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ABSTRACT
We propose effective multimodal fusion strategies for video search.
Multimodal search is a widely applicable information-retrieval prob-
lem, and fusion strategies are essential to the system in order to
utilize all available retrieval experts and to boost the performance.
Prior work has focused on hard- and soft- modeling of query classes
and learning weights for each class, while the class partition is ei-
ther manually defined or learned from data but still insensitive to the
testing query. We propose a query-dependent fusion strategy that
dynamically generates aclassamong the training queries that are
closest to the testing query, based on light-weight query features de-
fined on the outcome of semantic analysis on the query text. A set of
optimal weights are then learned on the dynamic class, which aims to
model both the co-occurring query features and unusual test queries.
Used in conjunction with the rest of our multimodal retrieval sys-
tem, dynamic query classes performs favorably with hard and soft
query classes, and the system performance improves upon the best
automatic search run of TRECVID05 and TRECVID06 by34% and
8%, respectively.

1. INTRODUCTION

In this paper we investigate effective fusion strategies for multi-
modal video search. Multimodal search is a problem widely applica-
ble in real-world information-retrieval tasks, such as web search,
meta-search on text documents, searching personal photos, broad-
cast video collections, and so on. Heremultimodalrefers not only
to multiple ranked lists from multiple retrieval experts, but also to
multiple query representations such as having both text descriptions
and example images in the query. Prior work has shown that ef-
fectively combining ranked lists generated from multiple represen-
tations and multiple retrieval experts boosts retrieval performance
since different retrieval experts tend to have varying performance on
(1) different documents in the database (2) different queries. The
first property leads to the performance gain for weighted combina-
tions of rank lists [1]; the latter leads to improvements when tuning
the combinations strategies with the input query, which emerge as an
active research topic in the multimedia community [2, 3, 4, 5].

In most prior work, a set of weights are pre-learned on a training
corpus using manually-defined query classes [2, 3] or learned from
data from the training queries and their relevance information [4, 5].
A new query would be assigned a set of weights depending on which
training query class(es)/clusters it maps to. These approaches focus
on the frequent query classes and types, and assume that each query
class or cluster can be modeled separately. Note that the co-existence
of different query classes or aspects may have non-linear effect on
the weight configuration, and the properties of rare queries are usu-
ally lost in one or more distant bigger clusters. We propose joint
query matching and weight optimization with dynamically formed
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“query classes/clusters” to overcome these two difficulties, where
such clusters are composed of the nearest neighbors of the incoming
query in the query feature space. When used in conjunction with the
rest of our multimodal retrieval system, dynamic query classes out
perform hard and soft query classes, and the system performance
improves upon the best automatic search run of TRECVID05 and
TRECVID06 by34% and8%, respectively.

Section 2 gives an overview of our multimodal video search
system. Section 3 discusses several schemes for optimizing com-
bination weights. Section 4 describes the design for eachuni-modal
retrieval engine, optimized separately for performance. Section 5
presents our experimental results, followed by concluding remarks
in Section 6.

2. MULTIMODAL VIDEO SEARCH SYSTEM

A component overview of our multimodal video search system is
shown in Figure 1. We take multimodal queries with text descrip-
tions and a few visual query examples. Our query analyses include
shallow parsing on the text and feature extraction on the visual ex-
amples, respectively. These analysis results are then passed on to
the text- and visual- based retrieval engines to generate two ranked
lists, as described in Sections 4.1 and 4.2. These analysis results are
also used to generate two more ranked lists by combining visual con-
cept detector results. The set of relevant concepts (and their weights)
for each query is determined by analysing the query text or the vi-
sual query examples as described in Section 4.3. The four available
ranked lists are then fused using linear combination with weight vec-
tor w, i.e.,f(w, q, d) =

P4
k=1 wkfk(q, d). Where query-dependent

weights are learned using techniques proposed in Section 3.

3. QUERY-DEPENDENT FUSION METHODS

We consider linear combination for multiple rank-lists. The weight
w usually depends on both prior believes on how good each retrieval
expert is, and the characteristics of the queryq, since not all queries
are answered equally well by any expert. Weight-tuning usually in-
volves three sub-tasks: (a) defining and computing query features,
as a basis for generalizing query tuning results to an unseen query,
(b) comparing queries, so that a new query can be matched to one or
more seen queries, and (c) searching for the optimal weights for one
or more of the training queries. We will first describe our query fea-
tures based on the semantic analysis of query text, following by a dis-
cussion of three query matching and weight-optimization schemes.

3.1. Query features from semantic annotation
Query text accurately describes the information need in a multimedia
query, it also serves as the sufficient criteria for the human judging
on whether or not a query is relevant. The visual query examples
usually serve to visualize the information need and help instantiate
the visual aspect of the search system. But compared to the relevance
decision from a human solely judged from query text, they neither
introduce new relevant documents nor limit the scope of the set of
relevant documents. Most prior work [5, 4] have found that multime-
dia queries are usually in a few meaningful and distinct dimensions,
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Fig. 1. Multimodal video search system overview.

whether pre-defined or discovered from data. Furthermore, which
dimensions each query belong to is often apparent from the query
text, such as seeking objects, scene, people, named-people, etc. We
analyze the query text in two steps: a semantic analysis is first per-
formed, and then query features are generated from these semantic
abstractions.

We use the PIQUANT [6] engine to tag the query text with more
than one hundred semantic tags in a broad ontology, designed for
question-answering applications on intelligence and news domains.
The set of tags cover person, geographic entities, objects, actions,
events, etc. For instance, ”Hu Jintao, president of the People’s Re-
public of China” would be tagged with ”Named-person, President,
Geo-political Entity, Nation”. Note that in this example, multiple
annotations lead to the same visual meaning (”Named-person, Pres-
ident” → person), while some annotations may not have direct vi-
sual implications (”Nation”). Hence ade-noisingstep is needed to
map these annotations into a few distinct visual categories. We de-
sign such a mapping manually from all semantic tags to seven binary
feature dimensions, intuitively described asSports, Named-Person,
Unamed-Person, Vehicle, Event, Scene, Others. This mapping con-
sists of a few dozen rules based either on commonsense ontological
relationship, e.g., a semantic annotation ”Person:NAME” leads to
NamedPerson, or on frequent co-occurrence, such as ”Road” implies
Vehicle.

The first of these two steps ensures that we are robust to the vari-
ations and noise in natural language, the second step enables us to
summarize the semantic abstractions into a few visually meaningful
dimensions. Other text-based approaches [5, 4] may take different
routes to generate query features, but the outcome for most queries
is by and large similar.

3.2. Query matching and weight optimization
Having mapped all queries to a semantic query feature space, we
turn to the remaining two sub-tasks: (b) query mapping and (c)
weight optimization. The rest of this subsection describes three
approaches to completing them, either sequentially or jointly. The
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Fig. 2. Illustrative example for the query matching schemesQclass,
QcompandQdyn. See Section 3.2 for explanations.

first one (Qclass) follows the sequence (b)→(c), it settles on a few
classes/groups and then optimizes weights on each group, as com-
monly practiced by prior work [4, 2]. The second one (Qcomp) ex-
tends (b) inQclassto overlapping components, where weights are
learned for each component and aggregated for a new query, in sim-
ilar spirit as [5]. We then propose the third approach (Qdyn that
generalizes the above by joining (b) and (c) with on-the-fly query
mapping and weight optimization. It is also possible to do (c)→(b),
i.e., learn the best weights for each training query, map new queries
to their nearest neighbor and inherit the weights. However this is
highly susceptible to noise in each individual query, and we found it
of inferior performance in practice.

Qclass: query-class dependent weights. We assign each query
into one of seven classes, one for each query feature in Section 3.1.
Weights for each class are taken as the set that maximized the aver-
age performance metric for all training queries in the class. For non-
differentiable performance metrics, this can be done by either ex-
haustive search on a few dimensions, or heuristic search with restart
on a few dozen dimensions.

Qcomp: query-component dependent weights. This extendsQclass
by allowing overlap in the seven query features. Optimal weights are
similarly learned over the set of training queries with this component
by maximizing the average performance metric. Weights for a new
query is computed as averaging the optimal weights among all of its
active components.

Qdyn: dynamically generated query weights. Each new query is
mapped to a small set ofneighborsamong the training queries (with
inner product of query features serving as the similarity measure),
and the weights for the unseen query are obtained by maximizing
the average performance on the current set of neighbors. Nearest
neighbor mapping performs well in our case, since the query feature
space is relatively clean and rather low-dimensional.

Figure 2 illustrates the distinctions among the three schemes,
where diamonds denote the queries and filed blocks of different color
denote different query features, such asperson, event, event. For
Qclass, we classify queries based on their dominant attribute, e.g.,
personfor the test (orange) query and the three training queries to the
left. The learned weights (blue arrow) based on these three queries
only omits thescenenaspect of the testing query hence resulting in
sub-optimal weights.Qcompalleviates this problem by modeling
the co-occurrences of different query aspects/features, this is done
by learning weights for each feature separately (the blue and red
arrows) and then use their aggregate for the test query (yellow ar-
row). This is better thanQclassbut could still result in in accurate
weights since the weights are influenced by dissimilar training fea-



tures such asevent. Qdyn improves upon bothQclassandQcomp
by directly modeling the co-occurring aspects of the testing query,
it then obtains weights from a set of training queries with the same
co-occurring query features.

4. MULTIPLE SEARCH EXPERTS

In this section we summarize each of the text, model and visual uni-
modal retrieval component as shown in Figure 1. Details can be
found in [7].

4.1. Text-based retrieval
Our text retrieval system was based on the JuruXML semantic search
engine [8], a word-frequency based retrieval system with a number
of native query expansion functionalities including pseudo-relevance
feedback and lexical affinities (i.e., word co-occurrence in close prox-
imity). We build an index of the TRECVID collections from the
speech transcript (ASR) or its machine-translated version into Eng-
lish. We time-align the text with the video to generate two index
variants: (1) A shot-based baseline index containing words in each
sub-shot and five preceding sub-shots aligned with the speaker and
phrase boundary that came with the ASR output. (2) A story-based
index that takes the words within news story boundaries aligned
with speaker/phrase boundaries—this serves to increase recall. In
TRECVID06, we use the shot-based index to re-rank shots within
stories retrieved using the story-based index, and this generates nearly
30% improvement over using shots alone.

4.2. Visual-based retrieval
The visual based retrieval system is based on the hypothesis that
combining two uncorrelated approaches benefits the performance [9],
as it combines the high recall of multi-example content based re-
trieval (MECBR) with high precision of support vector machine (SVM)
classifiers. For MECBR, each example was used independently as
a CBR query and results were fused using the OR logic (i.e., MAX
aggregation of confidence scores). Other parameters (e.g., score nor-
malization) were fixed globally on a feature-dependent but query-
independent basis. The realization of SVM discriminative modeling
techniques for the search task faces two challenges: very small num-
ber of distinct positive examples and no negative examples. We over-
come these challenges in two steps: (1) sampling pseudo-negative
data points from the video corpus so that they model the test space
well, (2) fusing number of primitive SVM predictions trained on the
same set of positives and different pseudo-negative sample data us-
ing AND logic so that the final SVM model corresponds to the in-
tersection of several positive hyper-spaces derived from the compo-
nent SVM models. Both approaches were used with five features –
global color correlogram, color moments grid, global co-occurrence
texture, wavelet texture grid and semantic model vectors. This ap-
proach results in a more robust prediction from the visual query ex-
amples, as described in [7].

4.3. Model-based retrieval
Model-based retrieval applies the results from off-line concept detec-
tion and text analysis to on-line queries by triggering concept mod-
els with different weights. Given an arbitrary text- or example-based
query, the goal is to identify which visual concepts, if any, are rele-
vant to the query, and to what extent (i.e., what should the weights
for each concept be in a weighted fusion scheme). Once the final
list of most relevant concept models and weights are determined, we
fuse the corresponding concept detection result lists using weighted
average score aggregation to generate a final ranked list of shots. For
all model-based retrieval purposes we used our detectors for the 39
LSCOM-lite concepts [10].

We employ two query-to-model mapping techniques to generate
model-based ranked lists. The first one, code-namedModelSeman-
tic, applies concept detection to the visual query examples to gener-
ate model vector features. These features are then used as a content-
based features for retrieving shots using the same light-weight learn-
ing methods used for visual retrieval (Section 4.2). The second one,
codenamedModelTxt, determines query-to-concept relevance from
the query text alone. This is done using a number of different ap-
proaches, including: WordNet-based text-to-model expansion, on-
tology mapping from semantic annotations in Section 3.1 to a set of
concept detectors to trigger via manually defined rules, and pseudo-
relevance feedback where the parameters being tuned through the
feedback are the weights for the concepts in the lexicon. The ranked
lists from all of the above are then averaged to generate one text-
based model run.

5. EXPERIMENTAL RESULTS

We evaluate the search fusion approaches on the TRECVID-2005
and 2006 test corpora and query topics. The two collections contain
401 broadcast news video programs from six U.S., Arabic, and Chi-
nese channels, recorded in the fourth quarter of 2004 and 2005, re-
spectively. Each video is 30 minutes to 1 hour each, and the two col-
lections are segmented into 125,249 shots total. Each video comes
with a speech transcript obtained through automatic speech recogni-
tion, as well as machine translation for the non-English sources. We
use Average Precision (AP) at depth 1000 to measure performance
on a specific topic, and Mean Average Precision (MAP) to aggregate
performance results across multiple topics. Average Precision is the
official performance metric adopted by TRECVID [10], which es-
sentially represents the area under the precision-recall curve. Each
collection has 24 NIST-distributed queries with pooled ground-truth—
we learn the fusion weights on one corpus and apply the weights to
the other.

The query-dependent fusion approaches are compared against
(1) the query-independent baseline (Qind) where a set of optimal
weights are obtained from all training queries and then applied to
any new query, and (2) anOraclewhere optimal weights (and hence
performance) are obtained for each test query by exhaustive search.
The Oracle represents the performance ceiling with the current set
of uni-modal retrieval experts.

Figure 3(a) shows the MAP statistics for both sets.Qdynand
Qcompout performsQclassin general. They also out-performQind
by a margin (results on the three sports queries were unreliable since
it over-fitted on the only sports query (195) in TRECVID06). As also
shown in Figure 3(c), the MAP, as well as over half of the queries
are approaching theOracleperformance. The MAPs are already8%
and34% better over the best MAP among TRECVID06 and ’05 au-
tomatic retrieval runs of0.0867 and0.1190, respectively. Where
the improvements on the TRECVID’06 set comes from the novel
fusion approaches with the same uni-modal runs, and the improve-
ment from the TRECVID’05 set comes from both the fusion and
enhanced uni-modal runs compared to a year ago. Note that given
the narrow margin between the baseline and the oracle, our approach
shows strong promise.

We can see from Figure 3(d) that the assigned query features
concur with our intuitive interpretation of the queries. Furthermore,
these queries are clearly partitioned into a few groups represented by
one feature (e.g,NamedPerson) or the co-occurrence of several fea-
ture dimensions (e.g,UnamedPersonandScene). Not coincidentally,
similar queries in Figure 3(d) have similar weights in Figure 3(b).
The automatically learned weights reflect the performance of each
retrieval expert on different queries, such as putting more weights on
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Fig. 3. Result comparison for query-dependent fusion. (a) MAP on TRECVID05 and ’06 on all queries and non-Sportsqueries (21 on ’05,
23 on ’06). (b) Learned weights on TRECVID06 set forQdynandQcomp, where bold query ids denote improved APs forQdynoverQcomp.
(c) AP comparison for all queries in TRECVID06. The tint in theQdynmarkers denotes their proximity to theOracle line (percentage in
log-scale). (d) Visualization of the query features on the TRECVID06 set. Note that the ordering of all query-ids are according to maximum
feature similarity of neighbors in (d).

Text for NamedPersonqueries, more weights on Models forScene
andEvents, especially when the scene or event is in our visual on-
tology. For instance, improvements in queries 184, 189 and 192 are
accompanied by an increase in weights forModelSemanticand de-
crease inText and ModelLexical, since ”computer display”, ”suits
and flags”, and ”kiss on cheek” are visual concepts rarely mentioned
in news anchor speech, and their relation to the concept detectors
are better found via visual ontological relationships instead of the
generic ontology in WordNet.

These observations demonstrate clear performance gains over
the baseline, explain the gains from insights in the data, and show
the promise of the proposed query fusion schemes for extending to
larger query sets, more complex query feature spaces, and more uni-
modal retrieval experts.

6. CONCLUSION

We present novel strategies for fusing outcomes from unimodal ex-
perts in a multi-source, multi-expert retrieval system. We investigate
various query-dependent fusion strategies that dynamically gener-
ates aclassamong the training queries that are closest to the test-
ing query, based on light-weight query features defined on the out-
come of semantic analysis on the query text. We have evaluated the
proposed algorithm on large collections of multi-lingual broadcast
news videos. We have observed that dynamic query classes and soft
query classes outperform hard query classes, and the system perfor-
mance improves upon the best automatic search run of TRECVID05
and TRECVID06 significantly. Future work may include extensive
analysis of dynamic query classes on a large query collection, and
extending the query feature space to accommodate media collections
of other genres such as personal photo/blog, sports videos or online
video shares.
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