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ABSTRACT

Intelligent reflecting surfaces (IRS) can improve the perfor-
mance of backscatter communication systems by employing
reconfigurable phase shifts (or passive beamforming) to fa-
vorably configure the wireless propagation medium. How-
ever, the design of optimal IRS phase shifts requires channel
state information (CSI), which is hard to acquire in a multi-
reflection channel. In this paper, we propose a deep learn-
ing based framework that learns the desired IRS phase shifts
without knowing the channels, to assist the communication
of a passive backscatter tag. This is achieved by parameteriz-
ing the mapping from the received pilots to the desired con-
figuration of IRS by training a deep neural network (DNN)
BIRS-Net on a sufficiently large dataset covering a variety of
channel realizations and possible power splitting ratios at the
backscatter tag. Simulation results show that the proposed
DNN based solution can efficiently learn to maximize the
SNR of backscatter transmission and exhibits near optimal
performance.

Index Terms— Backscatter communication, deep learn-
ing, intelligent reflecting surface, energy harvesting, passive
beamforming.

1. INTRODUCTION

Backscatter communication (BackCom) has been envisaged
as promising technology to realize energy efficient connectiv-
ity for the self-sustainable Internet of Things (IoT) [1]. Back-
Com devices or tags are typically low-cost passive devices
that reflect and modulate incident radio frequency (RF) sig-
nals via intentional impedance mismatch, while harvesting
energy from the incident signals to power their own opera-
tion [2]. However, despite the recent uptake of research in
this area, the issues of limited range and low achievable bit
rate continue to exist.

Intelligent reflecting surface (IRS) has recently emerged
as a transformative technology that can tailor the wireless
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propagation environment by the coordinated design of phase
shifts at its reflectors (passive beamforming), to ensure con-
structive or destructive reception at desired locations in the
network [3–5]. The anticipated widespread integration of IRS
in future wireless networks has motivated exploration of the
potential enhancement of BackCom and other 6G technolo-
gies by leveraging an IRS located nearby [6–9]. In particular,
the IRS can favorably assist monostatic BackCom by enhanc-
ing the effective gain of both the reader to tag (forward) and
the tag to reader (backscatter) links [10, 11].

To leverage the passive beamforming gain of the IRS,
channel state information (CSI) is needed. CSI acquisition in
this case is challenging due to the passive reflecting nature of
both these technologies and because only the composite chan-
nel (cascade of forward and backscatter links) is observable
at the reader. Moreover, each of the forward and backscat-
ter channels is a sum of the direct and via IRS links. Thus,
the channel estimation techniques proposed for other IRS-
assisted systems [12, 13] or for BackCom only systems [14]
are not applicable in this case. Besides, once the channels are
known, the optimized IRS phase shifts need to be obtained
based on the estimated channels. Owing to recent advances
in deep learning (DL), an explicit CSI acquisition step can be
skipped and the passive beamforming can be directly obtained
using data driven techniques. This is evidenced by the success
of several DL based frameworks including the sum-rate max-
imization in an IRS assisted multi-user MIMO system with-
out explicit channel estimation by employing a DL frame-
work proposed in [15] and an unsupervised learning based
approach for passive beamforming in IRS-assisted communi-
cation systems [16].

In this work, we propose a DL based approach to ad-
dress the problem of configuring the IRS phase shifts to as-
sist a monostatic BackCom system located in its proximity.
Moreover, our scheme also proposes the best value for the
power splitting ratio of the tag to support the maximization
of backscatter signal strength received at the reader while en-
suring that the tag harvests enough power to sustain its oper-
ation. To the best of our knowledge, this is the first work to
provide a learning-based end-to-end solution to the joint de-
sign of IRS reflection pattern and tag splitting ratio in an IRS-
assisted BackCom system. Importantly, the solution does not
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Fig. 1. Illustration of the system model.

involve explicit channel estimation. In this context, our main
contributions are:

• We present a pilot-based training protocol and the asso-
ciated optimization problem for maximizing the effec-
tive SNR γb of the backscatter transmission.

• We propose a DNN based solution named BIRS-Net,
which maps the received pilots directly to the optimal
IRS phase shifts and tag power splitting ratio, with the
objective of maximizing γb. We discuss the DNN’s im-
plementation, training and tuning of hyper-parameters
and its testing on unseen data.

• Our results indicate a near-optimal performance in
maximizing the SNR of the backscatter transmission
when BIRS-Net is deployed at the reader.

2. SYSTEM MODEL

We consider a monostatic BackCom system assisted by an
IRS with N passive reflecting elements located nearby. The
system consists of a full-duplex single-antenna reader and a
single antenna backscatter tag. We model the system in a
three dimensional setup as shown in Fig. 1.

The IRS is assumed to be equipped with its own power
supply and a smart controller, which is connected to the reader
via a separate reliable wireless link and is responsible for co-
ordinating their operation as well as exchanging information
such as reflection coefficients. As the tag performs diffuse re-
flection, we ignore the signals reflected two or more times at
the tag due to severe power loss [17]. However, for the paths
in which IRS is involved, it is necessary to consider the sig-
nals that undergo two reflections at the IRS, i.e., the signal
going through the reader-IRS-tag-IRS-reader link [7].

The pathloss from the reader to tag is represented by βR-T,
while the pathloss of the reader-IRS-tag link is represented
by βR-I-T. We assume all the channels to be quasi-static, fre-
quency non-selective and constant in each fading block with
independent and identically distributed (i.i.d.) Rician fading.
Let hD ∈ C, hR ∈ CN×1 and hT ∈ CN×1 denote the base-
band equivalent channels from the reader to tag, reader to
IRS, and tag to IRS, respectively. If the signal sent out by

the reader is denoted by x, then the overall signal received at
the tag over both the direct and IRS reflecting links is given
by

xT =
(√

βR-ThD +
√
βR-I-TvHφR-I-T

)
x, (1)

where φR-I-T = diag(hR)hT and v =
[
ejθ1 , . . . , ejθN

]T
represents the reflection vector of the IRS such that |vn| =
1, ∀n ∈ {1, . . . , N} and θn ∈ [0, 2π). Then, based on chan-
nel reciprocity (which is an accepted standard in monostatic
backscatter systems [11, 14]), the backscattered signal from
the tag, received at the reader is given by,

yR =
√
α b

(√
βR-ThD +

√
βR-I-TvHφR-I-T

)2
x+ n, (2)

where α is the power splitting coefficient of the tag and repre-
sents the fraction of the incoming signal to be reflected, while
the fraction 1−α of the signal energy is used to power the tag
circuit, b is the information symbol of the tag, n ∼ CN (0, σ2)
is the AWGN and σ2 is the noise power.

We consider a two-phase data transmission protocol,
where each channel coherence block of T symbols is divided
into two phases. During the first pilot transmission phase of
duration Tp seconds, the tag does not send any information
and is kept fixed at a known state α = α0 with b = 1. The
reader transmits pilot symbols and receives back after they
pass through the channel, undergoing backscatter at the tag
and reflection by the IRS. These pilots are then used to obtain
the best IRS passive beamforming v∗ and the best value of
the power splitting ratio at the tag α∗ for backscatter data
transmission. The reader communicates α∗ to the tag and
v∗ to the IRS controller via separate links, so that the tag’s
backscatter communication in the second data transmission
phase of duration T − Tp seconds, can be facilitated.

3. PROPOSED TRAINING DESIGN AND PASSIVE
BEAMFORMING PROTOCOL

During the training phase of duration Tp = NKτp seconds,
the reader sends out pilot sequences. Since there are N val-
ues of IRS reflection coefficients to be estimated, we pro-
pose to turn the IRS elements ON one at a time and send
a pilot sequence of length K for each element. Thus, for
each of the N IRS reflection coefficients to be estimated,
only one corresponding IRS element is turned ON while the
rest of the IRS is kept OFF for a duration of K × τp sec-
onds. So when the i-th IRS element is turned on, i.e., v =
[0, . . . , vi, . . . , 0]T , the reader sends out the pilot sequence
xPi = [xPi(1), xPi(2), . . . , xPi(K)] of length K, with τp be-
ing the duration of each symbol in the sequence. Each such
pilot sequence is sent out by the reader, backscattered by the
tag and then received back at the reader as yRi while undergo-
ing reflections at the IRS on the forward as well as backward
path.

The N × K pilots are received at the reader, stored as a



vector yR ∈ CNK×1. Since the ultimate goal is to find the
IRS reflection pattern v and the tag splitting ratio α that best
facilitates the backscatter transmission, we propose to skip
the explicit channel estimation and in turn directly employ
the received pilots to obtain these. In particular, the problem
of obtaining the mapping from the received pilots yR to the
optimized IRS reflection pattern v∗ and the tag splitting ratio
α∗ for maximizing the received SNR γb for the backscatter
signal can be mathematically written as:

P : max
v=f(yR),
α=ð(yR)

γb(v, α) (3a)

s.t. |vn| = 1, ∀n ∈ {1, 2, . . . N}, (3b)
0 ≤ α ≤ 1, (3c)

(1− α)η
∣∣∣√βR-ThD +

√
βR-I-TvHφR-I-T

∣∣∣2 ≥ ζ,
(3d)

where f and ð are functions that map the received pilots to
the IRS phase shifts and the power splitting ratio at the tag re-
spectively. (3d) is the circuit power constraint of the tag. This
is a variational optimization problem, where the optimization
variables are functionals. Moreover, the objective function
and the constraints are highly non-convex. Since it is difficult
to analytically solve such problems, we leverage the univer-
sal approximation property of the neural networks [18] and
propose a DNN based solution named BIRS-Net to solve this
problem and learn the mapping functions from received pilots
to the optimal IRS phase shifts and the optimal value of the
tag splitting ratio.

4. DEEP LEARNING FRAMEWORK

This section details the proposed deep learning based frame-
work BIRS-Net to solve the problem P for the IRS-aided
backscatter communication scenario outlined in the previous
sections. BIRS-Net is a DNN consisting of fully connected
layers, that parameterizes the mapping from the received pi-
lots to the optimal IRS reflection pattern and the optimal tag
splitting ratio. It takes the vectorized received pilots as inputs,
and outputs the intended IRS phase shift vector v∗ and the
tag splitting ratio α∗ that maximize the received SNR of the
backscatter signal at the reader. BIRS-Net is trained offline
and then deployed at the reader to estimate the best IRS re-
flection pattern and tag splitting ratio based on the incoming
pilots. In the following, we discuss its structure, function,
training procedure, and online deployment.

4.1. Structure of DNN

BIRS-Net consists of four fully-connected (FC) hidden layers
with ns neurons in each layer, where ns is twice the dimen-
sion of the input feature vector, which in turn depends upon
the IRS size as explained in Section 4.2. The purpose of set-
ting the number of neurons proportional to N is to ensure

adequate learning ability as the system scales. The activa-
tion function used for each fully connected layer is the hyper-
bolic tangent (tanh) activation function. A BatchNormaliza-
tion (BN) layer is used after each fully connected layer. The
output layer is a regression layer.

4.2. Training the DNN

The proposed DNN needs to be trained offline with a dataset
comprising received pilots under a wide range of instances
of channels and tag splitting ratios. Essentially, we compute
a set of channels with known coefficients, based on which
we generate the optimal IRS phase shifts using the closed
form solution from [19] (which requires CSI knowledge) and
the optimal tag splitting ratio by exhaustive search. Then
we process the pilot signals through the system to obtain re-
ceived pilots at the reader. The DNN uses supervised learn-
ing and hence the dataset needs to be organized in input-
output pairs {I,O}. The received pilots at the reader com-
prise the input to the DNN and the corresponding optimal
IRS phase shifts and the optimal tag splitting ratio are the
desired outputs that the DNN needs to learn. Since the ex-
isting deep learning modules do not support complex num-
ber operations, the received pilots are split into their real and
imaginary parts and stacked such that the input to the neural
network I = [<(yR),=(yR)]T . Thus, the dimension of the in-
put feature vector in 2NK. Similarly for the output data, the
real and imaginary parts of the optimal IRS phase shift vector
are stacked and then appended with the optimal splitting ra-
tio, i.e., the output is of the format O = [<(v∗),=(v∗), α∗]T .
The input and output vectors are then cast into cell arrays and
used in sequence-to-sequence regression for training and test-
ing phases. The loss function of the DNN is given by [20]

L(Θ) =
1

B

B∑
m=1

||Ô(m)−O(m)||
2

2 + λ

B∑
m=1

Θm
2 (4)

where Ô are the predictions of the DNN and O are the true
values of the output, Θ is the set of learnable parameters be-
ing updated during training and B is the mini-batch size. The
λ term in the loss function represents L2 regularization to ad-
dress the issue of over-fitting.

To train the network, adam optimizer is used. The number
of training epochs required for the BIRS-Net to train depends
upon the IRS size. An early stopping criterion is also applied
that stops the training when the validation accuracy does not
improve in several consecutive epochs. To avoid overfitting,
in addition to L2 regularization, a dropout of 10% is used.
Moreover, the training data is shuffled at every epoch to en-
sure better generalization of the DNN.

5. RESULTS

In this section, we present the numerical results. The reader
emits continuous wave at a frequency of fc = 915 MHz and
transmit power normalized to 1. The reader, tag and IRS are
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Fig. 2. Training progress for BIRS-Net for N = 16.

located at [5, 0, 0], [5, 12, 0] and [5, 20, 1] respectively, with
all the 3-D coordinates in meters. The pathloss of the links
involving the IRS is calculated according to [21]. The values
of the rest of system parameters are: K = 5, σ2 = −90 dBm,
ζ = −30 dBm, γth+ = 8 dB, η = 0.7.

For the DNN training, the size of the data set is 1.5× 104

which split into training and validation data in the ratio of
80:20. The initial learning rate is 0.001, which decays by a
factor of 0.2 after a fixed number of epochs. The mini-batch
size is 32, the L2 regularisation parameter is 0.0005 and the
validation patience is 10. The training is performed on a
Nvidia V100 GPU. After training BIRS-Net, it is tested on
an unseen test data set of size 10,000. The effective SNR
of the backscatter link at the reader is chosen as a metric to
evaluate our proposed DNN. For comparison, we adopt the
closed form optimal solution for IRS phase shifts from [19]
(which requires CSI knowledge) and the optimal α found by
exhaustive search as a benchmark.

Fig. 2 shows the training performance of BIRS-Net in
terms of the loss function of the DNN for an IRS of size
N = 16. The loss function takes on very large values in the
beginning, due to random weights assigned to the network at
the start of the training. However, as the training progresses,
the network learns the underlying pattern of the training data,
and therefore, with ample training iterations, a smaller error
margin between the curves is achieved.

Fig. 3 plots the effective SNR of the combined direct and
via IRS link traversed by the backscatter signal to arrive at
the reader, as function of the IRS size. It can be seen that the
increase in IRS size improves the SNR at the reader, which is
intuitive since a larger IRS enhances the effective gain of the
reflecting path. Moreover, the rate of increase in SNR with
the increase in N slightly levels off as N increases. It is also
noteworthy that the benchmark optimal solution is obtained
with full CSI knowledge, whereas our proposed solution
is under the assumption of no CSI. Therefore, despite the
gap between the two plots, the performance of our proposed
scheme is surprisingly good.

Fig. 4 illustrates the impact of the IRS size on the tag
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Fig. 3. Impact of the IRS size on the effective SNR of the
backscatter link.
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Fig. 4. Impact of the IRS size on the tag splitting ratio.

splitting ratio. It is seen that with the increase in IRS size the
optimal value of the tag splitting ratio increases. This is due
to the fact that with a larger IRS, the signal arriving at the tag
is stronger. Therefore, even after harvesting the amount of
energy required to power the tag, a significant fraction can be
backscattered towards the reader, leading to a higher value of
α and a higher SNR.

6. CONCLUSION

In this work, an IRS assisted monostatic BackCom system
was studied. To avoid the complex CSI acquisition and the
subsequent design of optimal passive beamforming, a DL
based framework was proposed to learn the IRS configu-
ration and power splitting ratio at the tag to maximise the
effective SNR of backscatter transmission. This involved the
implementation and training of a DNN, that achieved direct
mapping of the received pilots to desired IRS phase shifts and
tag splitting ratio without explicitly estimating the channels.
Simulation results showed near optimal performance of the
proposed DNN based framework.
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