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ABSTRACT | This paper reviews the state of the art and some

emerging issues in research areas related to pattern analysis

and monitoring of web-based social communities. This re-

search area is important for several reasons. First, the presence

of near-ubiquitous low-cost computing and communication

technologies has enabled people to access and share informa-

tion at an unprecedented scale. The scale of the data

necessitates new research for making sense of such content.

Furthermore, popular websites with sophisticated media

sharing and notification features allow users to stay in touch

with friends and loved ones; these sites also help to form

explicit and implicit social groups. These social groups are an

important source of information to organize and to manage

multimedia data. In this article, we study how media-rich social

networks provide additional insight into familiar multimedia

research problems, including tagging and video ranking. In

particular, we advance the idea that the contextual and social

aspects of media are as important for successful multimedia

applications as is the media content. We examine the inter-

relationship between content and social context through the

prism of three key questions. First, how do we extract the

context in which social interactions occur? Second, does social

interaction provide value to the media object? Finally, how do

social media facilitate the repurposing of shared content and

engender cultural memes? We present three case studies to

examine these questions in detail. In the first case study, we

show how to discover structure latent in the social media data,

and use the discovered structure to organize Flickr photo

streams. In the second case study, we discuss how to determine

the interestingness of conversationsVand of participantsV

around videos uploaded to YouTube. Finally, we show how the

analysis of visual content, in particular tracing of content

remixes, can help us understand the relationship among

YouTube participants. For each case, we present an overview

of recent work and review the state of the art. We also discuss

two emerging issues related to the analysis of social networksV

robust data sampling and scalable data analysis.
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I . INTRODUCTION

Social media platforms including Facebook, Twitter, and

Digg have made it easy to upload, tag, share, and interact

with content as well as to communicate with other users.
As a specific outcome, the ease of sharing and communi-

cation has led to rapid emergence and dissemination of

cultural memes. The information from these social media

platformsVabout individuals, their interactions on the

social network, and the social structures to which they

belongVis an invaluable resource for understanding

complex online social phenomena.

Over the past 40 years, traditional methods of studying
social processes including information diffusion, expert

identification, or community detection have focused on

longitudinal studies of relatively small groups. The
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widespread use of social websites like Facebook, Twitter,
Digg, Flickr, and YouTube has provided new avenues for

researchers to study social processes at very large scales.1

Social networks have made application programming

interfaces (APIs) available to researchers to access user-

generated content and user interactions. We can now

acquire and store electronic data for very large populations

over extended intervals. The result is that studies of social

processes on a scale of millions of peopleVinconceivable
just a decade agoVare becoming routine. As a specific

example, consider the problem of diffusion of information.

Now, we can conduct large-scale empirical studies on

diffusion on many different kinds of activities, including

blog posts [1], Internet chain-letter data [2], social tagging

[3], Facebook news feed [4], and online games [5].

The goal of this paper is to analyze human activity on or

around multimedia objects, including images and video, in
online social networks. The analysis will provide us with

contextual cues to better understand the meaning of

multimedia objects.

A. Multimedia Semantics
Multimedia, including images, audio, and video, has

become an increasingly popular medium to archive and to

communicate about our social and professional lives.

Multimedia data are forecast to occupy more than 60% of

global consumer IP traffic by 2015 [6]: Multimedia is

quickly becoming an important medium of communication

in the online world.

Effective organization and search of the multimedia

content remains a major challenge, despite significant
work by the multimedia and computer vision communities

(see [7] for a review). There are several reasons why

effective search and organization of multimedia content is

hard. First, the multimedia semantics space is unlimited.2

By Bsemantic space,[ we mean the space of meanings

associated with online multimedia content. The familiar

adage Ba picture is worth a thousand words[ captures this

sentiment. We cannot effectively describe rich multimedia
objects including video with a few wordsVa video requires

a rich text description to capture its meaning. Second, an

examination of videos in online repositories reveals a

scarcity of tagsVmany have no tags, while a small fraction

have a few tags. This is important: Text-based search is the

dominant mechanism of multimedia information search.

The relative scarcity of tags precludes effective video

search based on textual descriptors. Third, the semantic
space is not only large, but it is also constantly evolving.

Consider, for example, the popular object BiPhone[Vthis

word and its associated meaning began to form only when

it was introduced in 2007.

Multimedia and computer vision researchers have long
explored words and their relationships to visual content.

Existing studies on multimedia semantics related to visual

content have typically focused on specific visual catego-

ries: objects and scenes. Among the most researched visual

categories of interest include faces [9], generic objects

[10], scenes [11], and landmarks [12]. Relationships among

visual categories are deemed important to help recogni-

tion, including region-level hierarchies [13], small tree
taxonomies for video retrieval [14], and special-purpose

medium-scale visual ontologies (in hundreds) for the

broadcast news domain [15].

In principle, the scale of the multimedia dataVavailable

from social networksVshould ease the task of learning

object and scene classifiers. Even uncommon concepts

would appear in enough photos and videos in online

networks to develop robust classifiers. If we could develop
robust classifiers for enough concepts, then text-based

search of multimedia objects would be significantly

enhanced.

In practice, things are complicated. One cannot

effectively use all photos tagged with the same keyword

as the training set for a concept classifier. Learning a

concept classifier on a set of images tagged with the same

keyword implicitly assumes that the photographs share the
same context in which the keyword is meaningful. While

this may be true in a carefully designed dataset (e.g., the

Corel dataset), this is a strong assumption on Flickr, a

popular photograph-sharing social network. In general, the

context in which the keyword makes sense to the photo is

only known to the photo author or annotator. On Flickr,

for example, there are thousands of photographs labeled as

BYamagata[Vsome are of the town, some refer to a visual
artist (Hiro Yamagata), while still others refer to a singer

(Rachel Yamagata). Unsurprisingly, concept classifiers

that train concept classifiers by using images from online

repositories tagged with the same keyword perform poorly

on unseen photos. That is, we cannot successfully classify a

photo whose context is unknown.

To support effective search and organization of mul-

timedia content, we need to identify the context in which
a multimedia object exists. Media available on social

networks, including Flickr and YouTube, are associated

with rich context. A shared media item is associated with

a variety of information, including the identity of the

person who uploaded it, associated tags, identities of

people who commented on the item, and the number of

times it is viewed or marked as a Bfavorite.[ These user

actions, including Bupload,[ Btag,[ and Bcomment,[ are
timestamped.

A media item such as a photograph on Flickr therefore

exists as part of a meaningful interrelationship among

several attributes including time, visual content, users, and

actions. The semantics of media objects as well as human

activity on social media platforms needs to be understood

as a relationship between people, actions, artifacts, and

1Facebook, for example, has about 800 million users as of November
2011.

2See [8] for an article on an attempt to bound the number of semantic
concept detectors needed for video retrieval.
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supportive contextual metadata. Fig. 1 illustrates the

relationships among visual content, time, tags and users.

B. Semantics Arising From Social Interaction
The semantics that arise from social interaction,

including commenting, sharing, and tagging, around

media objectsVdenoted in this paper as interaction
semanticsVare distinct from the semantics of the media

object. Rather than asking Bwhat is the meaning of this

photo or video?[ we seek the semantics of the relationship
between people, actions, and media.

An example is useful to illustrate the difference: A

Flickr group on BArizona Travel[ may have a lot of posts on

Sedona, a popular destination, in July from people who live

in Phoenix but travel there to escape the heat. There are
fewer posts in December, when it is cold in Sedona. Now,

even if the meaning of each individual photo is known, the

meaning of the relationship between location (Sedona),

time (summer), specific users, and photo colors is not

explicit in the data. This relationship may exist because the

active members of the group are friends who live in

Phoenix and plan an annual summer retreat together in

Sedona. In other words, the relationshipVamong photo
visual features, photo capture time, tagging, and comment-

ing on the photoVarises due to human activity, both

online and in the physical world. In this case, the

interaction semanticsVthe meaning of the relationshipV
while not explicit, are known only to the group members.

These semantics cannot be easily discovered by accessing

the photo stream via a single object or attribute (e.g., photo

tags) or through a simple aggregation of attributes. The

discovery of latent structure in such social media platforms

can point to emergent cultural behaviors. Interestingly,
these behaviors may not even be explicitly identifiable by

members of the network.

Characteristics of social network data preclude simple

representations of the social context. First, social media

data typically involves multiple social relations. In Flickr for

example, there are several relations including user-to-user

relation (friendship or commenting), user-to-photo rela-

tion (tagging or Blike[), photo-to-location relationship,
and photo-to-time relationship. Second, the activity

patterns in social media often reflect not just a single

user’s routine behavior and interests, but the community

structure. In Facebook and Twitter, for example, commu-

nities emerge due to users’ topical interests and collabo-

ration on projects. In Flickr, media and ideas are shared

within communities of friends. Understanding social

media content requires knowledge about communities
which carry relevant context. The specific knowledge is

important because the process of content creation and

sharing in social media is driven by community activities

and interests.

C. Key Questions
We shall focus on three key questions, answers to

which will help us understand and use social context in

multimedia research.

1) How do we extract context in which social

interactions occur? We would like to discover an

Fig. 1. Relational structure in social media streams, which reveals the strong relationship among multiple facets: (a) photos (visual content),

(b) time, (c) tags, and (d) users. This figure presents partial multirelational structure extracted from the data of Flickr group ‘‘The Southwest

United States.’’ It illustrates three major themes in the group photo stream: ‘‘landscape,’’ ‘‘California,’’ and ‘‘New Mexico.’’ Users principally

contributed to these themes during three time frames 2005–2006 (landscape), 2006–2007 (California), and 2007–2008 (New Mexico).
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interpretable structure in social media streams.
Specifically, how do communities emerge in

online social networks? When do new associations

between tags and photos emerge? We believe that

latent interaction structure can facilitate an

effective exploration and summarization of social

media.

2) Does social interaction provide value to the media

object? The value must arise solely due to the
social interaction around the object, outside of any

intrinsic media semantics.

3) How does social media facilitate the repurposing

of shared content and engender cultural memes?

What does the presence of memes tell us about the

different rolesVcontent creation, repurposing,

and repostingVplayed by the members of the

network?
We shall address these three questions through three

case studies. In the first case study, presented in Section II-A,

we show how to discover structure latent in the data. The

structure relates people, actions, and content on Flickr.

Then, we show how we can use the discovered structure to

organize Flickr photo streams. In the second case study,

Section II-B, we discuss how to determine the interestingness
of conversationsVand of participantsVaround videos
uploaded to YouTube. The conversational interestingness

is a very different way of ranking video content, not based on

visual content, but instead driven by social interaction

around the content. Finally, in Section II-C, we show how

analysis of visual contentVtracing content remixes, in

particularVcan help us understand the relationship among

YouTube participants.

D. Example Applications
The discovery of relational semantics can significantly

influence applications in multimedia and other domains,

including content organization, recommendation algo-

rithms, and social network analysis.

The rapid growth of content on social media sites

creates several interesting challenges. First, the content in

a photo stream (either for a user or a community) is
typically organized using a temporal order, making the

exploration and browsing of content cumbersome. Second,

sites including Flickr provide frequency-based aggregate

statistics including popular tags and top contributors.

Users can access a subset of the content by clicking on

these tags/contributors. However, these aggregates do not

reveal the rich relational structure inherent in the

community sharing and interaction. As discussed by
Shamma et al. [16], harnessing the contextual information

for media understanding is one of the most difficult

challenges in media pragmatics/applications.

Social media metadata can be used to improve media

retrieval. Existing research on tagging includes improving

tag recommendation [17], [18] and analyzing usage patterns

of tagging systems [19]. Negoescu and Gatica-Perez [19]

present a large-scale analysis of Flickr groups and propose a
topic modeling approach for representing a group based on

the co-occurrence of groups and tags. Zunjarward et al. [20]

propose a framework for annotating events in images by

exploiting the social networks of annotators. Kennedy et al.
[21] propose a framework for generating knowledgeV
representative tagsVfor a location, and for extracting place

and event semantics for a tag. Their work suggests that

community-generated media and tags can improve access to
multimedia resources.

The multirelational structure can be used to provide

effective recommendations along any attribute [22]. When

the user is looking at a particular photo, we could use the

set of relations in which the photo exists, and then recom-

mend other photos, tags, and related peers. The multi-

relational data can provide additional context over the

(photo, tag) pairs that have been used to recommend tags
in automated annotation algorithms. It can help identify

peers and context (including feature distributions, activ-

ities, time) in which they are related to the current user.

In [23], for example, we describe methods for finding

users the right communities of interests in order to gain

useful feedback on their uploaded content. A recommen-

dation framework based on learning a latent space

representation of the groups is developed to recommend
the most likely groups for a given image. Based on the

same crawl of Flickr dataset, we observe that: 1) the

tagging and communication-based features of images help

improve recommendation performance significantly

against image content alone; and 2) groups (the photo-

sharing communities on Flickr) can be effectively

represented by their features (image content, tags, and

communication activity) in a latent space which is use-
ful for recommending more interesting groups. The

potential of community-contribution information in mul-

timedia collection has been discussed in [22], including

areas important for multimedia access: annotation, distri-

bution, and retrieval. In [24], the authors propose a similar

joint Nonnegative Matrix Factorization framework to

leverage a secondary source to improve retrieval perfor-

mance from a primary dataset. The effectiveness of the
proposed method is demonstrated through a social media

retrieval application.

We can exploit the communication characteristics in

social media sites to make predictions on user behavior, sales,

and stock market activity [25]–[28]. Antweiler et al. [29]

determine correlations between communication activity

in Internet message boards and stock volatility and

trading volume. Gruhl et al. in [27] correlate postings in
blogs, media, and webpages with the sales ranks of books

on Amazon.com. They devise carefully handcrafted

queries to find matching posts which can be indicators

of future sales ranks of books. Similarly, in [26], we

analyzed the communication dynamics (of conversations)

in a technology blog and used it to predict stock market

movement.

Sundaram et al. : Multimedia Semantics: Interactions Between Content and Community

2740 Proceedings of the IEEE | Vol. 100, No. 9, September 2012



E. Emerging Research Areas
We need several computational elements to under-

stand the nuanced patterns of linking among individuals

and communities that occur through social media, at

different structural levels of interaction. There are several

nontrivial research challenges associated with analyzing

social network datasets, and we highlight two of them: data

bias and data diversity.

The first challenge is a basic methodological question:
how to sample social network datasets to ensure validity of

the analysis. The datasets relevant to the analysis are

enormous in size, diverse in form and content, and are

growing rapidly. Importantly, researchers are limited in

the ability to acquire the data due to an information

acquisition bottleneck: The social network APIs restrict

the amount of data that can be retrieved per minute. This

acquisition rate is several orders of magnitude smaller than
the rate of production of information in the network.

The second challenge is associated with scalable storage

and analysis of dataVthe data exhibits temporal evolution

and significant diversity. In social networks, user interac-

tions and community interests are constantly evolving, often

tracking real-world events. Social media data are also

multifaceted: typically involving multiple types of relation-

ships including friendship, and co-commenting on a news
story. Entities in social networks may also have different

attributes, e.g., location, age, profession. The multidimen-

sional and multirelational nature of these interactions

increases the computational complexity of the algorithms.

Consequently, a framework for managing user data in a form

amenable for large-scale data analysis is a key step in

supporting significant technical advances in social media.

The computational ceiling arising due to finite resources
requires us to pursue innovative strategies to address the

data scalability challenges.

In this paper, we would like to understand how media-

rich social networks can provide additional insight into

familiar multimedia research problems. In particular, we

advance the idea that the contextual and social aspects of

media semantics are as important for successful multime-

dia applications as is the media content. An important idea
is that a framework for extracting useful information from

social media data needs to therefore scale not only with the

data scale, but also against diversity of data facets. We shall

explore these ideas in detail with several case studies.

The rest of this paper is structured as follows. In

Section II, we present three case studies. In Section III, we

discuss related work. In Section IV, we discuss open issues

related to sampling and scalable analysis. Finally, in
Section V, we present our conclusions.

II . CASE STUDIES: SOCIAL ACTIVITY
AROUND MEDIA OBJECTS

In this section, we present three case studies that allow us

to shed light on the three key questions outlined in

Section I-C. In particular, we examine the extraction of
latent social network structure, deriving value for media

objects accruing from social interaction, and finally

develop a deeper understanding of the social media

participants. The first two studies analyze the social

dynamics on a social network around a rich media object,

whereas the last study analyzes media content to

understand the relationship among participants.

A. Case Study: Understanding Collective Human
Activity Through Multirelational Structure Discovery

We present a method for discovering multirelational

structures from social media streams on Flickr, a popular

social media site. Example user–photo relationships in this

structure include photo tags, photo sharing, commenting,

and so on. These relations encode the interaction seman-
tics that are only interpretable to the participants of the

social network. That is, the explanation for the existence of

a stable relationship between a specific set of people,

location, time, photos, and tags, while known to the users,

may not be explicitly encoded in the data. [30], [31]. Our

goal is to extract relational structures within a group of

online users and their shared content, through soft
clustering that reflects these relations. As will be shown
in the rest of this section, such structure will lead to richer

interpretation of the data, as well as better tagging algo-

rithms for photos.

1) Dataset: We extract relational structure from Flickr

group photo pools.3 We define a group photo stream
(or group, for short) to be a collection that includes:

photos posted in a shared space, all users who posted the
photos, and tags associated with the photos. In this paper,

the shared space specifically refers to Flickr group pools.

Our framework extends to other shared spaces including

Facebook groups and event repositories such as Eventful or

Upcoming.

We use the Flickr API4 to collect data from a sample of

120 Flickr groups. The distribution of group size in our

sample follows the overall group size distribution on Flickr.
We download all publicly available photos for each group.

Our dataset consists of 111 108 photos, 8117 unique users,

and 102 607 unique tags in total. The photo post times range

from January 1, 2004 to January 8, 2009, which enables us

to analyze long-term temporal patterns in this collection.

2) Methodology: There are two key ideas in our

framework: extraction of relations from social media
streams and extraction of relational clusters.

Extraction of relations in social media streams:
Relations connect different aspects of the photo stream

data. Specifically, this work models visual content,

3http://www.flickr.com/groups/
4http://www.flickr.com/services/api/
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associated tags, photo owners, and post times. We analyze
the relationship between groups of objects of the same

type. We call a set of entities of the same type a facet. A

photo facet, for example, is a set of photos; a user facet is a

set of users. We call the interactions among items in

different facets a relation. A relation can involve two (i.e.,

binary relation) or more facets. In this work, we

investigate pairwise relations; our method, however, can

be extended via tensor-based representations, to handle
higher-order relations [31].

We use matrices to capture the relationship between any

two facets. We represent the visual facet with a number of

visual descriptors that have been found effective in image

content analysis, including color (color histogram and

moments), texture [32], and shape [33], [34], as well as

interest points [35]. We concatenate the visual features to

form a L ¼ 1064-dimensional vector for each photo. We
normalize the features to lie within [0, 1] with a logistic

function. Let P be the set of photos in a group. We obtain a

photo-feature matrix WðFÞ 2 RjPj�L, where the ith row is

the feature vector of the ith photo. Here, the photo-feature

matrix WðFÞ represents the relation between photos and the

their visual features. We use three facets to encode

contextual features: ownership, tags, and photo posting

time. Let U be the set of users who post photos to the group,
i.e., photo owners. In a similar manner, we can construct a

photo-user matrix WðUÞ 2 RjPj�jUj, where each entry

W
ðUÞ
ij ¼ 1 if the ith photo is posted by the jth user, and 0

otherwise. Matrices WðQÞ and WðTÞ, representing photo-tag

and photo-time relationships, are defined in a similar

manner. The matrix-based relational data model can easily

incorporate additional context. It is possible, for example, to

add the EXIF metadata from photos and include location,
camera model, and settings. The EXIF metadata can be

represented in a manner similar to the basic contextual

information discussed in this section. Fig. 2 shows the four

relation matrices mentioned above.

Extraction of relational clusters: We formulate the

extraction of relational clusters as an optimization problem.

The optimization objective is to find a set of soft clusters that
best represents various simultaneous relations between the

photos and other facets such as visual features, associated

tags, photo owners, and post times. In this setup, we assume

that an entity, including a photo, a tag, or a user, can belong

to multiple clusters, with weights that indicate the

likelihood of membership. The cluster assignment ensures

that the observed relationship between entities is well

approximated by the soft-assignment to the set of clusters.
We find soft relation clusters with nonnegative joint

matrix factorization techniques. We now discuss how to

factor a single relation, photo-visual feature matrix

WðFÞVthe others follow analogously. We represent each

cluster k, k ¼ 1; . . . ;K, with a feature vector zk of length L.

We define pik to be the probability that a particular photo i
belongs to the kth cluster and define �k to be the cluster

probability. Our goal is to determine the coefficient zk based
on the likelihood that a photo i belongs to the kth cluster.

Here ~ZðFÞ ¼ fzkg is a K � L matrix, ~P ¼ fpikg a jPj � K
matrix, and m ¼ f�kg a K � K diagonal matrix. m is shared

across all considered relations and indicates the size of each

obtained cluster. The soft clustering is a good one if zk,

weighted by ~P and m, approximates the ith row in WðFÞ

W
ðFÞ
i �

X
k

�kpikzk ¼ PmZðFÞ
� �

i
: (1)

We can approximate W
ðFÞ
i by minimizing a cost measure

DðWðFÞk~P�~ZðFÞÞ, where Dð�k�Þ is a measure of approxima-

tion cost between two matrices. We use Kullback–Leibler

(KL) divergence between two matrices.5 The KL divergence

is a natural measure of the dissimilarity between two

distributions. Hence, to obtain ~P, m, and ~ZðFÞ, we minimize

the following objective function:

J P;m;ZðFÞ
� �

¼ D WðFÞkPmZðFÞ
� �

: (2)

All the objective functionsVwith respect to different

facetsVcan be written out similarly and combined to

minimize the overall cost

J P;m; ZðrÞ
n o� �

¼
X

r2fF;U;...g
D WðrÞkPmZðrÞ
� �

;

s.t. P 2 RjPj�K
þ ;m 2 RK�K

þ ;Z 2 RK�Ir
þ ;X

i

Pik ¼ 1 8k;
X

k

mk ¼ 1 (3)

Fig. 2.Data of the group photo stream over time can be represented as

four matrices: photo-feature matrix WðFÞ, photo-user matrix WðUÞ,

photo-tag matrix WðQÞ, and photo-time matrix WðTÞ.

5Using matrices to represent distributions, the KL divergence between
matrices ~A and ~B is defined by Dð~Ajj~BÞ ¼

P
ijð~Aij log~Aij=~Bij � ~Aij þ~BijÞ,

where
P

ij
~Aij ¼

P
ij
~Bij ¼ 1.
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where ZðrÞ is the matrix representing the rth relation and Ir

denotes the dimensionality of the second dimension of the

coefficient matrices. The joint objective function can be

easily extended to incorporate additional relations or to

incorporate weights on the relations or facets. We develop

an iterative algorithm for minimizing the objective

function in (3). We also automatically determines the

number of clusters by introducing structure cost penalty.

Algorithm details can be found in the full paper [31].

3) Experimental Results: We now discuss our experimen-

tal results. Fig. 3 shows the results from two Flickr groups:

Bsky’s the limit[ (denote as group A, with 2278 photos),

and BFull Frame Sensor group[ (denote as group B, with

3961 photos). We extract the clusters using the joint

optimization in (3), obtaining five thematic clusters in

group A and six in group B. For each thematic cluster, we
show the top three photos based on the data likelihood pik

for a photo i to belong to theme k. We can determine

through other coefficient matrices the most likely users

who post photos belonging to the theme and the most likely

tags associated with the theme photos. The middle part of

Fig. 3 shows aggregated cluster strength over time for group

A and group B. We can see that the theme strengths vary

over time; some themes, such as A2 and B2, only appear
at certain time periods and then diminish. Some othersV
A3 and A5 are examplesVappear, then fall and then

reappear. We have observed that these themes emerge due

to dedicated users (e.g., the Bbird[ images in A4 are taken

by the same user), tag co-occurrences (e.g., Bsunset[ in

A2, Bwater[ in B6, etc.), as well as similar visual content

(e.g., A2, A4, A5, B2, B5, B6, etc.). These empirical

results suggest that our analysis captures the dynamics of
group patterns and gives meaningful summary of group

photo streams.

How can we quantify the meaningfulness of an

extracted structure? We designed a prediction task to

examine this question. The intuition is that if our

algorithm captures the relational structure, it should be

able to predict missing data tuples from the same group

photo stream. Specifically, we use the photo-tag relation in
our prediction task: Our prediction task is to predict tags

for a new photo. Our prediction results outperform

baseline methods such as feature and tag-frequency-based

methods by 44% � 390% on precision at 10 (P@10) [31].

The success of our prediction framework may be

attributed to the Bevent locality[ in Flickr photos: Many

photos are well correlated to either global events or to

events that are directly observed by the users. This implies
that the use of tags is highly correlated to the event

context. The event context includes information related to

a particular user, time, and visual appearance. The

relational data model helps to capture the event context.

We conducted a pilot user study with 12 participants to

understand the utility of using Flickr-group relational

semantics to organize Flickr photos. To conduct the study,

we developed an interactive interface to present the results
of thematic cluster extraction [31]. The user study used

both 5-scale rated survey questions as well as semi-

structured interviews. The user study results indicate that

users found the extracted clustering results to well

represent the major group themes. Furthermore, user

study participants pointed out that the clustering results

not only reveal how users describe the group data, but also

lead users to discover evolution of the group activity.
Our work improves annotation accuracy by introducing

local or temporal context in data analysis. Furthermore,

the algorithm proposed in our work can be easily extended

with additional facets to transfer knowledge from readily

available auxiliary data.

B. Case Study: Characterizing Interestingness of
Conversations on Social Media Sites

In this case study, we examine a simple question: Does

the presence of social interactionVfacilitated by a social

media siteVaround a media object add to the value of the

media object? The emergence and growth of social media

websites such as YouTube and Flickr has created new

opportunities for individuals to share rich multimedia
objects online. A striking feature of these sites is the

extensive interaction among community participants:

community members return6 repeatedlyVnot to watch

the video againVbut to participate in the discussion around
the video.

A video uploaded on YouTube, for example, may gene-

rate many comments around the video. These comments

often include conversational structureVback-and-forth
comments between several community membersVakin to

a conversational thread. The theme of the conversation is

latent; it is not only affected by the video, but also by the

content of the comments.

There are two key characteristics of these conversa-

tions: conversation theme and how they can affect the

meaning of the media object that resulted in the

conversation. First, over time, the conversation will drift
to topics unrelated to the video content. The change in

topic affects participation: A flame war may dissuade

participation, whereas a thoughtful, respectful dialog may

encourage people to voice their thoughts. Second, the

comments provide additional context to the video.

Therefore, the semantics associated with the videoVby

the participants in the conversationVwill evolve to

accommodate the new context. Comments on a music
video, for example, may provide context about the band

and the circumstances under which the video was

recorded, which is not obtainable from watching the

video. Keith Jarrett’s well-known recordingVthe Köln

concert, for exampleVis known not only for the music,

6Social media sites, including YouTube, encourage participation
though notification. There are several cases when users are notified: Users
are notified of activity on their uploaded content; users who comment are
notified of replies on the video.
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Fig. 3. Theme discovery for Flickr group A ‘‘sky’s the limit’’ (top) and group B, ‘‘Full Frame Sensor group’’ (bottom). Theme evolutions are

shown in two middle plots, with the mid-left plot from ‘‘sky’s the limit’’ and the mid-right plot from ‘‘Full Frame Sensor group.’’

Themes were obtained using joint analysis in (3). The results show that group patterns emerge due to dedicated users,

tag co-occurrences, as well as similar visual content.
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but also for the recording context: The performer was
experiencing severe pain while performing.

What properties, including properties of the conversa-

tion and contextual metadata, prompt community mem-

bers to participate in a conversation? A measure that

captures properties correlated with participation would be

of value in different applications. First, we can use the

measure to rank and filter both blog posts and rich media.

The same news story, for example, may be posted on
several blogs. A conversational measure can be used to

identify sites where the postings and commentary have the

highest likelihood of participation. Second, the conversa-

tional measure can also be used to increase efficiency. We

can cache media objects associated with conversations

with high measure.

We shall call our measure of a conversation, its

Binterestingness.[7 We recognize the pitfalls of using a
word that connotes subjective engagement with an

objective measure. However, the word Binteresting[
appears to best describe a measure for a conversation

that correlates with increased participationVthe phenom-

ena of users returning to participate in the conversation

associated with a YouTube video for example.

Our insight is that interesting conversations have an

engaging theme with interesting people [36]. We propose a
computational framework to determine an objective

measure of conversational interestingness. One by-product

of our work is that we can also compute a measure of

Binterestingness[ of participants.

The framework has three innovations: extraction of

conversational themes, a measure of interestingness, and a

method to cross-validate the interestingness measure. We

extract conversational themes for determining the
Binterestingness[ of online conversations. A theme is

either visual (content features of the associated media

object) or textual (topical assignment based on the

comment contents). Fig. 4 shows example conversational

themes from a YouTube dataset. We detect visual themes

via content features of the associated media object. We

detect textual themes using a sophisticated mixture model

approach. We use a random walk model for characterizing
the communication properties of participants of conversa-

tions. Then, we use a novel joint optimization frameworkV
that utilizes the themes and the communication properties of

participantsVwith temporal smoothness constraints to

compute the interestingness measure. A framework to

compute the interestingness of a conversation is not

enoughVwe need to show that the measure is meaningful.

Therefore, we examine the consequence of a conversation
with high interestingness measure.

1) YouTube Dataset: In our experiments, we crawled

YouTube, a popular video-sharing site, to create a data-

set comprising 272 810 videos, involving 17 736 361 uni-
que participants and 145 682 273 comments. We

collected the dataset during 2008–2009.8 We looked

at several broad categories on the YouTube website:

BComedy,[ BEducation,[ BEntertainment,[ BNews &

Politics,[ BSports,[ BMusic.[ For each video, apart from

downloading the video, we collected contextual metadata:

timestamp, tags, associated set of comments and their

timestamps, and authors.

2) Methodology: Let us assume that we have a set C of

conversations and a set P of participants who have posted

comments on any conversation ci 2 C, and metadata

associated with comments and the media object. Our

goal is to determine a measure of interestingness for each

conversation ci 2 C. The interestingness measure of a

conversationVat each point in timeVis a nonnegative
scalar. Determining interestingness of conversations

involves three key challenges: extracting conversational

themes, deriving the interestingness measure, and cross-

validating the measure of interestingness.

Conversational themes: Participation in a conversation

is influenced by the video object content and the com-

ments. To represent visual content, we use a number of

well-known features. These features include color (color
histogram and color moments), texture (GLCM and phase

symmetry), shape (radial symmetry and phase congruency),

and interest points (SIFT).

Conversations are growing collections of comments from

different participants. Interestingness of a conversationV
at any point in timeVdepends on the content of the com-

ments associated with it. Hence, we propose a mixture model

for the conversational themes. The mixture model is regu-
larized over time and over the participants.

We temporally segment each conversation into non-

overlapping chunks (or bag-of-words). Each chunk corre-

sponds to one time slice. We assume that words in a chunk

are generated from K multinomial theme models with

latent distributions. The theme model parameters are

computed by maximizing the data likelihood.

We need to regularize themes associated with words in
a chunk with respect to time [37] and coparticipation.

Temporal regularization is important: A word, for

example, can become highly popular at a specific time

due to related external events. The intuition to regularize

conversational theme distributions by coparticipation is as

follows: If two chunks share participants, the chunk theme

distributions will be more similar than the case when the

two chunks share no participants. We define a participant
co-occurrence graph GðV; EÞ where each vertex is a

conversation ci 2 C and an undirected edge ei;m exists

between two conversations ci and cm if they share at least

one common participant. Each edge ei;m is associated with

7We are motivated by Flickr’s proprietary measure of Binterestingness[
for photographs uploaded to the site. Flickr’s algorithm to compute the
interestingness of a photo is unpublished.

8A large portion of the dataset is available for download at: http://
www.public.asu.edu/mdechoud/datasets.html.
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weight !i;m, which is computed as the fraction of par-

ticipants common to a pair of conversations. We incorpo-

rate participant-based regularization by constraining the

similarity between two theme distributions to be propor-

tional to the edge weight !i;m.

Determining interestingness: Our main insight is that

interestingness of conversations and participants mutually
reinforce each other: Interesting people are to be found at

interesting conversations. Therefore, our framework

determines the interestingness measures for both partici-

pants and conversations through a joint optimization. We

compute both measures through temporal recurrence

relations. The interested reader can find the detailed

analysis in [36].

In our framework, a participant who communicates can
be in two states. In one state, she is influenced by her past

history of communication, and in the other, her commu-

nication is independent of her past communication

history. A two-state model helps account for participants

introducing new themes in their comments, independent

of their past communication history.

The participant measure of interestingness is influ-

enced by the state of the participant. The measureVwhen

in the state affected by the participant’s prior communi-

cation historyVdepends on the following aspects. First is

the value of the participant interestingness measure at the

previous time slice. Second, the measure depends on the

measure of interestingness of other participants, who were
influenced to comment by the participant whose interest-

ingness we are trying to measure. Third, the measure

increases when she comments on posts by persons with

high interestingness measure. Finally, the participant

measure depends on measure of interestingness of the

conversationVparticipating in a conversation with a high

value of interestingness increases interestingness of the

participant. The measure, when the participant is not
affected by prior history, depends on the following aspects.

The measure is influenced by the themes associated with

the participants’ comments. Second, the measure is influ-

enced by conversational theme strength at the previous

time slice. The theme strength includes measures for both

the visual and textual themes.

Fig. 4. Evolution of conversational themes on the YouTube dataset: The rows represent weeks, and the columns represent themes.

The strength of a theme (number of conversations associated with it) at a particular week is shown as a blue block: Strength is

proportional to intensity of block. The themes are associated with their word-clouds; only a few themes are shown for clarity.

We observe the dynamics of theme strengths with respect to external events.
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The interestingness measure for a conversation can
be defined in a similar manner. In the case of con-

versations, however, a conversation becomes interesting

when it attracts participants with high measure of

interestingness or when the conversational themes are

engaging. The conversational measure depends on the

following aspects. First, it depends on the measure of

interestingness of the participants in the conversation at

the previous time slice. Second, the measure depends on
the strength of the themes in the conversation at the

previous time slice, including the visual and the textual

theme strength. We use theme strength as a proxy for

theme interestingness.

We use a joint optimization framework to learn the

optimal values of the model parameters to jointly

maximize the interestingness measures for both partici-

pants and conversations.
Evaluating iInterestingness: We need to cross-validate

the measure for interestingnessVafter all, there is no a
priori reason to believe that our measure, while intuitive, is

meaningful. We are guided by a simple observation: Any

interesting conversation is likely to have consequences.

The consequences include participant activity, increased

coparticipation, and theme sustenance. Given a conversa-

tion at time t0, we ask the following three questions, at a
later time t0 þ �.

1) Activity: Do the participants in an interesting con-

versation ci at time t0 take part in other conver-

sations relating to similar themes at t0 þ �?

2) Cohesiveness: Do the participants in an interesting

conversation ci at time t0 exhibit cohesiveness in

communication, that is, tend to coparticipate in

other conversations at t0 þ �?
3) Thematic similarity: Do other conversations with a

theme distribution similar to conversation ci at

time t0 also become interesting at t0 þ �?

Given appropriate measures for each of the three

consequencesVactivity, cohesiveness, and thematic

similarityVa good measure of conversational interesting-

ness ought to predict each consequence well. These

measures are described in more detail in an earlier pub-
lication [36].

3) Empirical Studies: There are five measures of

interestingness: two measures proposed by us and three

baseline measures. Our measures are as follows: interest-

ingness measure with temporal smoothing I1 and interest-

ingness measure without temporal smoothing I2. We use

three baseline measures for conversational interesting-
ness. The first baseline interestingness measure ðB1Þ of a

conversation is the number of comments per time slice.

This measure satisfies the following two constraints [38].

First, a conversation is interesting at a time slice when it

has several comments in that time slice, and second, a

conversation should not be considered interesting if all its

comments are in a particular time slice and no comments

occur in other time slices. The second baseline measure
ðB2Þ is based on the idea of novelty in participation: New

participants join a conversation at time t0 and who did not

appear in the same conversation at any time slice prior to

t0. The intuition behind the measure is that interesting

conversations attracts new participants. The third base-

line measure ðB3Þ ranks conversations using the PageRank

algorithm on the participant co-occurrence graph. The

intuition is that if participants who coparticipate on
several interesting conversations also coparticipate on

another conversation, then this new conversation must be

appealing.

We present the results of measuring consequence of

interestingness on the YouTube dataset captured by the

three measures of consequence corresponding to the

following: activity, cohesiveness, and thematic interest-

ingness. To compute the consequence of an interesting-
ness measure, we compute the mutual information of the

measure of interestingness with measures for activity,

cohesiveness, and thematic interestingness.

The results of evaluation are shown in Fig. 5. The

mutual information between the interestingness measure

and the consequence measure is affected by �, the time

difference between a point in time in the future and the

current time. Hence for each interestingness measure and
consequence metric, we determine the optimal � for that

pairVusing training dataVand use this � to compute

mutual information for the pair. We observe that our

method I1 maximizes mutual information for all three

consequence metrics (mean 0.83)Vour computed mea-

sure of interestingness can successfully explain the three

consequences in terms of mutual information, in contrast

to the baseline methods (mean 0.41).

C. Case Study: Understanding Event Dynamics With
Visual Memes

This case study addresses the final challenge on

understanding how social media facilitates the reuse of

shared content and the roles played by the participants in

the social network. We present a method for tracking

Bvisual quotes[ (i.e., memes) in social media and use the
outcome of meme tracking to make sense of real-world

news events as well as understand user activity.

Remixing and reposting are prevalent on video-sharing

platforms like YouTube, as it has been observed that

remixing is a source of Bvernacular creativity[ [39]. A

number of studies have covered quoting and remixing on

text-based social platforms, especially Twitter [40]–[42].

We note, however, that the interaction and remixing traces
are not unavailable for video content since video is a linear

media, and no prior approach is available for tracking

interactions therein.

Analyzing large-scale video propagation enables us to

study the social dimensions of rich-media sharing,

especially user influence and event dynamics. Real-world

event traces have been an area of considerable interest,
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and several systems have covered event profiles [43]–[45]

via tweet volumes and sentiments. The focus of our work is

on user roles and influence.

1) Visual Memes and Video Content Duplication: We

propose visual memes as a unit for analyzing visual quotes

on YouTube. A meme9 is defined as a cultural unit (e.g., an

idea, value, or pattern of behavior) that is passed from one

person to another in social settings. We define a visual
meme as a short segment of video that is frequently re-

mixed and reposted by more than one user. Fig. 6 shows
examples of visual memes represented by keyframes.

Despite variations in the videos that contain the memes

(e.g., varying sizes, colors, captions, edits), each meme

instance is semantically consistent.

Visual memes are shared and frequently reposted

parts of remixed videos. They exist because users tend to

create Bcurated selections based on what they liked or

thought was important[ [46]. News event collections are
particularly suited for studying large-scale user curation

since remixing is more prevalent here than on video

genres designed for self-expression, such as video blogs.

The unit of interaction appears to be video segments,

consisting of one or a few contiguous shots. The remixed

shots typically contain minor modifications that include

video formatting changes (aspect ratio, color, contrast,

gamma) and video production edits (the superimposition
of text, captions, borders, transition effects). Most of

these modifications are well known in the visual copy

detection problem domain. In this paper, we will use

meme to refer both to individual instances, visualized as

representative icons (Fig. 6, top), and to the entire

equivalence class of reposted near-duplicate video seg-

ments, visualized as clusters of similar keyframes (as in

Fig. 6, middle).
Visual memes represent endorsements. Intuitively, re-

mixing and reposting is a stronger endorsement requiring

much more effort than simply viewing of, commenting on,

or linking to the video content. A reposted visual meme is

an explicit statement of awareness; a statement on a subject

of mutual interest. Hence, memes can be used to study

virality, lifetime and timeliness, influence, and (in)equality

of references.

2) Scalable Extraction of Visual Memes: There are two

main challenges in detecting visual memes in a large

collection. The first challenge lies in reliably matching

video segments despite the variations in their appearances.

The second challenge is the overall computational com-

plexity of the matching process. Finding all pairs of near-

duplicates by matching all N shots against each other has a
complexity of OðN2Þ, which is infeasible for a typical

collection containing millions of video shots. Our process

for detecting video memes is outlined in Fig. 7 and sum-

marized below; details are available in the correspond-

ing paper [47].

Our solution to the first challenge is robust keyframe

matching. We first temporally segment the video, and then

extract a representative keyframe for each segment. We
preprocess the keyframes by detecting and removing

borders and normalizing aspect ratio. We then extract the

color correlogram [48] for each frame to capture the local

spatial correlation of colors. The color correlogram is

rotation-, scale-, and, to some extent, viewpoint-invariant.

The keyframe matching uses a globally tuned query-

adaptive threshold to normalize the match radius based on

the query frame and feature complexity.
Our solution to the scale challenge is to use an indexing

scheme for fast approximate nearest neighbor (ANN)9http://wordnetweb.princeton.edu/perl/webwn?s=meme

Fig. 5. Mutual Information between the interestingness measure and the three consequence metrics. Results are shown for two rich

media-based datasets: YouTube and Flickr. We evaluate our computed interestingness I1 and I2 against baseline methods B1 (comment

frequency), B2 (novelty of participation), and B3 (coparticipation-based PageRank). Our method incorporating temporal smoothness ðI1Þ
maximizes the mutual-information-based response metric for the three consequence-based metrics (activity, cohesiveness, and thematic

diffusion).
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lookup. We use the FLANN Library [49] to automatically

select the best indexing structure and parameters for a

given dataset. Our image features have over 300 dimen-

sions, and we empirically found that ANN needs to

traverse approximately
ffiffiffiffi
N
p

to obtain 0.95 precision in

finding nearest neighbors, corresponding to two to three

decimal orders of magnitude speedup over exact nearest

neighbor search when N � 106. Furthermore, each
FLANN query results in an incomplete set of near-

duplicate pairs, so we perform transitive closure [50] on

the neighbor relationship to find equivalence classes of

near-duplicate sets.

We measure meme detection performance using

ground truth from a YouTube dataset, which contains

�15 000 near-duplicate keyframe pairs and �25 000

nonduplicate keyframe pairs. We compute the near

duplicate equivalence classes as described above, and

calculate precision (P) and recall (R) on the labeled pairs.

The results are shown on Fig. 8 (left) for varying values of

the match threshold parameter. We note that the

performance is generally quite high, with P > 95%. For

the rest of our analysis, we use the operating point
maximizing recall, which leads to P ¼ 96:6%, R ¼ 80:7%.

3) Meme Network for Influence Modeling: We can

estimate the influence of content and of authors using

visual memes. Visual memes can be viewed as links between

creators videos that share the same visual segment. We

Fig. 6 Visual meme shots and meme clusters. (Top) Two YouTube videos that share multiple different memes. Note that it is impossible to

tell from metadata or the YouTube video page that they shared content, and that the appearance of the remixed shots (bottom row) has

large variations. (Bottom) A sample of other meme keyframes corresponding to one of the meme shots, and the number of videos

containing this meme over timeV193 videos in total between June 13 and August 11, 2009.
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derive a link-based measureVdiffusion influence indexVto

depict the influence of a meme and its author.

Denote a video (or multimedia document) as di in event
collection D, with i ¼ 1; . . . ;N. Each video is authored

(i.e., uploaded) by author aðdiÞ at time tðdiÞ, with

aðdiÞ 2 A. Each video document di contains a collection

of memes, fm1;m2; . . . ;mKi
g, from a meme dictionaryM.

We compute the in-degree (resp., out-degree) of each

meme m in video di as the number of other videos con-

taining meme m that appeared before (resp., after) di

�in
i;m ¼

X
j

I m 2 dj; tðdjÞ G tðdiÞ
� �

�out
i;m ¼

X
j

I m 2 dj; tðdjÞ > tðdiÞ
� �

(4)

where If�g is the indicator function that takes a value of 1

when its argument is true, and 0 otherwise. Intuitively, �in
i;m

and �out
i;m capture the number of videos that can serve as

potential sources and potential followers for meme m in di.

The video influence index �i is defined for each video

document di as the ratio of its out-degree over its in-

degree, aggregated over all memes (5). The smoothing

constant in the denominator accounts for di itself. The

total author influence index �̂r is the aggregate �i over all

videos from author ar

�i ¼
X

m

�out
i;m

1þ �in
i;m

(5)

�̂r ¼
X

i;aðdiÞ¼arf g
�i: (6)

Intuitively, our influence index gives a higher score to a
video, which was uploaded early, containing a very popular

meme.

4) Observations From Youtube Event Datasets: We

monitored real-world events in YouTube by using a few

generic, time-insensitive text queries to filter the content.

The queries were designed to capture a generic topic or

theme, including causative agents and consequences
related to the topic. Our query on Biran election[ topic,

for example, consists of the terms iran election, teheran
protest, iran unrest, and so on. We created queries to cover

the invariant aspects of a topic; automatic time-varying

query expansion is a natural extension of our work.

For each unique video, we segment shots, extract

keyframes, and extract visual features from each key-

frame. We also retrieve the associated metadata, includ-
ing author, publish date, view-counts, and free-text title

and descriptions.

We present sample observations from the Iran3 set,

which contains videos related to the Iranian election in

2009 and related international reactions from June to

August in 2009. This collection is representative since it

has significant volume and it showcases event dynamics.

The dataset comprises more than 23 000 YouTube videos,

Fig. 8. (Left) Performance of visual meme detection method on the Housing dataset. (Middle) Video views versus meme probability

on Iran3 set. (Right) Total diffusion influence versus the number of videos produced by each author on Iran3 dataset.

Fig. 7. Visual meme detection workflow. The input to this system is a

set of video frames, and the output splits this set into two parts. The

first part consists of a number of meme clusters, where frames in the

same cluster are remixes with each other. The second part consists of

the rest of the frames that are not considered near-duplicates with any

other frame. Blocks A and D address the robust matching challenge

using correlogram features and query-adaptive thresholding, and

blocks B, C, and E address the scalability challenge using

approximate nearest-neighbor (ANN) indexing.

Sundaram et al. : Multimedia Semantics: Interactions Between Content and Community

2750 Proceedings of the IEEE | Vol. 100, No. 9, September 2012



with up to 1000 new videos uploaded per day at peak
times, and it contains more than 1.25 million shots in total.

It showcases rich real-world event dynamicsVthere are

multiple national protests, large-scale conflicts between

supporting parties, and various incidents, which generated

massive international attention. More detailed dataset

information, analysis, and observations on other topics are

available in [47].

An examination of the dataset offers some interesting
insights. The behavior of remixing and reposting is quite

dominantVover 58% of the videos and 70% of the authors

contain visual memes for Iran3. Video popularity, however,

is a poor indicator of how likely a video is to be reposted. In

the Iran3 set of more than 23 K videos, for example, the

four most popular videos have no memes and have nothing

to do with the topic, and likewise for 7 of the first 10. One

has to get beyond the first 1600 most popular videos before
the likelihood of having memes passes the average for the

dataset, at about 0.58 (see Fig. 8, middle). There are several

reasons for this mismatch. Among the video entries

returned by the YouTube search API, the most viewed

are often not related to the topicVthe one with the highest

view-count is a music video irrelevant to Iranian politics or

the specific query words we used. Such videos also tend to

be part of a production (e.g., promotion for a song), which
bears lesser value for reposting and reinterpretation.

Moreover, there is a strong Brich-get-richer[ effect due to

content recommendations on YouTube, which tend to

promote popular videos regardless of their relevance to a

query. In short, video view-counts are a poor proxy for

importance to an event of interest, and visual memes

provide a different metric for relevance and important.

Let us analyze users via the author influence index (6)
on dataset Iran3. In Fig. 8 (right), we plot the total

diffusion influence �̂r versus the number of videos pro-

duced by each author. We can see a few distinct types of

contributors. We call one type Bmaven[ (marked in red),

who post only a few videos that end up being massively

remixed and repostedVthis particular maven was among

the first to post the murder of Neda Soltan10 and one other

instance of a student murder on the street. The former
became the icon of the entire event and the face of Iranian

struggle during this turbulent period. A second group can

be dubbed Bcitizen buzz leaders[ (circled in green), who

tend to produce a large number of videos with high total

diffusion factor, yet relatively low influence per video.

They aggregate notable content and come relatively late in

the timeline, which is penalized by the influence factor.

We examined the YouTube channel pages for a few authors
in this group, and they seem to be voluntary activists with

screen names like Biranlover100.[ Some of their videos are

slide shows of iconic images and provide good summaries.

Note that traditional news media, such as Al Jezeera

English, Associated Press, and so on (circled in gray), are

ranked rather low for this topic, partially because the Iran
government severely limited international media partici-

pation in the event, and most of the event buzz was driven

by citizens.

In this section, we examined the interplay between

content and community through multiple case studies:

extraction of latent structure, interestingness of conversa-

tions, and tracking of visual memes. The first two analyze

the effect of a rich media object on user activities, includ-
ing tagging and commenting, while the last study uses

content analysis to study how people influence each other.

Analysis of photographs from the same event, similar

queries issued at the same time, and similar click streams

on retrieval results are some of the other methods to

understand social interaction.

Understanding social interactions around media ob-

jects is beneficial. Social interactions derived from multi-
media content can in turn help improve solutions to a large

class of content analysis problems such as video annota-

tion, image tagging, or search reranking. We can add the

social interactions derived from multimedia content to the

existing social graphs in other modalities (such as friend-

ship, likes, and comments) and use them to better under-

stand social structures. Example of such social analysis

include estimating influence, ranking users, categorizing
user roles.

III . RELATED WORK

We now discuss research in support of answering the three

key questions: determining social interaction context,

finding value for media objects, and what media object use

in social context tells us about people.
The answers to questions on social interaction context

are most closely related to work on community discovery.

Identification of communities as cohesive subgroups of

individuals within a network, where cohesive subgroups

are defined as Bsubsets of actors among whom there are

relatively strong, direct, intense, frequent, or positive ties[
[51], is an important research topic in social network

analysis. This is because social network analysis does not
presume a prior solidary local bounds that organize

people’s interpersonal relationships. Newman [52] gives

a broad review of important findings and concepts in

network research, including degree-distribution, small-

world effect, and community structure.

Community detection algorithms identify the modular

structure of a network, where nodes represent individuals

and where links represent the interaction or similarity
between individuals. Intuitively, modules or communities

are subsets of nodes within which the links are dense and

between which the links are sparse [53], [54]. Many graph-

based approaches, including those based on analysis of

cliques, degree, and matrix-perturbation, have been

proposed to extract cohesive subgroups from social

networks [51]. Examples of detected communities range10http://en.wikipedia.org/wiki/Death_of_Neda_Agha-Soltan
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from communities of scientists working on similar areas of
research [53] to authors of home pages who have some

common interests [55]. See Fortunato [56] for a compre-

hensive review.

The algorithms for community identification are

closely related to the family of algorithms for clustering.

The goal of clustering is to discover groups of similar

objects within the data. Each cluster (i.e., group) consists

of objects that are similar to one another within the same
cluster,and dissimilar to the objects in other clusters.

Community identification can be considered to be

clustering in the sense that it involves a distance function

and a clustering objective function and generates a

clustering assignment for each person and object to a set

of clusters. While there are similarities between commu-

nity extraction and clustering analysis, community extrac-

tion focuses on the pairwise relationship between network
nodes and, more generally, the network topology.

Research on community discovery includes measures

for quantifying community structure (including the

clustering coefficient [52]) and techniques for community

extraction. A variety of methods for extracting community

structure have been proposed including modularity-based

methods [54], flow- or graph cut-based methods [57],

spectral clustering or graph Laplacian-based methods [58],
and information-theoretic models [59]. Community ex-

traction techniques have been used to study dynamic

properties of communities in empirical networks [60].

Clustering-based methods for community detection need

to account for interactions with the following character-

istics: social context, temporal coherence, and contextual

coherence. These characteristics are consistent with

Garfinkel’s observation on the necessity of mutual aware-
ness [61] and Jones’ work on the virtual community [62].

We can incorporate social context with two concepts:

mutual awareness and transitive awareness. Mutual

awareness refers to a relationship developed through

observable interactions between two people. Mutual

awareness can be asymmetricVthe asymmetry can arise,

for example, when one person is a celebrity or is in touch

with more people than the other. In addition, mutual
awareness strength can change over time. Transitive

awareness refers to a relationshipVcomputed via a mutual

awareness measureVbetween two connected people on a

network. We can compute transitive awareness between a

connected pair of users on a social network graph, through

mutual-awareness expansion. We can use a random-walk-

based distance, with an efficient method for mutual

awareness expansion, to extract communities [63].
In order to analyze the additional value brought on by

the social interaction context, we need to understand prior

work on dynamic properties of media objects, how to

extract themes, and how to analyze communication.

There is significant prior work on the analysis of dyna-

mic properties (e.g., associated tags on a media object) of

media objects. In [38], Dubinko et al. visualized the

evolution of tags within Flickr and presented a novel
approach based on a characterization of the most salient

tags associated with a sliding interval of time. Kennedy et al.
in [64] leveraged the community-contributed collections

of rich media (Flickr) to automatically generate repre-

sentative views of landmarks. Their work suggests that

community-generated media and tags can improve access

to multimedia resources. In [65], Smith et al. explored

the search methodologies of rich social media content
by utilizing the social context of users, including both

their personal social context (their friends and the

communities to which they belong) and their commu-

nity social context (their role and identity in different

communities). Singh et al. [66] analyzed and modeled

user contributions in social media sites to study asso-

ciated dynamics. Their model was based on the idea of

users as rational selfish agents and considered domain
attributes like voluntary participation, virtual reward

structure, and public sharing to model the dynamics of

this interaction.

Theme extraction from dynamic web collections is a

well-studied problem [37], [67]–[69]. In research related

to topic models [70], the goal is to discover patterns in text

corpora. In [70], the authors propose a generative model

for documents using topics; topics in turn are represented
with word distributions. Dynamic topic models [71] have

been proposed to capture the evolution of topics in a

sequentially organized corpus of documents. In [67], the

authors study the problem of discovering and summarizing

evolutionary theme patterns in a dynamic text stream. The

authors modify temporal theme extraction in [37] by

regularizing their theme model with timestamp and

location information. In [68], the authors use a dynamic
probability model to predict discussion topics in online

social networks. Recently, Iwata et al. [72] developed an

online topic model for sequentially analyzing the time

evolution of topics in document collections.

Researchers have also studied topical and structural

analysis of commentary on social websites as well as on

social media communications platforms, including

Twitter. Gomez et al. [73] analyze several social network
properties of communication activity on the website

Slashdot. They study the structure of discussion threads

using a radial tree representation. The findings show that

nesting of conversations on Slashdot exhibits strong

heterogeneity and self-similarity. Honeycutt et al. [74]

investigated conversations on Twitter, with special atten-

tion to the role played by the @ sign. Naaman et al. [75]

analyzed message content from individuals on Twitter
with the goal to categorize individuals into those who focus

on the Bself[ versus those who are driven more by sharing

information.

The analysis content in social media platforms,

including how content has been shared and reused, has

received significant attention. YouTube has been the focal

platform for many social network monitoring studies. The
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first large-scale YouTube measurement study [76] charac-
terized content category distributions and tracked exact

duplicates of popular videos. Benevenuto et al. studied

video response actions on YouTube [77] using metadata,

and De Choudhury et al. monitored user comments to

determine interesting conversations (see Section II-B).

Recently, early views of YouTube videos have been used to

predict ultimate popularity, characterized by view-counts

[78]. Quoting, duplication, and reposting are popular
phenomena in online information networks. One well-

known example is the use of the RT (retweet) tag on

Twitter [40], [41], where users often quote the original

message verbatim, having little freedom for remixing and

context changes within the 140-character limit. Meme-

Tracker [79] is another example that tracks the lifecycles

of popular phrases among blogs and news websites. Prior

studies have shown that image copying and editing can be
tracked over the Web and used to enhance retrieval results

[80], the frequency of video reuse can be used as an

implicit video quality indicator [81], and that segmenting

videos into small pieces enhances media sharing experi-

ences [82].

Tracking near-duplicates in images and video has been

a problem of interest since the early years of content-based

retrieval. Recent attention on this problem has been on
user-dependent definitions of duplicates [83], speeding up

detection on image sequence, frame, or local image points

[84], and scaling out to web-scale computations using large

compute clusters [85]. We note, however, that most prior

work in this area is concerned with optimizing retrieval

accuracy of individual frames or sequences rather than

tracking large-scale duplication behavior.

IV. EMERGING RESEARCH AREAS

The difficulty in acquiring data implies that much of the
research on social network analysis is from small

datasets.11 Robust sampling of social graphs that preserves

the data characteristics of interest is therefore an

important technical problem.

The volume of the data and the speed with which the

data changes pose significant challenges for efficient data

analysis. Furthermore, a framework for extracting useful

information from social media data needs to scale also
against the number of facets and diversity of facets.

Consequently, a scalable framework for managing volumi-

nous user data in a form amenable for large-scale data

analysis is a key step to any significant technical advances

in social media understanding.

In the next two sections, we review recent work to

address these two issues. In Section IV-A, we discuss

robust sampling of network data [86], and in Section IV-B,

we discuss the use of compressive sampling in efficiently
monitoring changes to social media streams [87].

A. Robust Data Sampling
Robust sampling of social networks is closely related to

the problem of Bsubgraph sampling.[ Snowball sampling
[88] is a subgraph sampling method commonly used in

sociology studies; random walk sampling [89] is another

well-known method. Recent work has investigated sam-
pling of large-scale graphs, with a focus on recovering

topological characteristics including degree distribution,

and path length. Prior work [90] has also investigated the

influence of missing data on measurement of social

network properties. Leskovec et al. in [91] and [92], for

example, focus on empirically observed static and dynamic

graph properties such as densification and shrinking

diameter. The authors study different sampling methods,
including random node/edge selection and random walk,

for recovering topological properties. They also introduce

the forest fire sampling strategy, in which a forwarding

probability is used to sample a subset of neighbors of the

current traversed node.

There are two limitations of topology-based sampl-

ing methods. First, topology-based network sampling

methodsVapplication-independent and designed to
recover the topological characteristics of the particular

social graphVignore information content. Online social

media feature extensive activity dependent on the shared

content. Additionally, social media activity exhibits

correlation with external events [27]. Hence, pure

topology-based sampling is unsuitable for studying social

processes dependent on the relationship between the

shared content and external user actions and events.
Second, prior sampling research does not consider the

contextual information of the users in the social graph,

including geographical location, or rate of change of user

status.

To understand the influence of different sampling

strategies on social network analysis, we conducted a

preliminary study [86] on the effects of different sampling

methodologies on a well-studied social phenomenon:
information diffusion. Diffusion has been studied in the

context of medical and technological innovations [93],

cultural bias [5], [94], and understanding information

roles of users [95], [96].

Our approach comprises two steps. First, we utilize

several popularly used sampling techniques such as

random sampling, degree of user activity-based sampling,

forest-fire, and location-attribute-based sampling to ex-
tract subgraphs from a social graph of users engaged in a

social activity. Second, these subgraphsVone for each

sampling methodVare used to study diffusion character-

istics with respect to the properties of the users (e.g.,

participation), structural (e.g., reach, spread), and tempo-

ral characteristics (e.g., rate), as well as relationship to

events in the external world (e.g., search and news trends).

11While Twitter datasets in the millions of tweets are common, the
number is dwarfed by the total number of tweets on Twitter: �17 billion
per year.
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Our experiments [86] reveal that methods that incorpo-
rate both network topology and user-contextVactivity,

attributes related to Bhomophily[ (e.g., location)Vare able

to better explain diffusion characteristics compared to naBve

methods (e.g., random or activity-based sampling) by a large

margin of �15%–20%. Moreover, we can show that for

moderate sample sizes (30%), these hybrid methods can

better approximate the measurements relating to informa-

tion diffusion than can pure topology-based methods.
Our primary observation from the results is that sam-

pling influences the discovery of diffusion in a nontrivial

manner. Our observations are in contrast to prior empirical

observations [92] that ignore contextual information. We

found that topology-based sampling techniques that

additionally incorporate user context (e.g., activity or

location) perform better than pure topology-based sam-

pling. Interestingly, pure context-based techniques lever-
aging location perform better than activity-based or

random sampling. Themes vary in their diffusion char-

acteristics. Hence, content has significant influence on

sample quality. Studies of diffusion related to US political

events, for example, would benefit more from samples

chosen based on location than only on graph topology. On

the other hand, if the interest is related to a recent

technological event, such as release of an electronic gadget,
one can benefit more from sampling techniques based on

both topology and activity.

Our results are promising, but are limited by the scope

of our dataset, which itself is based on a sample, and also

limited to a single phenomenaVdiffusion. Nevertheless,

we believe that our empirical observations can form the

basis of investigation of other phenomena as well, includ-

ing community discovery, because most social processes
are affected by both topology and context.

Sampling is a well-known problem in the signal pro-

cessing community. However, many open questions

remain for social networks, including sampling strategies

to preserve properties of content in the sample as well as

determining a relationship between the social dynamics

and the sampling strategyVakin to the relationship

between bandwidth and sampling frequency.

B. Real-Time Temporal Monitoring
To facilitate large-scale data management and analysis,

we proposed SCENTVScalable Compressed Domain Analysis
of Evolving TensorsVa framework for monitoring the

evolution of multifaceted (also called multirelational)

social network data [87]. In particular, we focused on the

problem of change detection, a key step in understanding the

evolution of patterns in multirelational social media data.

We model the social data in the form of tensor12

streams [97], [98] and consider the problem of tracking

the changes in the spectral properties of the tensor over
time. Tensor decompositions have been used in a variety of

applications in data mining. Chi et al. [97] applied the high-

order singular value decomposition (HOSVD, a version of

the Tucker decomposition) to extract dynamic structural

changes as trends of the blogosphere. Sun et al. [98]

proposed methods for dynamically updating a Tucker

approximation, with applications ranging from text analysis

to network modeling. Tensor decomposition is computa-
tionally expensive, and scalable solutions have been

proposed [99], [100]. Incremental tensor decomposition,

while being faster than regular tensor decomposition, has

exponential complexity [98].

There is a significant body of work devoted to web data

reduction. Methods based on ranking algorithms [101],

[102], spectral clustering or graph partitioning [103],

and probability mixture model [104] have been proposed
for web data reduction. Existing work in lossless social

graph compression [105] can reduce storage complexity to

3–4 bits per edge. Work on graph sampling seeks to reduce

the data while preserving network statistics and topolog-

ical properties. [90], [106].

There are two major differences between prior re-

search and the techniques for monitoring social media

data, especially within the context of change detection.
First, at each time instance, the relevant data forms a

(multirelational) graphVin contrast to a vector or matrix

of intensity values. Second, the graph is very large and

dynamic. Therefore, change detection in social media data

requires techniques that can efficiently detect structural

changes in very large graphs.

In our work [87], we introduced an innovative

compressed sensing mechanismVthereby reducing the
computational cost of detecting significant changes in

tensor streamsVto encode the social data tensor streams

in the form of compact descriptors. We have extended

recently developed Compressive Sensing (CS) theory to

tensor stream analysis. The CS theory shows that, under

certain conditions, a signal can be faithfully reconstructed

using fewer number of samples than predicted by the well-

known Nyquist sampling theorem [107]–[109]. CS theory
has been primarily used in the analysis of 1-D and 2-D

continuous time signals, and the basic compressed sensing

theory assumes the availabilities of a sparse data basis and a

constant-time random sensing mechanism. Neither as-

sumption holds for social media tensors. The key contri-

bution of our work is to create and use random sensing
ensembles to transform a given tensor into a compressed

representation that implicitly captures the spectral char-
acteristics of the tensor (i.e., the so called core tensor

coefficients [110]). The length of this compressed repre-

sentation is only OðS � log N=SÞ, where N is the size of data

tensor and S is a small approximation rank. We show that

the descriptors support very fast detection of significant

spectral changes in the tensor stream, which also reduce

data collection, storage, and processing costs.12A tensor is a multidimensional array.
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We proposed three recovery strategies to incrementally
obtain core tensor coefficients either from the input data

tensor or from the compressed representation. These

strategies can be used in different situations based on the

availability of data and resources. We demonstrated the

efficiency of SCENT on monitoring time-varying multi-

relational social networks on real-world social media data

as well as synthetic datasets. The experimental results

show that our SCENT monitoring procedure is able to
maintain an approximated tensor stream with high

accuracy (above 0.9 in terms of F1-score), low errors

(under 1.1 relative to baseline tensor decomposition in

real-world datasets), and low time cost (17 X–159 X faster

for change detection).

V. CONCLUSION

Social networks, with attractive interactive design and

sophisticated media sharing and notification features,

make it easy for people to stay in touch with friends and

family. The result is an unprecedented growth in social

networks with an accompanying increase in information.

Social networks like Twitter and Facebook, for example,

have a significant real-world impact, including impact on

offline behavior such as retail products consumption and
political participation.

In this paper, we have examined the interrelationship

between content and social context through the prism of

three key questions. First, how do we extract context in

which social interactions occur? Second, does social

interaction provide value to the media object? Finally,

how does social media facilitate the repurposing of shared

content and engender cultural memes? To understand
these questions, we examined three cases. First, to

understand the context in which social interactions occur,

in Section II-A, we examined the idea of interaction
semantics. Interaction semantics, which arise from social

interaction around and on media objects, are distinct from

media semanticsVinstead of asking about the meaning of

the media object, we are interested in the semantics

arising from social interaction around media objects. We
can use interactional semantics to address familiar

problems such as tagging new media objects and media

organization. Second, in Section II-B, we examined the

interestingness of conversations. We were motivated by the

observation that community members return to repeatedly

participate in a conversation around the same video. The

key idea we explored is that interesting people make for

interesting conversations. A measure of conversational
interestingness can be applied to the familiar problem of

video ranking. Finally, we defined and studied properties

of visual memes. Visual memes help us understand
community participants share and repurpose content.

The analysis can reveal relationships between community

members and their influence. In particular, visual memes

help us understand the different roles that people play in

content-sharing networks.

We briefly examined two emerging research areas:

sampling bias and data diversity. The volume of the data

and the speed with which the data changes pose significant
challenges for efficient data analysis. Furthermore, a

framework for extracting useful information from social

media data needs to scale also against the number of facets

and diversity of facets.

Robust sampling methods have primarily focused on

topological sampling to recover the topological character-

istics of the particular social graph, while ignoring the

information content, or pertinent contextual information.
Hence, pure topology-based sampling is unsuitable for

studying social processes dependent on the relationship

between the shared content and external user actions and

events. We discussed that real-time monitoring of social

media data is very challenging due to several reasons. First,

at each time instance, the relevant data forms a (multi-

relational) graphVin contrast to a vector or matrix of

intensity values. Second, the graph is very large and
dynamic. Therefore, change detection in social media data

requires techniques that can efficiently detect structural

changes in very large graphs.

Social networks are a fertile ground for interesting

questions related to media semantics. For the first

timeVvia social networks including TwitterVwe are

able to instrument social activity at a very large scale.

The unprecedented data scale and our newfound ability to
collect data over extended time periods result in new

questionsVemergence is one of several interesting ques-

tions. Much of the current work on multimedia semantics

implicitly assumes that multimedia semantics are staticV
that is, the meaning of concepts remains unchanged. New

concepts, however, constantly appear such as BiPhone[ as

an example. Prior to 2007, this word would have been

meaningless, yet in 2011, the word is ingrained in our
contemporary culture. BPwn[ (to own) is another word

that is newVit emerged in online social networks and is

used by young people.

While we recognize that semantics are an emergent arti-

fact of human activity, data from social networks have helped

us examine this issue in great detail, for the first time.

Through data collected from social networks, we are in a

position to understand not only emergence, but also how
meaning evolves with time. These research directions com-

plement substantial current work on concept learning. h
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