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Networks	
  …	
  of	
  Documents	
  

•  The	
  rest	
  of	
  this	
  class	
  covers	
  
–  ExtracQng	
  document	
  elements:	
  nouns/verbs,	
  
subjects/object,	
  web	
  page	
  structure	
  …	
  	
  

–  Labelling	
  and	
  matching	
  documents:	
  IR,	
  document	
  
classificaQon,	
  clustering	
  …	
  	
  

•  What	
  if	
  we	
  look	
  at	
  …	
  	
  
– Documents	
  and	
  their	
  relaQons	
  to	
  each	
  other?	
  
– Document	
  elements	
  and	
  their	
  relaQons	
  to	
  each	
  other?	
  
–  People	
  and	
  their	
  relaQons	
  to	
  each	
  other	
  



Earlier	
  in	
  This	
  Course	
  …	
  	
  



Networks:	
  An	
  organizaQon	
  -­‐	
  HP	
  Labs	
  



Earlier	
  in	
  this	
  Course:	
  classifying	
  
documents	
  



PoliQcal	
  blogs	
  

Lada	
  A.	
  Adamic	
  and	
  Natalie	
  Glance.	
  2005.	
  The	
  poliQcal	
  blogosphere	
  and	
  the	
  2004	
  U.S.	
  
elecQon:	
  divided	
  they	
  blog.	
  In	
  Proceedings	
  of	
  the	
  3rd	
  internaQonal	
  workshop	
  on	
  Link	
  
discovery	
  (LinkKDD	
  '05)	
   by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



A	
  View	
  of	
  Facebook	
  via	
  10	
  M	
  links	
  

By	
  Paul	
  Butler,	
  heps://www.facebook.com/note.php?note_id=469716398919	
  
	
  



Why	
  Networks?	
  

•  Behind	
  each	
  of	
  these	
  complex	
  systems	
  there	
  is	
  
an	
  intricate	
  wiring	
  diagram,	
  	
  
a	
  network	
  	
  
that	
  defines	
  the	
  interacQons	
  between	
  system	
  
components.	
  

	
  
Understanding	
  the	
  network	
  is	
  key	
  to	
  understand	
  
the	
  behaviors	
  of	
  such	
  complex	
  system.	
  



Networks:	
  CommunicaQons	
  



Networks:	
  TransportaQon	
  



Networks:	
  Brain	
  



Networsk:	
  Cells	
  



Ingredient	
  networks	
  

Recipe	
  recommendaQon	
  using	
  ingredient	
  networks.	
  Chun-­‐
Yuen	
  Teng,	
  Yu-­‐Ru	
  Lin,	
  Lada	
  A.	
  Adamic,	
  WebSci	
  2011.	
  



Why	
  Networks?	
  

•  Behind	
  each	
  of	
  these	
  complex	
  systems	
  there	
  is	
  
an	
  intricate	
  wiring	
  diagram,	
  	
  
a	
  network	
  	
  
that	
  defines	
  the	
  interacQons	
  between	
  system	
  
components.	
  

	
  
Understanding	
  the	
  network	
  is	
  key	
  to	
  understand	
  
the	
  behaviors	
  of	
  such	
  complex	
  system.	
  



ApplicaQon	
  domains	
  in	
  network	
  
analysis	
  

•  Social	
  (people-­‐people)	
  networks	
  
•  InformaQon	
  networks	
  
•  OrganizaQon	
  and	
  poliQcal	
  networks	
  

•  Computer	
  networking	
  
•  Biology	
  
•  TransportaQon	
  networks	
  

This	
  class	
  

✔	
  

✔	
  

✔	
  



CSS:	
  ComputaQonal	
  challenges	
  	
  

•  Machine	
  Learning	
  and	
  applied	
  staQsQcs:	
  	
  
PredicQve	
  modeling,	
  models	
  for	
  network	
  structure,	
  
models	
  for	
  dynamic	
  events,	
  opQmizaQon	
  

•  Natural	
  Language	
  Processing:	
  
linguisQc	
  styles	
  and	
  variaQons,	
  document	
  similarity,	
  
informaQon	
  retrieval	
  

•  Visual	
  analyQcs,	
  visualizaQon	
  	
  
•  Computer	
  systems:	
  scalability,	
  reliability,	
  
programming	
  languages	
  and	
  tools	
  

•  …	
  	
  

This	
  class	
  

✔	
  

✗	
  

✔	
  

✔	
  



heps://www.facebook.com/note.php?note_id=469716398919	
  

1.  Sample	
  10	
  million	
  links	
  from	
  Hive	
  	
  
2.  Get	
  city/lat/lon	
  for	
  each	
  node	
  
3.  Compute	
  connecQon	
  strength	
  between	
  ciQes	
  
4.  Render	
  links	
  among	
  city	
  pairs	
  in	
  R	
  
5.  Tweak	
  rendering	
  and	
  path	
  drawing	
  unQl	
  saQsfactory	
  



Storing	
  and	
  ManipulaQng	
  500M	
  Links	
  

hep://developer.yahoo.com/blogs/hadoop/posts/2010/08/pig_and_hive_at_yahoo/	
  
	
  

“HUGE”	
  
Computer	
  +	
  
programming	
  
interfaces	
  

Database	
  

Data	
  
warehouse	
  
with	
  SQL-­‐like	
  
interface	
  

Data-­‐centric	
  
plaporm	
  and	
  
query	
  
language	
  
interface	
  



Why	
  Social	
  CompuQng?	
  

Slide	
  by	
  AugusQne	
  Chaintreau,	
  Columbia	
  University	
  



Why	
  should	
  you	
  learn	
  about	
  it?	
  #1	
  

Slide	
  by	
  AugusQne	
  Chaintreau,	
  Columbia	
  University	
  



Why	
  should	
  you	
  learn	
  about	
  it?	
  #2	
  

•  Many	
  opportuniQes	
  in/around	
  ANU	
  
– Big	
  data	
  research	
  theme	
  at	
  CS	
  
– Machine	
  learning	
  group	
  at	
  NICTA	
  
– Master	
  degree	
  with	
  Network	
  Science	
  concentraQon	
  
at	
  CASS	
  

– Overall,	
  great	
  topic	
  to	
  look	
  for	
  an	
  academic	
  job!	
  

Slide	
  by	
  AugusQne	
  Chaintreau,	
  Columbia	
  University	
  



PROBLEMS	
  IN	
  SOCIAL	
  NETWORK	
  
What	
  are	
  the	
  classic,	
  solve,	
  and	
  open	
  quesQons	
  in	
  CSS?	
  



Small-­‐world	
  phenomena:	
  	
  
Milgram’s	
  Experiment	
  

NE 

MA 

hep://en.wikipedia.org/wiki/Small_world_experiment	
  

Slide	
  by	
  Lada	
  Adamic,	
  U	
  Michigan	
  

1967	
  -­‐-­‐	
  1969	
  



•    “Six degrees of separation” 

Instructions: 
Given a target individual (stockbroker in Boston), pass the 
message to a person you correspond with who is “closest” to 
the target. 

Milgram’s	
  experiment	
  

Outcome: 
 
20% of initiated chains reached target 
average chain length = 6.5 

Slide	
  by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



email experiment  
Dodds, Muhamad, Watts,  
Science 301, (2003) 

 (optional reading) 
 
• 18 targets 
• 13 different countries 
 
• 60,000+ participants 
• 24,163 message chains  
• 384 reached their targets 
• average path length 4.0 

    

Source: NASA, U.S. Government; http://visibleearth.nasa.gov/view_rec.php?id=2429 

Milgram’s	
  experiment	
  repeated	
  

Slide	
  by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



n 	
  Is	
  6	
  is	
  a	
  surprising	
  number?	
  
In	
  the	
  1960s?	
  Today?	
  Why?	
  
	
  
	
  
What	
  is	
  the	
  mechanism	
  behind	
  “small-­‐
world”	
  networks?	
  



Link	
  predicQon	
  	
  
“Given	
  a	
  snapshot	
  of	
  a	
  social	
  network,	
  can	
  we	
  infer	
  which	
  new	
  
interacQons	
  among	
  its	
  members	
  are	
  likely	
  to	
  occur	
  in	
  the	
  near	
  
future?	
  “	
  

Liben-­‐Nowell,	
  D.	
  and	
  Kleinberg,	
  J.	
  The	
  link-­‐predicQon	
  problem	
  for	
  social	
  
networks.	
  Journal	
  of	
  the	
  American	
  Society	
  for	
  InformaQon	
  Science	
  and	
  
Technology,	
  58(7)	
  1019{1031	
  (2007)	
  

What	
  are	
  the	
  measurements?	
  
-­‐-­‐	
  “proximity”	
  and	
  “similarity”	
  between	
  two	
  unconnected	
  nodes	
  
What	
  are	
  applicaQon	
  domains?	
  
-­‐-­‐	
  social	
  networks,	
  friend	
  recommendaQon;	
  product	
  /	
  webpage	
  
recommendaQon;	
  	
  predicQng	
  academic	
  collaboraQons;	
  
predicQng	
  merger	
  and	
  acquisiQons	
  …	
  	
  
How	
  to	
  measure	
  performance?	
  
-­‐-­‐	
  use	
  future	
  held-­‐out	
  data,	
  conversion	
  rate,	
  …	
  	
  
	
  



Language	
  Use	
  in	
  Social	
  Media	
  

Echoes	
  of	
  power:	
  	
  Language	
  effects	
  and	
  power	
  differences	
  in	
  social	
  interacQon	
  
CrisQan	
  Danescu-­‐Niculescu-­‐Mizil,	
  Lillian	
  Lee,	
  Bo	
  Pang	
  and	
  Jon	
  Kleinberg.	
  
Proceedings	
  of	
  WWW,	
  2012.	
  



Tracking	
  Memes	
  



Remixing	
  on	
  YouTube	
  –	
  “Iran”	
  topic	
  
Video	
  A	
   Video	
  B	
  

Meme	
  
shot	
  
examples	
  

…	
   …	
  

Youtube	
  	
  
Video	
  page	
  



YouTube	
  Remix	
  Network	
  

Visual	
  Memes	
  in	
  Social	
  Media:	
  Tracking	
  Real-­‐world	
  News	
  in	
  YouTube	
  Videos	
  (2011),	
  Lexing	
  
Xie,	
  Apostol	
  Natsev,	
  Maehew	
  Hill,	
  John	
  Kender,	
  John	
  R	
  Smith,	
  ACM	
  MulQmedia	
  2011,	
  
Scoesdale,	
  AZ,	
  USA,	
  Nov	
  2011	
  

Video	
  graph	
   Author	
  graph	
  



What	
  are	
  networks?	
  
•  Networks are sets of nodes 

connected by edges. 

points lines 
vertices edges, arcs math 
nodes links computer science 
sites bonds physics 
actors ties, relations sociology 

“Network” ≡ “Graph” 
node 

edge 

Slide	
  by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



heps://www.coursera.org/course/sna	
  



Network	
  elements:	
  edges	
  

•  Directed	
  (also	
  called	
  arcs,	
  links)	
  
– A	
  -­‐>	
  B	
  	
  

•  A	
  likes	
  B,	
  A	
  gave	
  a	
  gi{	
  to	
  B,	
  A	
  is	
  B’s	
  child	
  
•  Undirected	
  	
  

– A	
  <-­‐>	
  B	
  or	
  A	
  –	
  B	
  
•  A	
  and	
  B	
  like	
  each	
  other	
  
•  A	
  and	
  B	
  are	
  siblings	
  
•  A	
  and	
  B	
  are	
  co-­‐authors	
  

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Edge	
  aeributes	
  

•  Examples	
  
– weight	
  (e.g.	
  frequency	
  of	
  communicaQon)	
  
–  ranking	
  (best	
  friend,	
  second	
  best	
  friend…)	
  
–  type	
  (friend,	
  relaQve,	
  co-­‐worker)	
  
– properQes	
  depending	
  on	
  the	
  structure	
  of	
  the	
  rest	
  
of	
  the	
  graph:	
  e.g.	
  betweenness	
  

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Directed	
  networks	
  
•  girls’ school dormitory dining-table partners, 1st and 2nd choices 

(Moreno, The sociometry reader, 1960) 
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by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



PosiQve	
  and	
  negaQve	
  weights	
  
•  e.g.	
  one	
  person	
  
trusQng/distrusQng	
  
another	
  
–  Research	
  
challenge:	
  How	
  
does	
  one	
  
‘propagate’	
  
negaQve	
  feelings	
  in	
  
a	
  social	
  network?	
  Is	
  
my	
  enemy’s	
  
enemy	
  my	
  friend?	
  

sample	
  of	
  posi+ve	
  &	
  nega+ve	
  ra+ngs	
  from	
  Epinions	
  network	
  
by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Data	
  representaQon	
  

•  adjacency	
  matrix	
  
•  edgelist	
  
•  adjacency	
  list	
  

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Adjacency	
  matrices	
  
•  RepresenQng	
  edges	
  (who	
  is	
  adjacent	
  to	
  
whom)	
  as	
  a	
  matrix	
  
– Aij	
  =	
  1	
  if	
  node	
  i	
  has	
  an	
  edge	
  to	
  node	
  j	
  

	
  	
  	
  =	
  0	
  if	
  node	
  i	
  does	
  not	
  have	
  an	
  edge	
  to	
  j	
  

– Aii	
  =	
  0	
  unless	
  the	
  network	
  has	
  self-­‐loops	
  

– Aij	
  =	
  Aji	
  if	
  the	
  network	
  is	
  undirected,	
  
or	
  if	
  i	
  and	
  j	
  share	
  a	
  reciprocated	
  edge	
  

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Example	
  adjacency	
  matrix	
  

1 

2 

3 

4 5 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 0 0 0 1 
1 1 0 0 0 

A = 

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Edge	
  list	
  

•  Edge	
  list	
  
– 2,	
  3	
  
– 2,	
  4	
  
– 3,	
  2	
  
– 3,	
  4	
  
– 4,	
  5	
  
– 5,	
  2	
  
– 5,	
  1	
  
	
  

1 

2 

3 

4 5 

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Adjacency	
  lists	
  
	
  

•  Adjacency	
  list	
  
–  is	
  easier	
  to	
  work	
  with	
  if	
  
network	
  is	
  

•  large	
  
•  sparse	
  

– quickly	
  retrieve	
  all	
  neighbors	
  
for	
  a	
  node	
  

•  1:	
  
•  2:	
  3	
  4	
  
•  3:	
  2	
  4	
  
•  4:	
  5	
  
•  5:	
  1	
  2	
  

1 

2 

3 

4 5 

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Degree:	
  which	
  node	
  has	
  the	
  most	
  edges?	
  

? 

? 
? 

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Node	
  degrees	
  

•  Node	
  network	
  properQes	
  
–  from	
  immediate	
  connecQons	
  

•  indegree	
  
how	
  many	
  directed	
  edges	
  (arcs)	
  are	
  incident	
  on	
  a	
  node	
  

•  outdegree	
  
how	
  many	
  directed	
  edges	
  (arcs)	
  originate	
  at	
  a	
  node	
  

•  degree	
  (in	
  or	
  out)	
  
number	
  of	
  edges	
  incident	
  on	
  a	
  node	
  

–  from	
  the	
  enQre	
  graph	
  
•  centrality	
  (betweenness,	
  closeness)	
  

outdegree=2	
  

indegree=3	
  

degree=5	
  

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Node	
  degree	
  from	
  matrix	
  values	
  

•  Outdegree = ∑
=

n

j
ijA

1

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 0 0 0 1 
1 1 0 0 0 

A = 

example: outdegree for node 3 is 2, which 
we obtain by summing the number of non-
zero entries in the 3rd row 

n  Indegree	
  =	
  
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 0 0 0 1 
1 1 0 0 0 

A = 
∑
=

n

i
ijA

1

example: the indegree for node 3 is 1, 
which we obtain by summing the number of 
non-zero entries in the 3rd column 

∑
=

n

i
iA

1
3

∑
=

n

j
jA

1
3

1 

2 

3 

4 
5 

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Network	
  metrics:	
  degree	
  sequence	
  and	
  degree	
  distribuQon	
  
•  Degree	
  sequence:	
  An	
  ordered	
  list	
  of	
  the	
  (in,out)	
  degree	
  of	
  each	
  node	
  

n  In-­‐degree	
  sequence:	
  
n  [2,	
  2,	
  2,	
  1,	
  1,	
  1,	
  1,	
  0]	
  

n  Out-­‐degree	
  sequence:	
  
n  [2,	
  2,	
  2,	
  2,	
  1,	
  1,	
  1,	
  0]	
  

n  (undirected)	
  degree	
  sequence:	
  
n  [3,	
  3,	
  3,	
  2,	
  2,	
  1,	
  1,	
  1]	
  

n  Degree	
  distribuQon:	
  A	
  frequency	
  count	
  of	
  the	
  occurrence	
  of	
  
each	
  degree	
  

n  In-­‐degree	
  distribuQon:	
  
n  [(2,3)	
  	
  (1,4)	
  	
  (0,1)]	
  

n  Out-­‐degree	
  distribuQon:	
  
n  [(2,4)	
  	
  (1,3)	
  	
  (0,1)]	
  

n  (undirected)	
  distribuQon:	
  
n  [(3,3)	
  (2,2)	
  (1,3)]	
  

0 1 2
0

1

2

3

4

5

indegree

fre
qu
en
cy

by	
  Lada	
  Adamic,	
  U	
  Michigan	
  



Long-­‐Tail	
  and	
  power	
  law	
  



Power	
  laws,	
  Pareto	
  distribuQons	
  and	
  
Zipf’s	
  law.	
  M.	
  Newman,	
  Cont.	
  Physics

	
  (2005)	
  



Power	
  Law	
  Seems	
  Ubiquitous	
  



How	
  does	
  power	
  laws	
  arise?	
  
•  A	
  process	
  for	
  generaQng	
  web	
  links:	
  

1)  Nodes	
  (i.e.	
  webpages)	
  join	
  the	
  graph	
  in	
  sequence,	
  
creaQng	
  edges	
  linking	
  to	
  previous	
  nodes.	
  	
  

2)  Each	
  node	
  u	
  creates	
  one	
  outgoing	
  edge	
  as	
  follows	
  	
  
a)  Choose	
  a	
  node	
  v	
  uniformly	
  	
  
b)  With	
  prob.	
  p,	
  edge	
  u-­‐>v	
  is	
  created,	
  	
  
c)  With	
  prob.	
  (1-­‐p),	
  edge	
  u-­‐>w	
  for	
  w	
  a	
  (uniformly	
  chose)	
  

children	
  of	
  v	
  	
  
c)	
  	
  is	
  equivalent	
  to:	
  “with	
  probability	
  1−p,	
  page	
  u	
  chooses	
  a	
  
page	
  w	
  with	
  probability	
  proporQonal	
  to	
  w’s	
  current	
  number	
  
of	
  in-­‐links,	
  and	
  creates	
  a	
  link	
  to	
  w”	
  



Rich-­‐Get-­‐Richer	
  Process	
  
IniQal	
  condiQon	
   Rate	
  of	
  growth	
  

FracQon	
  of	
  nodes	
  with	
  k	
  incoming	
  links	
  	
  
~	
  k-­‐α,	
  	
  α=	
  1	
  +	
  1/(1-­‐p)	
  
[Easly	
  and	
  Kleinberg,	
  Chapter	
  18]	
  Fig	
  18.2	
  and	
  18.3	
  



Random	
  vs	
  Power-­‐law	
  networks	
  

Terminologies	
  that	
  describe	
  (different	
  aspects	
  of)	
  the	
  same	
  process:	
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