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Abstract—We propose a new spectrum allocation strategy,
aided by unsupervised learning, for multiuser terahertz com-
munication systems. In this strategy, adaptive sub-band band-
width is considered such that the spectrum of interest can be
divided into sub-bands with unequal bandwidths. This strategy
reduces the variation in molecular absorption loss among the
users, leading to the improved data rate performance. We first
formulate an optimization problem to determine the optimal
sub-band bandwidth and transmit power, and then propose the
unsupervised learning-based approach to obtaining the near-
optimal solution to this problem. In the proposed approach, we
first train a deep neural network (DNN) while utilizing a loss
function that is inspired by the Lagrangian of the formulated
problem. Then using the trained DNN, we approximate the near-
optimal solutions. Numerical results demonstrate that comparing
to existing approaches, our proposed unsupervised learning-
based approach achieves a higher data rate, especially when the
molecular absorption coefficient within the spectrum of interest
varies in a highly non-linear manner.

Index Terms—Terahertz communication, machine learning,
unsupervised learning, spectrum allocation, adaptive bandwidth

I. INTRODUCTION

Terahertz (THz) communication (THzCom) has been envi-
sioned as a key wireless technology in the sixth-generation
(6G) and beyond era [1]. The THz band has enormous
potential to support tera-bits-per-second (Tbps) data rates and
massive connections in 6G networks, due to the tens up to a
hundred GHz bandwidth [2]. Thanks to the recent advance-
ments in manufacturing THz transceivers and antennas, as
well as the experimental licenses (95 GHz–3 THz) opened
by the US Federal Communications Commission, increasing
endeavors have been devoted to the design and development
of practical THzCom systems over the past few years [3, 4].

Despite the promise, THzCom encounters unique challenges
that are different from those experienced at lower frequencies,
e.g., severe spreading loss, higher channel sparsity, and the
unique molecular absorption loss [5]. The molecular absorp-
tion loss is frequency-dependent, divides the whole THz band
into several ultra-wide transmission windows (TWs), and
introduces substantially varying distance-dependent path loss
within TWs. These challenges need to be wisely tackled for
developing practical THzCom systems.

The multi-band-based spectrum allocation is envisioned as
one promising solution to supporting micro- and macro-scale
THzCom systems, since it can effectively assign spectral
resources when the variation in molecular absorption loss
among the users in multiuser systems is very high [2]. In
this allocation, the spectrum of interest is divided into non-
overlapping sub-bands, and the sub-bands are utilized to
support the users in the system.

Although different designs have been proposed to optimize
the performance of multi-band-based spectrum allocation, e.g.,
[6–9], they all considered the spectrum of interest is divided
into sub-bands with equal bandwidth. It is noted that the
consideration of equal sub-band bandwidth (ESB) can lead
to high variation in the channel quality levels among the
users that are assigned to sub-bands. Different from ESB,
adaptive sub-band bandwidth (ASB), where the spectrum of
interest is divided into sub-bands with unequal bandwidths,
can effectively reduce this variation, by allowing to change
the bandwidth of sub-bands. Specifically, ASB allows the
users that are assigned to the sub-bands in the edge and
center regions of the THz TWs to occupy larger and smaller
bandwidth, respectively, as compared to what would have
been allocated when ESB is considered, thereby leading to
an overall improvement in the data rate performance.

Motivated by the benefits, the multi-band-based spectrum
allocation with ASB was first proposed in our previous stud-
ies [10, 11]. We note that the designs in [10, 11] are only
applicable when the molecular absorption coefficient within
the to-be-allocated spectrum is simple such that it can be
modeled as a piecewise exponential function of frequency
with minimal approximation errors. In many spectrum regions
within the THz band, the molecular absorption coefficient
varies in a highly non-linear manner; thus, it cannot be
modeled as a piecewise exponential function of frequencies in
such spectrum regions. It follows that the designs in [10, 11]
cannot be adopted in such spectrum regions. This motivates
the current work.

In the current work, we study multi-band-based spectrum
allocation with ASB to improve the spectral efficiency of THz-
Com systems. We formulate an optimization problem to de-
termine the optimal sub-band bandwidth and optimal transmit
power. We then propose an unsupervised learning-based ap-978-1-6654-3540-6/22 c© 2022 IEEE



proach to obtaining a near-optimal solution to the formulated
optimization problem. In the proposed approach, we first train
a deep neural network (DNN) where a loss function inspired
by the Lagrangian of the formulated optimization problem is
used. Thereafter, using the trained DNN, we approximate the
near-optimal solution to the formulated optimization problem.
Using numerical results, we demonstrate that when the values
of the molecular absorption coefficient within the spectrum
of interest can be modeled as an exponential function of
frequency, the data rate obtained by our proposed unsuper-
vised learning-based approach converges to the optimal data
rate achieved by the existing spectrum allocation approach
with ASB. We also demonstrate that when the values of
the molecular absorption coefficient within the spectrum of
interest change rapidly and thus cannot be modeled as an
exponential function of frequency, our proposed unsupervised
learning-based approach outperforms the existing approach.

Notations: Matrices and column vectors are denoted by up-
percase and lowercase boldface symbols, respectively. Scalar
variables are denoted by italic symbols. Given a matrix A,
Ar denotes the rth row vector of A. Given a column vector
a, aT and ar denote the transpose and the rth element of a,
respectively. Moreover, Im and Lm denote m × m identity
matrix and m ×m lower triangular matrix with all non-zero
values as 1, respectively. Furthermore, 1m denotes the m× 1
vector with all entries as 1. The curled inequality symbols,
e.g., �, denote generalized inequalities, i.e., componentwise
inequality between vectors.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a three-dimensional (3D) indoor THzCom
system where the high data rate demands of nI users are
supported by a single AP. We consider that the users are
stationary and distributed uniformly on the floor in the indoor
environment. We denote d as the nI × 1 communication
distance vector of the AP-user channels. For notational con-
venience, we consider that the elements in d are ordered such
that d1 < d2 < · · · < dnI .

A. THz Spectrum

1) Spectrum of Interest: We define the regions which gener-
ally exhibit an decreasing and increasing molecular absorption
coefficient behaviour within an ultra-wideband THz TW as the
negative absorption coefficient slope region (NACSR) and the
positive absorption coefficient slope region (PACSR), respec-
tively, as depicted in Fig. 1 [10]. It is noted that at the THz
band, the available bandwidths in each NACSR and PACSR
are in the order of tens of GHz [10, Table 1]. Considering this,
we focus on the scenario where the to-be-allocated spectrum
of interest fully exists in either an NACSR or a PACSR of a
THz TW in this work1. Without loss of generality, in the rest
of the paper, we present spectrum allocation in an NACSR

1To fully utilize the potentials of the huge available bandwidths at the THz
band, it would be more beneficial to focus on resource allocation when the
to-be-allocated spectrum of interest spans across multiple NACSRs and/or
PACSRs. This consideration will be addressed in our future work.
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Fig. 1. Illustration of (i) PACSRs and NACSRs that exist between 0.5 THz
and 1 THz with {TW1,TW2}, {srp1, srp2}, and {srn1, srn2} denoting
the TWs, PACSRs, and NACSRs, respectively, and (ii) sub-band arrangement
within the spectrum of interest.

only since this spectrum allocation can be easily applied to a
PACSR.

We focus on multi-band-based spectrum allocation with
ASB. Thus, we divide the spectrum of interest into nS sub-
bands that are of unequal bandwidths. We denote b and f as
the nS × 1 vectors of the bandwidth and the center frequency
of the sub-bands, respectively. For notational convenience, we
label the sub-bands such that f1 < f2 < · · · < fnS , as shown
in Fig. 1. Thus, we have

fs = εf +
∑s−1

k=1
bk +

1

2
bs = Asb + εf , (1)

where s ∈ {1, 2, · · · , nS} and εf is the start frequency of
the spectrum of interest, as shown in Fig. 1. Here, A is an
nS × nS matrix with A = LnS

− 1
2InS

. Considering this, we
have f = Ab + 1nIεf . Due to the consideration of ASB, we
have

0 � b � bmax, (2)

where bmax denotes the upper bound on bandwidth of the sub-
band. We then denote btot as the total available bandwidth
within the spectrum of interest and express it as

btot = 1T
nS

b. (3)

2) Sub-band Assignment: In the considered system, we
assume that the users in the system are served by separate
sub-bands. This assumption is made to (i) ensure the data
transmission to be free of intra-band interference (Intra-BI)
and (i) eliminate the signal processing overhead and hardware
complexity caused by frequency reuse in the system, which
is also adopted in [6–8, 10, 11]2. Considering this assumption,
we set the total number of sub-bands within the spectrum of
interest to be equal to the total number of users in the system,
i.e., nS = nI. Also, following [6, 8, 9], we adopt distance-
aware multi-carrier (DAMC)-based sub-band assignment to

2A higher spectral efficiency can be achieved by utilizing sub-band reuse
during spectrum allocation. This consideration demands the determination of
suitable sub-band reuse factor and the consideration of Intra-BI, which are
beyond the scope of this work, but will be considered in our future works.



improve the throughput fairness among users. The DAMC-
based sub-band assignment assigns (i) the sub-bands with high
absorption coefficients to the users with shorter distances and
(ii) the sub-bands with low absorption coefficients to the users
with longer distances.

B. Achievable Data Rate

We denote r as the nS×1 rate vector of users. Considering
spreading and molecular absorption losses experienced by THz
signal propagation, we obtain the rate achieved in the sth sub-
band as [12]

rs =

∫ fs+
1
2 bs

fs− 1
2 bs

log2

(
1 +

ps%e
−k(f)ds

f2d2
sbs

)
df, (4)

where % , GAGUN
−1
0

(
c

4π

)2
, GA and GU are the antenna

gains at the AP and users, respectively, N0 is the noise power
density, c is the speed of light, and k(f) is the molecular
absorption coefficient at f . Furthermore, p denotes the nS×1
transmit power vector.

In this work, we focus on the line-of-sight (LoS) rays of
THz signals since the non-line-of-sight (nLoS) rays at the
THz band are significantly attenuated due to high scattering
and reflection losses [10–13]. Also, we omit the impact of
fading in the THz channel as the prior studies at the THz
band [10–13]. Moreover, following [6–9, 11], we omit the
impact of blockages in this work. Finally, the impact of inter-
band interference (Inter-BI) is not considered in this work
since prior studies have proposed designs to suppress IBI with
minimal throughput degradation [14].3

C. Optimal Spectrum Allocation

We now design an efficient spectrum allocation strategy to
harness the potential of the THz band. To this end, we study
spectrum allocation with ASB to maximize the achievable data
rate under given sub-band bandwidth and power constraints.
Mathematically, this problem is formulated as

Po : max
p,b

E(d,p,b) (5a)

s. t. 1T
nS

p 6 ptot, (5b)
0 � p � pmax, (5c)

1T
nS

b = btot, (5d)
0 � b � bmax. (5e)

In Po, E(d,p,b) is the objective function of the consid-
ered data rate maximization strategy. In this work, we con-
sider proportional-fair data rate maximization, which leads
to E(d,p,b) = 1T

nS
log(r). Moreover, (5b) and (5c) are

the power budget at the AP and the upper bound on the
power allocated to each user, respectively. Furthermore, the
justifications on (5d) and (5e) are given by (3) and (2),
respectively.

3Consideration of nLoS rays, fading, blockages, and IBI can lead to a more
accurate characterization of the considered THzCom system, which will be
considered in our future works.

Fig. 2. Illustration of the architecture of the DNN when L = 4 and nS = 3.

We note that it is extremely difficult, if not impossible,
to analytically solve Po using the traditional optimization
techniques [15]. This is due to the difficulty in obtaining a
tractable expression for rs in terms of the design variables b.
On one hand, obtaining rs as per (4) involves an integral, the
limits of which depend on b. On the other hand, the values
of k(f) for all frequencies within the spectrum of interest
are required to obtain rs. However, there does not exist a
tractable expression that maps f to k(f) for all spectrum
regions within the THz band. To tackle these challenges, we
resort to unsupervised learning to obtain near-optimal solution
to Po [16, 17], and present the solution in Section III.

III. UNSUPERVISED LEARNING-BASED SOLUTION

In this section, we present an unsupervised learning-based
approach to solving problem Po in (4). In this approach, we
first employ an offline training phase to train a DNN, utilizing
(i) a loss function which is inspired by the objective function
of the dual problem of Po and (ii) a batch of realizations of
distance vectors. Thereafter, during the implementation phase,
we use the trained DNN to approximate the optimal solution
to Po for the given distance vector. Next, we will discuss
the architecture of the adopted DNN in Section III-A, and
the unsupervised learning model used in the training phase in
Section III-B.

A. Architecture of DNN

The general architecture of the adopted DNN is presented
in Fig. 2. The DNN consists of L fully-connected layers with
multiple neurons in every layer. Each neuron in the network
contains a linear operation, which is followed by a point-wise
nonlinearity, also known as an activation function. Considering
this, the output of the network, y, is expressed as a non-linear
function to the input of the network, x, which is given by

y = N (x,Θ) = g(L)
(
g(L−1)

(
· · · g(1) (x)

))
. (6)

Here, Θ = {$(`), β(`), ` ∈ {1, 2, · · · , L}}, denotes the set of
parameters (i.e., weights and biases) of the DNN, and $(`)

and β(`) are the weights vector and the bias of the `th layer,
respectively. Also, we have

g(`)(ρ) = σ(`)
(
($(`))Tρ+ β(`)

)
, (7)



Fig. 3. Block diagram representation of the unsupervised learning model. Here, Bp̃(k) and Bb̃(k) are the batches of p̃ and b̃ obtained as the output of DNN
at the kth iteration, and Φ = {Bp̃(k) ,Bb̃(k) ,Θ

(k),λ(k)} denotes the cache of the unsupervised learning model.

where σ(`)(·) is the activation function of the `th layer.
During the implementation phase, we provide d as the input

to the DNN and obtain the output as the approximated values
of the optimization variables of Po, which are denoted by p̃
and b̃. Therefore, we have

x = d and y =

[
p̃

b̃

]
. (8)

B. Unsupervised Learning Model

The block diagram representation of the unsupervised learn-
ing model used in the training phase is depicted in Fig. 3. The
unsupervised learning model takes a batch of realization of
the distance vector, Bd, as the input, and delivers the trained
Θ as the output. We note that the unsupervised learning
model iteratively updates Θ to ensure the best mapping being
obtained between Bd and the near-optimal solution to Po for
the given Bd.

1) Loss Function: The loss function of the unsupervised
learning model is inspired by the objective function of the
dual problem of Po. Specifically, the dual problem of Po is
given by

Po
D : max

λ,Γ
min
p,b
Lo (9a)

s.t. (5b)− (5e)
λ,Γ � 0, (9b)

where Lo=Lo(d,p,b,λ,Γ) is the Lagrangian of Po, given by

Lo = −E(d,p,b) + λ1

(
1T
nS

p− ptot
)
+ λ2

(
1T
nS

b− btot
)

+ΓT
1(0−p)+ΓT

2(p−pmax)+ΓT
3(0−b)+ΓT

4(b−bmax), (10)

and λ = [λ1, λ2]
T and Γ = [Γ1,Γ2,Γ3,Γ4] are the Lagrange

multipliers associated with the constraints of Po. In our
unsupervised learning model, p and b are approximated as
p̃ and b̃ using the DNN, respectively, which is parameterized
by Θ. Considering this, the problem Po

D can be regenerated
into the following variable optimization as

P̂o : max
λ

min
Θ
L̂ (11a)

s.t. (5b), (5d)
λ � 0, (11b)

where L̂ = L̂(d, p̃ is given by

L̂ = −E(d, p̃, b̃)+λ1

(
1T
nS

p̃−ptot
)
+λ2

(
1T
nS

b̃−btot

)
. (12)

In (12), L̂ is obtained as a simplified version of Lo given
in (10). This is because the satisfaction of constraints (5c)
and (5e) can be guaranteed by carefully choosing appropriate
activation functions for the neurons in the Lth (or the output)
layer of the DNN, e.g., σ(L)(·) = ϑ× S(·), where S(·) is the
sigmoid function, and ϑ = pmax and ϑ = bmax for the first and
the second nS neurons of the output layer, respectively.

We note that the optimal value of Po
D might be a loose

global lower bound on the optimal value of Po, since Po is
not a convex optimization problem. However, we also note that
the design variables of Po

D are approximated using a DNN in
our unsupervised learning model and P̂o aims to optimize the
DNN parameters, Θ. Thus, it can be concluded based on the
universal approximation theorem that the optimal value of P̂o

provides a tight lower bound on the optimal value of Po [16,
17]. Based on this conclusion and considering that a batch
of realization of d, Bd, is used during the training phase, we
define the loss function of the unsupervised learning model,
J . Specifically, for each realization of d in Bd, we obtained
the corresponding L̂, and then derive J as the mean of L̂
values. Mathematically, J is obtained as

J = J (Θ,λ) =
1

nT

∑
d∈Bd

L̂, (13)

where nT is the total number of realization of d in Bd. We then
iteratively update Θ and λ with the objective of minimizing
J to arrive at the near-optimal solution to Po.

2) Updating Θ and λ: The DNN parameters, Θ, are
updated according to

Θ(k+1) = Θ(k) − δΘ ∇Θ(k)J (k)

= Θ(k) − δΘ
nT

∑
d∈Bd

[
∇ΘL̂

]
Θ=Θ(k),p̃=p̃(k),

b̃=b̃(k),λ=λ(k)

(14)

where δΘ is the learning rate and Ψ(k) is the kth iteration
value of Ψ, with Ψ ∈ {Θ,J , p̃, b̃,λ}. Considering the chain



rule, we express ∇ΘL̂ in (14) as

∇ΘL̂ = ∇Θy

[
∇p̃L̂
∇b̃L̂

]
(15)

In (15), ∇p̃L̂ and ∇b̃L̂ can be derived as

∇p̃L̂ = −∇p̃E(d, p̃, b̃) + λ1, (16)

and

∇b̃L̂ = −∇b̃E(d, p̃, b̃) + λ2, (17)

respectively. Note that in (16) and (17), it is impossible to ana-
lytically derive ∇p̃E(d, p̃, b̃) and ∇b̃E(d, p̃, b̃), respectively.
Hence, we numerically calculate the values of ∇p̃E(d, p̃, b̃)
and ∇b̃E(d, p̃, b̃) by using

∇p̃E(d, p̃, b̃) =
E(d, p̃+εp̃, b̃)−E(d, p̃, b̃)

εp̃
, (18)

and

∇b̃E(d, p̃, b̃) =
E(d, p̃, b̃+εb̃)−E(d, p̃, b̃)

εb̃
, (19)

respectively, where ε is a very small positive number. We also
note that in (15), ∇Θy can be calculated as a function of Θ(k)

utilizing the chain rule.
As for the Lagrangian multiplier, λ, it can be updated

according to

λ(k+1)=
[
λ(k) + δλ ∇λ(k)J (k)

]+
=

[
λ(k)+

δλ
nT

∑
d∈Bd

[
∇λL̂

]
p̃=p̃(k),b̃=b̃(k)

]+

, (20)

where δλ is the learning rate. In (20), ∇λL̂ can be derived as

∇λL̂ =

[
1T
nS

p̃− ptot

1T
nS

b̃− btot

]
. (21)

Finally, we note that based on (14) and (20), we can iteratively
update Θ and λ in the unsupervised learning model.

IV. CONVEX OPTIMIZATION-BASED SOLUTION FOR A
SPECIAL CASE

As mentioned in Section III, it is impossible to analytically
solve the spectrum allocation problem Po using traditional
optimization techniques for the generalized system model
considered in this work. Despite so, for a special case of
the considered system model, the solution to Po can be
obtained using the convex optimization theory and standard
convex problem solvers [10, 11]. We next present this special
case system and its solution using convex optimization, the
performance of which will be used as a benchmark in Section
V for demonstrating the effectiveness and benefits of our
proposed approach in Section III.

In the considered special case system, the molecular absorp-
tion coefficient within the spectrum of interest, k(f), can be
modeled as an exponential function of frequency with minimal
approximation errors. We note that there indeed exist PACSRs

TABLE I
VALUE OF PARAMETERS USED IN SECTION V.

Parameter Value
System Parameters

Difference between the heights of AP and 1.7 m
users
Antenna gains, GA, GU 30 dBi, 20 dBi
Noise power density, N0 −174 dBm/Hz
Power budget, ptot -5 dBm
Upper bound on power per sub-band, pmax

5
4
ptot
nI

Upper bound on sub-band bandwidth, bmax 5 GHz
Hyper-Parameters of the Unsupervised Learning Model

Learning rates, δΘ δλ 0.05, 0.025
Number of iterations 500
Total number of realization of d, nT 300

Activation function of 1st to 4th layer, σ(`)(·) ReLU
Activation function of the 5th layer, σ(`)(·) ϑ·sigmoid, ϑ∈{pmax,bmax}

Parameters used for the Convex Optimization-based Approach
Exponential model parameters in srn1, η 101.83,-10-10.04,10-1.23

Exponential model parameters in srn2, η 100.89,-10-10.8,-10-1.53

Transformation model parameters, ξ 109.7,1010.7,10−3

and NACSRs within the THz band where k(f) can be modeled
as an exponential function of frequency, e.g., between 0.771
and 0.821 THz, where the maximum modeling approximation
error is 5%.

For the considered special case system, the data rate, rs,
can be approximated as a tractable expression in terms of
b. Specifically, by modeling k(f) within NACSRs as an
exponential function of frequency, we can approximate k(f)
as k(f) = eη1+η2f + η3, where η = [η1, η2, η3]

T is the model
parameter vector. This enables us to obtain rs as a tractable
expression of b as

rs = bs log2

(
1 +

ps%e
−ds(eη1+η2(Asb+εf )+η3)

bsd2
s(Asb + εf )2

)
. (22)

With the simplified expression rs in (22), and considering the
substitution for b, given by b = ξ1 + ξ2 log(ξ3z), where z is
the nS× 1 is new design variable vector that would replace b
in the optimization problem and ξ = [ξ1, ξ2, ξ3]

T is a vector
with real constants as its elements, the spectrum allocation
problem for the special case system can be transformed into
an equivalent standard convex problem given by

P̂o
SC : min

p,z
− 1T

nS
log(r) (23a)

s. t. (5b), (5c),
nS∏
s=1

zξ2s − ztot 6 0, (23b)

zmin � z � zmax, (23c)

where ztot = (ξ3
−ξ2ebtot−ξ1nS)nS , zmin = ξ−1

3 e
−ξ1
ξ2 , and

zmax = ξ−1
3 e

bmax−ξ1
ξ2 . The transformed problem for the special

case system, P̂o
SC, can be solved efficiently by using stan-

dard convex problem solvers [15]. The details of the convex
optimization-based approach can be found in our previous
works in [10, 11].
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Fig. 4. The aggregated multiuser data rate, RAG, and total power and bandwidth constraints satisfaction when k(f) within the spectrum of interest can be
modeled as an exponential function of frequency, i.e., in the special case system investigated in Section IV.
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Fig. 5. The aggregated multiuser data rate, RAG, and total power and bandwidth constraints satisfaction when k(f) within the spectrum of interest cannot
be modeled as an exponential function of frequency, i.e., in the generalized system investigated in Sections II and III.

V. NUMERICAL RESULTS

The numerical results are obtained by considering a rect-
angular indoor environment of size 25 m × 25 m where an
AP, which is located at the center of the ceiling of the indoor
environment, serves 15 users. We consider the spectrum with
a bandwidth of 50 GHz that exist in either (i) the NACSR
srn1 between 0.557 and 0.671 THz or (ii) the NACSR srn2

between 0.752 and 0.868 THz is used to serve the users. We
clarify that on one hand, the molecular absorption coefficient,
k(f), in srn2 can be modeled as an exponential function
of frequency with minimal approximation errors. Hence, the
spectrum allocation problem in srn2 is a special case of the
general spectrum allocation problem considered in this work.
On the other hand, k(f) in srn1 cannot be modeled as an
exponential function of frequency.

We implement the unsupervised learning model presented
in Section III in Python. We utilize a five-layer DNN for the
unsupervised learning model, which has 100, 100, 50, 25, and
30 neurons in the first, second, third, fourth, and fifth layers,
respectively. The initial weights of the DNN are Gaussian
random variables with zero mean and unit variance, and the
initial biases are set to 0. The initial values of λ are set to a
small constant of 0.1. The values of other system parameters,
hyper-parameters of the unsupervised learning model, and the
parameters of the convex optimization-based approach used
for numerical results are summarized in Table I.

In Fig.4, we show the convergence of the proposed unsuper-
vised learning-based approach when k(f) within the spectrum
of interest can be modeled as an exponential function of
frequency, i.e., considering the special case system investigated

in Section IV. To this end, we plot the aggregated multiuser
data rate, RAG = 1T

nS
r, the value of 1T

nS
p − ptot, and the

value of 1T
nS

b− btot obtained from the unsupervised learning-
based approach in Figs. 4(a), 4(b), and 4(c), respectively, when
the spectrum allocation problem is implemented in srn2. We
clarify that the values of 1T

nS
p− ptot and 1T

nS
b− btot provide

intuition to the satisfaction or the violation of the total power
and bandwidth constraints, given in (5b) and (5d), respectively.
Also, the value of RAG obtained from the convex optimization-
based approach is plotted in Fig.4(a). We first observe from
Fig.4(a) that for several initial iterations, the value of RAG
obtained using the unsupervised learning-based approach is
higher than that obtained using the convex optimization-based
approach. This is due to the occasional violation of the
constraints (5b) and (5d) that occur at corresponding initial
iterations, which can be validated by observing 1T

nS
p − ptot

and 1T
nS

b− btot in Figs. 4(b) and 4(c), respectively. Moreover,
after 200 iterations, we observe that the value of RAG obtained
using the unsupervised learning-based approach converges to
the optimal value obtained using the convex optimization-
based approach, which shows the correctness of our proposed
unsupervised learning-based approach. Finally, we observe
from Figs. 4(b) and 4(c) that after 200 iterations, the values
of 1T

nS
p − ptot and 1T

nS
b − btot of the proposed unsupervised

learning-based approach are very close to zero, which reflects
that constraints (5b) and (5d) are satisfied when the proposed
unsupervised learning-based approach is used.

We next show the convergence of the proposed unsupervised
learning-based approach when k(f) within the spectrum of
interest cannot be modeled as an exponential function of
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Fig. 6. Aggregated multiuser data rate, RAG, versus the upper bound on
sub-band bandwidth, bmax, when spectrum allocation in srn1 and srn2.

frequency, i.e., considering the generalized system investigated
in Sections II and III. To this end, we plot RAG, 1T

nS
p− ptot,

and 1T
nS

b−btot in Figs. 5(a), 5(b), and 6(c), respectively, when
the spectrum allocation problem is implemented in srn1. We
clarify that in srn1, k(f) cannot be modeled as an exponential
function of frequency with minimal approximation errors.
However, for the sake of comparison, we obtain approximate
solutions to the spectrum allocation problem in srn1 using the
convex optimization approach while utilizing an inaccurate
approximation for k(f) in srn1, and plot the resulting RAG
in Fig.5(a). Once again, we observe the overshoot in RAG,
1T
nS

p − ptot, and 1T
nS

b − btot for several initial iterations and
the satisfaction of the constraints (5b) and (5d) after 200
iterations in Figs. 5(a)-5(c), which are similar to Figs. 4(a)-
4(c). Apart from them, we further observe that the value of
RAG obtained using the unsupervised learning-based approach
converges to a value higher than that obtained using the
convex optimization-based approach. This is because when
the convex optimization-based approach is used, where an
exponential function with high approximation errors is used to
model k(f), only the sub-optimal RAG is obtained. This shows
the significance of our proposed unsupervised learning-based
approach, i.e., it gives much higher RAG for the spectrum
allocation problem when k(f) within the spectrum of interest
cannot be modeled as an exponential function of frequency.

Finally, we plot RAG achieved by the spectrum allocation
strategy with ESB [6–9] and the spectrum allocation strategy
with ASB that is obtained from both convex optimization
and unsupervised learning-based approaches, versus the upper
bound on sub-band bandwidth, bmax, in Fig.6. We first observe
that the proposed spectrum strategy with ASB achieves a
significantly higher RAG compared to the strategy with ESB
for different bmax, which demonstrates the benefits of our
proposed strategy with ASB. Second, we observe that in
srn1, the value of RAG obtained using the unsupervised
learning-based approach converges to values higher than that
obtained using the convex optimization-based approach for
all bmax. This again shows the significance of our proposed
unsupervised learning-based approach to obtain higher RAG,
especially when k(f) within the spectrum of interest cannot
be modeled as an exponential function of frequency.

VI. CONCLUSIONS

We investigated multi-band-based spectrum allocation with
ASB for multiuser THzCom systems. We first formulated
an optimization problem and then proposed an unsuper-
vised learning-based approach to obtain near-optimal sub-band
bandwidth and transmit power. In the proposed unsupervised
learning-based approach, we first employed an offline training
phase to train a DNN while utilizing a loss function inspired
by the Lagrangian of the formulated problem. Then using the
trained DNN, we approximated the near-optimal solutions to
the optimization problem for the given distance vector. Using
numerical results, we showed that when the values of the
molecular absorption coefficient within the spectrum cannot
be modeled as an exponential function of frequency, the data
rate obtained by our proposed unsupervised learning-based
approach outperforms that obtained by the existing convex
optimization-based approach.
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