORK

In this paper, we considered the secure communication in
the wireless environment where the transmitter sends artificial
noise to the eavesdroppers. We obtained closed-form expres-
sions for the average secrecy capacity lower bounds, which
were used to study the optimal power allocation between
the information bearing signal and the artificial noise. We
analytically showed that the equal power allocation is the
optimal strategy at high SNR for the case of two transmit
antennas. From the numerical results, we also showed that the
equal power allocation is a simple yet near optimal strategy
at any SNR values for systems with any practical number
of transmit antennas. Furthermore, we found that adaptive
power allocation based on each realization of the channel gain
provides no or insignificant capacity gain over the equal power
allocation.

When the multiple eavesdroppers can collude, this scenario
can be modeled as a single eavesdropper with multiple anten-
nas. In this case, the optimal power allocation can be very dif-
ferent from that for non-colluding eavesdroppers. Furthermore,
the transmitter can only adopt sub-optimal power allocation
strategy if it does not have accurate knowledge about the
number of eavesdroppers that are colluding. We are currently
investigating this multiple-colluding eavesdropper scenario.

APPENDIX A
DERIVATION OF AN INTEGRAL IDENTITY

Letting f(x) = ln(1 + bx) and g(x) = (x+a)1−c

1−c , we have
f ′(x) � d

dxf(x) = b
1+bx and g′(x) � d

dxg(x) = (x + c)−c.
Using integration by parts, we have∫ ∞

0

ln(1 + bx)
(x+ a)c

dx =
∫ ∞

0

f(x)g′(x)dx

= f(x=∞)g(x=∞)−f(x=0)g(x=0)−
∫ ∞

0

f ′(x)g(x)dx

For b ≥ 0 and c > 1, it is easy to show that both f(x =
∞)g(x = ∞) and f(x = 0)g(x = 0) are equal to zero.
Hence, we have∫ ∞

0

ln(1 + bx)
(x+ a)c

dx = −
∫ ∞

0

b

1 + bx

(x+ a)1−c

1− c
dx

We will evaluate the integral for a > b−1. The case of a < b−1

can be treat in a similar manner, and the case of a = b−1 is
straightforward. Indeed, it can be shown that all three cases
yield the same result.

For a > b−1, we have∫ ∞

0

ln(1 + bx)
(x+ a)c

dx

= − 1
(1− c)(a− b−1)c

∫ ∞

0

(
x+b−1

a−b−1

)−1

(
1 + x+b−1

a−b−1

)c−1 dx

= − 1
(1− c)(a− b−1)c

∫ ∞

1
ab−1

y−1

(1 + y)c−1
dx,

where we have defined y = x+b−1

a−b−1 . Using the following
identity from [11]∫ ∞

u

yμ−1dy
(1+βy)ν

=
uμ−ν

βν(ν−μ) 2
F1

(
ν, ν−μ; ν−μ+ 1;−1/(βu)

)
,

where ν > μ, we have∫ ∞

1
ab−1

y−1

(y + 1)c−1
dy =

bc−1

(c− 1)2 2
F1(c− 1, c− 1; c; 1− ab).
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