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ABSTRACT
This paper presents probabilistic visual concept trees, a model
for large visual semantic taxonomy structures and its use in
visual concept detection. Organizing visual semantic knowl-
edge systematically is one of the key challenges towards
large-scale concept detection, and one that is complemen-
tary to optimizing visual classification for individual con-
cepts. Semantic concepts have traditionally been treated as
isolated nodes, a densely-connected web, or a tree. Our anal-
ysis shows that none of these models are sufficient in mod-
eling the typical relationships on a real-world visual taxon-
omy, and these relationships belong to three broad categories
– semantic, appearance and statistics. We propose proba-
bilistic visual concept trees for modeling a taxonomy forest
with observation uncertainty. As a Bayesian network with
parameter constraints, this model is flexible enough to ac-
count for the key assumptions in all three types of taxonomy
relations, yet it is robust enough to accommodate expansion
or deletion in a taxonomy. Our evaluation results on a large
web image dataset show that the classification accuracy has
considerably improved upon baselines without, or with only
a subset of concept relationships.

Categories and Subject Descriptors
H.3.3 [Information Systems Applications]: Information
Search and Retrieval

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Visual concept detection is an important problem that has re-

ceived significant recent attention. The research community has ac-
cumulated significant collective knowledge on this problem, along
with the increasing performance in large public benchmarks [7, 8].
There are two main challenges for concept detection to real-world
scale. The first is scaling up with the amount of data, this include
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Figure 1: Three views of an example visual concept
collection: (a) isolated dots; (b) concept web; (c)
concept forest.

devising learning algorithms to learn from, and performs robustly
to large amounts of diverse media content. The second one is scal-
ing up with semantics, that is, designing learning mechanisms that
scales gracefully to a large number of visual semantics, given that
most current research in visual recognition tagets a few dozen con-
cepts [7, 8] among tens of thousands in the real-world. This paper
is concerned with the second challenge.

Systematic organization is key for acquiring large amounts of
knowledge, and this applies to the learning process of human and
machines alike. Taxonomy, as the practice and science of classifi-
cation [9], is a natural tool for organizing facts and entities. Tax-
onomies are widely used in areas ranging from biology, medicine,
military operations to web design. Visual semantic taxonomy is
calling for attention once visual recognition proceeds beyond a few
specific categories such as faces, human and cars. Many existing
work optimizes the detection of each specific visual concepts by
making independent binary decisions, this is equivalent to treating
a collection of concepts as isolated dots. A number of prior in-
vestigations have modeled pair-wise inter-concept relationships [2,
10], equivalent to densely connecting the concepts into a web, or a
tree-structured hierarchy with mutually exclusive relationship [1].
While tree structures are natural for concept organization, these
trees are typically small, and it is too rigid to take into account
that an image has multiple labels based on different aspects of se-
mantics, e.g., a portrait of a famous actress can be described as
female face, actress, one person, each based on the gender, role
and number of person, respectively.

We propose a taxonomy representation and inference structure
that can take into account such relationships. We start by presenting
three salient relationships about real-world visual taxonomies in
large scale, namely: concept semantics, image appearance and data
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statistics. We present a multi-faceted concept forest structure that
conceptualize these relationships, including the parent-children re-
lationship, mutual exclusion relationship, as well as the multiple
aspects labeling such as in the female actress portrait. Fig. 1 shows
a comparison between this structure, and the two prior alternatives:
concept dot and concept web. We also propose Visual Concept
Trees that computationally encodes a multi-faceted concept for-
est under observation uncertainty. This model evolves from tree-
structured Bayes Net, and is designed to extend a few predecessors
such as the Bayes Net and tree-structured taxonomy. It is learned
from observations and performs inference with the junction tree al-
gorithm. We evaluate this model on a large web image collection
consisting of thousands of images and hundreds of visual concepts.
We use the concept tree structure to post-filter binary classifier out-
puts, and observed up to 0.4 improvement in classification accu-
racy, and behaves robustly with inaccurate concept priors.

2. TAXONOMIES FOR VISUAL SEMANTICS
In order to design taxonomy-aware concept models, we start by

examining the different types of concept relationships in images
and videos. We present a list of relationships found useful based on
both generic semantic knowledge in WordNet [5], and the practices
in building large taxonomies. In this list, there are two semantic-
driven relationships that are broadly applicable and robust to tax-
onomy variations, two appearance-driven relationships frequently
seen in image and video collections, and two statistics-driven as-
pects accounting for uncertainty in data collections.

2.1 Semantic-driven relations
Being “visually detectable” is one of the primary criteria for se-

mantic modeling in images and videos. These include concrete
nouns 1, and a subset of verbs that can be captured in a visual
scene or translated to the corresponding noun, e.g., protest, con-
cert, walking. A generic semantic lexicon such as the WordNet [5]
has more than a dozen relations among nouns, verbs, adjectives and
adverbs. We specifically choose two types of relations for visual
taxonomy: (1) Parent-children relationships. This maps to hyper-
nyms and hyponyms in WordNet terms, i.e. every instance of con-
cept A is a (kind of) concept B. An apple is a fruit, and walking is
a kind of movement for instance. (2) Mutual exclusion. This maps
to coordinated terms in WordNet which share a common hyper-
nym. Apple, organge and watermelon, walking and jogging are
examples of mutually exclusive concept sets.

We choose these two relations as they are applicable to concrete
nouns and verbs, and they are robust to typical visual appearance
variations. For example, the “part-of” relationship (holonym and
meronym in WordNet) is often violated in visual appearances, as
we often see photographs of a window without the building it is
attached to, or closeup shots of a tree without its trunk visible.
Finally, these two relations are can be identified in limited context
when working on a single piece of image or video segment. The
“entailment” relationship (A is a result of B), on the other hand,
requires more than one image or video to be analyzed in the order of
causality and temporal precedence, i.e. we do not have knowledge
of a soccer match just by seeing the award ceremony that followed.

1A concrete noun refers to objects and substances, including
people and animals, that exist physically, e.g., chair, apple,
clock. An abstract noun refers to states, events, concepts,
feelings, qualities, etc., that have no physical existence. e.g.,
freedom, happiness, music.

2.2 Appearance-driven relations
Traditional wisdom has it that “a picture is worth a thousand

words”. On image and video datasets for recognition, this means
that an image is often associated with multiple labels, such as park,
party, crowd, trees. In addition, there is often more than one way
that we can use to further classify a concept. For example pictures
containing people can be further classified according to the number
of people, their age, their poses and actions, or their occupations.

2.3 Statistics-driven relations
The goal of automatic recognition is to tag visual concepts from

noisy observations, including low-level features computed directly
from images, or predictions from mid-level semantic classifiers.
There are two main types of uncertainties in the observations: (1)
Relationships between concepts and observations, such as combin-
ing two classifier with 65% and 60% accuracies would help infer
the true labels more accurately than either of the two. (2) Statistical
relationships among observations, possibly upon different concepts
that do not have a clearly prescribed relationship in the taxonomy.
Such as seeing beach and palm trees in a picture enhances the like-
lihood of also seeing sky. These relationships have been shown to
be useful to help classification [2, 10].

2.4 Comments on large lexicons
Another reason for choosing the above relations is to account for

the flexibility and fluidity of a large-scale visual taxonomy. Unlike
classifying living species, there is no Linnaean taxonomy of visual
semantics – people’s view of what worth classifying and how to
classify them tend to change with respect to application domains,
data collections, an the evolving knowledge about the semantics.
Moreover, taxonomies grow over time as new concepts and new
categories evolve, such as Wii as a new video game system as a sib-
ling to XBox. Note that semantic relations are natural constraints
preserved through the changes in taxonomy. Being parent-children
(including grandparent) or mutual exclusive still holds true even af-
ter new nodes or branches are added. The appearance and statistical
relations are also invariant to concept insertions or revisions since
the are essentially grounded in the underlying data domain.

3. PROBABILISTIC CONCEPT TREES
Using the semantic and data-driven relationship as guidelines,

we introduce Probabilistic Concept Tree to encode them via series
of models.

3.1 Earlier models
The naive Bayes model is a simple model for the two statistical-

driven relationships (Sec. 2.3). This is done by factoring the joint
class-probabilities into the product of multiple independent condi-
tional probabilities given a concept class label, as shown in Eq. 1.
It estimates the class-conditional probabilities from observations x,
and finds the most likely class based on the Bayesian rule. Fig. 2(a)
show the form of model that has been effectively used in prior
work [10] in which the concept labels y are considered as binary,
e.g. apple, not-apple. A simple extension to the binary naive
Bayes model is to consider multi-valued labels that are mutually
exclusive (e.g., y ∈ {apple, orange, peach, . . . }), thus also captur-
ing semantic mutual exclusion. This model has the same graphical
form (Fig. 2(b)) as its binary variant, except that the posterior prob-
abilities among the sibling concepts become related.

P (y|x1:M ) ∝ P (y)
∏

i=1:M

P (xi|yc) (1)

Note that the hierarchical parent-children relationship in concept
semantics is notably missing from the naive Bayes models. Un-
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(a) naive-Bayes binary

(b) naive-Bayes multi-class

(c) Bayes-chain:
taxonomy tree

(d) Bayes-net-tree:
taxonomy forest
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Figure 2: Overview of various taxonomy models, see
Sec. 3 for descriptions.

der this relationship, we can organized semantic concepts can be
organized into a tree, with parent nodes pointing to the children
nodes, and the conditional probabilities control their membership
probabilities. As shown in Fig. 2(c), the chain of hidden variables
y can represent a tree structure in its state-space, with each y node
taking multiple possible values (e.g. apple,orange,. . . ), and con-
straints in the conditional probabilities that set the values between
non-parent-children node pairs to zero (e.g., P (fish|plant) = 0).

3.2 Construction of Probabilistic Concept Tree
We notice that multiple classifications can be represented by mul-

tiple decision variables y simultaneously taking values on different
state spaces. In (Fig. 2(e)) for example food from a plant can
be a fruit or a vegetable, and at the same time it can also come
from the root, leaves or stem of the plant. We also notice that a
tree-structured taxonomy is naturally recursive, i.e. concepts that
belong to fruit or those belong to vegetable can be organized into
a tree or forest themselves. In concept state-space these two de-
signs translate to a taxonomy “forest”, and in graphical model this
can be manifested with parallel branches in the hidden states. This
leads to the tree-structured Bayesian network, dubbed Probabilis-
tic Concept Tree, shown in Fig. 2(d). The previous models ac-
count for semantic-driven and statistics-driven relations, and this
adds the appearance-driven relations, as it allows multiple labels in
the same image, and models the loose correlation among them.

We can use a recursive process to construct such a tree from
an existing taxonomy forest by walking the forest in the follow-
ing few steps: (1) Add a node for its root. e.g., y1 ∈ {natural
food, industrial-food, . . . }. (2) Add a node for each set of children
of the same generation e.g., y2 ∈ {staple, snack, plants, . . . }. (3)
Add a branch for each parallel subtree. i.e., y3 ∈ {veggie, fruit,
. . . } and y4 ∈ {root, stem, . . . } (4) Repeat steps (2) and (3) until
all states are added to the tree. This particular instance corresponds
to the example taxonomy forest in Fig. 2(e).

The parameters of a probabilistic concept trees include three
parts: the “emission” probabilities p(x|y) of seeing the observa-
tions x given state variable y, the hierarchical conditional probabil-
ities P (yi|yPai) between a state variable yi and its parent variable
yPai , as well as the prior P (yroot) on values that the root node can

take. Multi-variate Gaussian conditional probabilities are used for
the real-valued observations xi and the corresponding state yi; tab-
ular conditionals are used between pairs of states P (yi|yPai). Note
that the concept tree construction requires block-wise assignment
of conditional probabilities based on parent-children relationships
in the taxonomy. For instance, in the second level of Fig. 2(d) and
(e) the conditionals need to be set such that∑

y2∈{animal,plants,...}
P (y2 | y1 = natural food) = 1 ;

∀y2 ∈ {staple, snack, . . .}, P (y2 | y1 = natural food) = 0 .

According to these network and its parameter constraints, we can
write out the joint probability of all observations and hidden states
in a Probabilistic Concept Tree in Bayes network notation as in
Eq. 2.

P (x1:M , y1:M ) = P (yroot)

M∏
i=2

P (yi|yPai)

M∏
i=1

P (xi|yi) (2)

We use expectation-maximization (EM) to estimate model parame-
ters from training images, and use the junction tree algorithm [3] to
estimate posterior probabilities of P (yi|x). The model inference is
carried out with the block-wise constraints in the conditional prob-
ability tables. The inference on a probabilistic concept tree is effi-
cient: linear in the number of nodes and quadratic in the size of the
state-space. This can be implemented using Bayes Network tools
such as the BNT [6]. Due to space constraints we omit further de-
tails of the model and its inference steps.

4. EXPERIMENTS
We evaluate Probabilistic Concept Trees on a web image collec-

tion containing 60,200 images collected from different photo shar-
ing sites and internet search engines. The images are of diverse
semantics and are manually filed into a taxonomy of 222 concepts
in total. The taxonomy is manually designed, organized into six
top-level categories, in a hierarchical forest similar to the illustra-
tion in Fig.1(c). The six top-level facets are activities, domain,
objects, people, setting and image type, each contain 10 ∼ 50
concepts, with a depth of 3 ∼ 7. Each category is modeled by a
Bayes concept tree of 4 ∼ 16 nodes. Each image in our dataset are
filed into one or more leaf nodes among the six concept trees. We
split this dataset and use 2/3 for training, 1/3 for testing.

For each of the 222 categories we first train an ensemble of Sup-
port Vector Machines (SVM) on positive and negative examples of
each concept. The training images are taken from a separate col-
lection of about 240K web images, and negative examples for each
category are taken from the rest of the taxonomy forest using the se-
mantic relationships to infer mutual exclusion. Details about train-
ing and testing our semantic concepts can be found in [4]. These
serves as the classification baselines and input to the concept tree
models. The learning and inference of Probabilistic Concept Trees
are efficient. The training and testing of all models would finish
within a few hours on a single CPU with a matlab implementaion.

We compare concept label prediction among the following five
methods: (1) Original classifier score (abbrv. orig or o). (2) Binary
Naive-Bayes binary (nb-bin or b), as shown in Fig. 2(a). Its input
are SVM scores, the output are binary confidence scores for each
concept. (3) Multi-class naive-Bayes model (nb-multi or m), as
shown in Fig. 2(b), the input are SVM scores, the output are pos-
terior probabilities of sibling concepts and maximum a posteriori
class labels. (4) Bayes net concept tree (bnet), shown in Fig. 2(d).
It explicitly models parent-children, mutual exclusion and multi-
faceted concept taxonomy. This became equivalent to the Bayes
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Figure 3: Result summary of different detection methods.

chain structure Fig. 2(c) when the underlying taxonomy state space
is one single tree. (5) Various fusion models (b+o, m+o, bnet+o,
bnet+m, bnet+m+o). We linearly combine the posterior proba-
bilities with equal weights for each target concept. The SVM scores
in o are converted to posterior probabilities with the logistic func-
tion before fusion.

We measure multi-class classification accuracy among the sib-
ling concepts at the same depth of a concept tree. For instance, at
depth 2 in Figure 2(e) we will have concepts staple, snack, ani-
mal, plants, none-of-the-above, and classification accuracies are
measured as the fraction of correctly labeled images over all images
with known labels with respect to the current tree.

Fig 3(a) compares the classification accuracy of the different
models, shown there is the average accuracy over each of the six
concept trees as well as the mean over all six. We can see that
nb-multi and bnet are clearly better suited for multi-class classi-
fication. This performance is preserved if we combine posteriors
from Bayes nets with binary classification scores (bnet+*), and
apparently not so if only nb-multi was combined (m+o). We also
noticed that the performance gain is notably larger with Bayes net
when the underlying taxonomy forests has more branching in the
network structure (i.e. more legitimate labels per image), such as
people and activities, than those very close to a tree structure, such
as objects.

One of the reasons why inherently binary classifiers did not per-
form well is the lack of knowledge on the concept priors P (y).
In Fig 3(b) we experiment with the sensitivity of the classifica-
tion performance to priors with noise. We rank the model poste-
riors for each dimension (sibling concept) and threshold at a p̃ =
(1 − α)p0 + αu, where p0 is prior probabilities estimated from
training data, u is prior noise sampled from a uniform Dirichlet
distribution, and α is a weight factor ranging from 0.1 to 1.0. We
plot the average classification accuracy over all concepts versus the
amount of noise in the prior, and the results show that although bnet
and the original svm models are almost on par when the knowl-
edge for priors are correct, but SVM is much more sensitive to
deviations from the correct prior.

Fig. 3(c) shows example classification results of the different
models. For the fireworks and commercial plane images on the
top, labels are being corrected taking into account the scores of
their sibling concepts that are mutually exclusive. For the basket-
ball, individual, and protest images, the labels are corrected only
after propagating and re-weighting the observations with informa-
tion from parent nodes. For the last image of park scene, the auto-
matic labels garden is visually quite sensible and may even suggest
that the related taxonomy may be expanded.

These results demonstrate that Probabilistic Visual Concept Tress
represent a class of models effective for encoding hierarchical, mu-

tually exclusive, and multi-faceted concept relationships under un-
certainty. Multi-class classification performance is significantly
improved. Moreover, the resulting concept scores are more robust
to imperfect parameters such as deviations from the prior, as the
concept parents and siblings does help produce correct labels in a
few notable examples.

5. CONCLUSION
We presented probabilistic concept trees, a novel representation

and inference model for large semantic visual taxonomy. This
model is distinct in that it accounts for two robust semantic re-
lationships (parent-children and mutual exclusion) as well as the
appearance-driven and statistics-driven relations in a visual taxon-
omy. We derived the parametrization and inference of the model as
a special case of Bayesian network. We have observed significant
improvement in classification accuracy on a large collection of web
images. Future work can include automatic learning of the taxon-
omy forest structure from data, extensions to discriminative rela-
tionships, adding spatial-temporal compositions about event con-
cepts. This model can also potentially be used for concept sugges-
tion in taxonomy design and data annotation.
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