
CoCoOn: Cloud Computing Ontology for IaaS
Price and Performance Comparison

Qian Zhang1[0000−0001−7206−4722], Armin Haller1[0000−0003−3425−0780], and Qing
Wang1

Australian National University, Canberra, ACT 2601, Australia
{miranda.zhang,armin.haller,qing.wang}@anu.edu.au

https://cecs.anu.edu.au/

Abstract. In this paper, we present an OWL-based ontology, the Cloud
Computing Ontology (CoCoOn), that defines concepts, features, at-
tributes and relations to describe Cloud infrastructure services. We also
present datasets that are built using CoCoOn and scripts (i.e. SPARQL
template queries and web applications) that demonstrate the real-world
applicability of the ontology. We also describe the design of the ontology
and the architecture of related services developed with it.

Keywords: ontology · cloud-computing · semantic-web.

1 Introduction

Consumers of Cloud services often face the challenge of selecting the right ser-
vices for a given use case from a large set of heterogeneous offers. For example,
a 2013 survey from Burstorm1 shows that there are over 426 Compute and Stor-
age service providers with deployments in over 11,072 locations. This problem
is further aggregated by the non-standardized naming conventions on heteroge-
neous types of services (CPU, Storage, Network etc.) and features (Virtualisation
technology, SLA model, billing model, Cloud location, cost, etc.)

A unified model is needed as the foundation for data collection, reasoning
and analytics to fulfil the goal of a smart Cloud service recommendation To this
end, this paper presents our work on the Cloud Computing Ontology (CoCoOn)
version 1.0.1, which consolidates Cloud computing concepts: https://w3id.org/
cocoon/v1.0.1. The relevant code, data and ontology are made available online as
a Github project. Figure 1 depicts the IaaS related parts of CoCoOn v1.0.1. The
major additions of CoCoOn v1.0.1 compared to its previous version [18, 19] are
the Cloud service pricing and QoS modelling features. The datasets presented
in this paper are completely new, along with all the tools and code we used to
produce the data. When CoCoOn was first developed, there were little existing
domain ontologies to reuse, e.g. CoCoOn predated the development of PROV-
O2, schema.org, Unit of Measure Ontology (QUDT)3, SSN [6] and Wikidata

1 https://www.burstorm.com/platform/
2 https://www.w3.org/TR/prov-o/
3 http://qudt.org/

https://cecs.anu.edu.au/
https://w3id.org/cocoon/v1.0.1
https://w3id.org/cocoon/v1.0.1
https://github.com/miranda-zhang/cloud-computing-schema
https://www.burstorm.com/platform/
https://www.w3.org/TR/prov-o/
http://qudt.org/

2 Q. Zhang et al.

Service owl:Thing
NetworkService

IaaS

CloudService

StorageService

ComputeService

LoadBalancing

ForwardingRule

StaticIPService

DNSService

InternetService

LoadBalancingData Location

Region

excludesDestination
hasDestination

gr:UnitPriceSpecification

CloudServicePriceSpecification

gr:hasPriceSpecification

CloudStorageTransactionsPriceSpecification

CloudOSPriceSpecification

CloudNetworkPriceSpecification

gr:has
PriceS

pecific
ation

inRegi
on

QualityOfService

DataTransferSpeed Latency

SaaSPaaS

DNSQueryLatencyDownlinkSpeedUplinkSpeed

NetworkStorage

LocalStorage

SystemImage

Fig. 1. CoCoOn v1.0.1: IaaS related parts

[16]. The new CoCoOn makes use of those now popular existing ontologies.
Consequently, we also removed parts from the old CoCoOn ontology, which are
now covered by those standardised/popular domain ontologies. Also, to improve
the reusability, we added more rdfs:comments, metadata, documentation, and
use cases. Because our old site on purl.org is hard to maintain and update,
we moved the ontology and the documentation to GitHub. Also, we are using
w3id.org as the permanent URL service instead, which should lead to better
sustainability. More specifically, our model aims to facilitate the publication,
discovery and comparison of IaaS, by: i) Providing a schema for constructing
and executing complex queries; ii) Defining frequently referenced data as named
individuals; iii) Providing a unified machine-readable specification, as opposed to
provider-specific APIs and documentation. In addition to these, we demonstrate
the capabilities of our model by providing real-life usage datasets. Those datasets
include services from the Google Cloud and the Microsoft Azure Cloud, which
is detailed in Section 4.

2 Related Work

There are existing ontologies and models that focus on Web Services [12,14] and
their architectures [5] in general. Unlike these works, our model focuses on Cloud
computing Infrastructure as a Service (IaaS), i.e. its features and price models.

Previously, Parra-Royon and J.M. Beńıtez4 have developed two small Cloud
ontologies. The set of concepts and features they cover are limited and, as a re-
sult, their examples are limited to some simple cases. For instance, the examples

4 http://cookingbigdata.com/linkeddata/dmservices

purl.org
w3id.org
http://cookingbigdata.com/linkeddata/dmservices

CoCoOn v1.0.1 3

presented in Section 3.4.1 cannot be modelled with their ontologies. Furthermore,
the main reason why we did not use their “ccpricing”, “ccinstances”, and “ccre-
gions” ontologies is because they used global scope constraints (i.e. rdfs:domain
and rdfs:range) on most (if not all) of the classes and object properties, which
we believe are too restrictive and can cause unintended inferences.

K. Boukadi et al. have developed a Cloud Service Description Ontology
(CSO) [1], primarily for the modelling of Cloud service brokerage. Their price
model is rather simple and cannot model real-world scenarios. Their model and
data are also not available online anymore to be evaluated further or to be reused
in other contexts.

In the mOSAIC project [13], researchers proposed an OWL ontology for
Cloud services negotiation (i.e. between customers and providers) and composi-
tion (i.e. by an administrator). Their ontology is different in scope to ours.

K. Joshi et al. have developed an OWL Ontology for the Lifecycle of IT
Services in the Cloud [9]. This ontology provides models for the steps involved
in the phases of discovery, negotiation, composition, and consumption of Cloud
services. The modelling of Cloud service features is minimal, and their link to
an example of a storage service5 is no longer accessible.

In the area of Quality of Service (QoS) modelling, some papers have proposed
QoS ontologies (i.e. QoSOnt [2] and OWL-QoS [20]). However, they did not pub-
lish the actual specifications, and only figures/graphs were given. In this paper,
we provide formal modelling of QoS parameters and make it readily available
for general use (see Section 3.5).

Overall, all the models above have a different scope compared to our on-
tology. Our focus is on modelling concepts, features, attributes and relations of
Cloud infrastructure services. We do not consider models for orchestration [9,13]
nor brokerage processes [1] in this paper. Nonetheless, our ontology could be ex-
tended in this regard using the models proposed in these works mentioned above.
Furthermore, we have also developed tools for automatically adding semantics
to information from providers’ APIs. We have used existing ontologies whenever
fits, such as QUDT for defining price with currency values. For the full list of
ontologies we have referenced, see the online documentation.6

3 Concepts and Design of CoCoOn v1.0.1

3.1 New Features

In our previous work [17, 18], we proposed a simpler model describing concepts
of Cloud infrastructure services (IaaS).7 In this paper we have significantly ex-
tended the capabilities of our initial model, i.e. changes have been made to

5 https://www.csee.umbc.edu/∼kjoshi1/storage ontology.owl
6 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/

vocabularies.md
7 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/

revision history.md

https://www.infowebml.ws/rdf-owl/domain.htm
https://www.infowebml.ws/rdf-owl/range.htm
https://www.csee.umbc.edu/~kjoshi1/storage_ontology.owl
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/vocabularies.md
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/vocabularies.md
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/revision_history.md
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/revision_history.md

4 Q. Zhang et al.

classes, properties, relationships and axioms, with a strong focus on flexibility
and extensibility.

In Section 3.3, we describe the syntax, semantics, design and formalisation
of CoCoOn v1.0.1, and the rationale behind such design, and some usages. In
Section 4, we illustrate tools for mapping CoCoOn v1.0.1 to Google Cloud and
the Microsoft Azure Cloud services. These tools demonstrate the usability and
strength of the ontology we developed.

3.2 Design Rationale

The classes and properties are arranged according to subsumption hierarchies,
which represent the skeleton of the model and establish the basic relation-
ships between the components. Following the principle of minimal commit-
ment [3], we use guarded restrictions (i.e. owl:someValuesFrom) instead of do-
main range restrictions (rdfs:domain, rdfs:range). As such, the domain and ranges
are more permissive, keeping the model more flexible and extensible. We also
use qualified cardinality restrictions (e.g., exactly, owl:qualifiedCardinality; max,
owl:maxQualifiedCardinality) when there is a known cardinality restriction.

Most building blocks of IaaS services naturally correspond to OWL2 classes
(e.g., cocoon:CloudService, cocoon:ComputeService, and cocoon:StorageService),
object properties (e.g., cocoon:hasMemory, cocoon:hasStorage, and co-
coon:inRegion) and data properties (e.g., cocoon:numberOfCores). The more chal-
lenging part is to capture constraints posed by the possible combination of ser-
vices in IaaS in the models using ontological axioms. We next describe how
this can be accomplished using a combination of OWL 2 axioms and integrity
constraints.

We use Turtle syntax throughout our examples, and use Manchester OWL
Syntax when explaining the ontology specifications.

3.3 Cloud Service

The class cocoon:CloudService is the main class hosting our Cloud feature vo-
cabularies. We define a top level class cocoon:Service to be its parent, and make
it the union of schema:Service and sosa:FeatureOfInterest. So our Cloud service
definitions are compatible with the schema.org vocabulary [4] and the SOSA
ontology [8] from which we reuse terms.

Cloud services are usually classified into three categories: cocoon:IaaS, co-
coon:PaaS and cocoon:SaaS. Some examples of cocoon:SaaS are database as a
service, machine learning as a service, Google Cloud Composer, etc. Some ex-
amples of cocoon:PaaS are the Google App Engine, Heroku, etc.

We use gr:UnitPriceSpecification and its associated object property
gr:hasPriceSpecification to model price (see Section 3.4.1 for more details about
price specification). Existential quantifiers (i.e., some, owl:someValuesFrom) are
used on gr:hasPriceSpecification.

Note that, although some is the same as min 1, it is not the same as database
integrity constraints. We can still define valid Cloud services individuals without

http://www.w3.org/2002/07/owl#someValuesFrom
https://www.infowebml.ws/rdf-owl/domain.htm
https://www.infowebml.ws/rdf-owl/range.htm
http://www.w3.org/2002/07/owl#qualifiedCardinality
http://www.w3.org/2002/07/owl#maxQualifiedCardinality
https://w3id.org/cocoon/v1.0.1#CloudService
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#hasMemory
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#inRegion
https://w3id.org/cocoon/v1.0.1#inRegion
https://w3id.org/cocoon/v1.0.1#numberOfCores
http://protegeproject.github.io/protege/class-expression-syntax/
http://protegeproject.github.io/protege/class-expression-syntax/
https://w3id.org/cocoon/v1.0.1#CloudService
https://w3id.org/cocoon/v1.0.1#Service
http://schema.org/Service
http://www.w3.org/ns/sosa/FeatureOfInterest
https://w3id.org/cocoon/v1.0.1#IaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#SaaS
https://w3id.org/cocoon/v1.0.1#SaaS
https://w3id.org/cocoon/v1.0.1#PaaS
http://purl.org/goodrelations/v1#UnitPriceSpecification
http://purl.org/goodrelations/v1#hasPriceSpecification
http://www.w3.org/2002/07/owl#someValuesFrom
http://purl.org/goodrelations/v1#hasPriceSpecification

CoCoOn v1.0.1 5

a price specification. Under the open world assumption, missing information is
just not known but may exist, whereas, in databases (closed world assumption),
absence of information often assumes that information does not exist. This open
world assumption serves us well because we cannot guarantee that every service
will have a price specification. There are services available upon requests, but
the price is negotiated later. For example, we may want to specify that secure
data centres for governmental use are available, but detailed price information
is probably not disclosed publicly.

We assume each service can belong to exactly one provider. A qualified car-
dinality restriction exactly (owl:qualifiedCardinality) is used to define this type of
assumption. We reuse gr:BusinessEntity to define a provider (see Section 3.7 for
more details).

Infrastructure as a Service can be classified into 3 categories: co-
coon:ComputeService (see Section 3.3.1), cocoon:StorageService (see Section
3.3.2), and cocoon:NetworkService (see Section 3.3.3).

3.3.1 Compute Service The number of cores available on a virtual machine
(VM) is defined by the data property cocoon:numberOfCores. Because it can
have a non-integer value, we define its datatype as xsd:decimal. For Google Cloud,
cores and vCPU refer to the same thing. The performance power of the CPU can
be described by cocoon:hasCPUcapacity. The memory size of a VM is specified
by cocoon:hasMemory.

The cocoon:LocalStorage available on a VM can be specified with co-
coon:hasStorage. We use an existential quantification (i.e. some) on this property,
so that it is possible to define more cocoon:NetworkStorage later. Google has a
limit for the maximum number of disks that can be attached to a VM, which
we model with the object property cocoon:hasMaxNumberOfDisks. Additionally,
Google also has a limit for the maximum total disk size that can be attached to
a VM, which is modelled with cocoon:hasMaxStorageSize.

We use schema:TypeAndQuantityNode to describe the quantity of things. So
value, unit, and type of an object can all be captured (see Section 3.7 for more
details).

Note that cocoon:ComputeService also inherits properties from its super
classes, e.g. the following property is inherited from cocoon:CloudService:

gr:hasPriceSpecification some gr:UnitPriceSpecification

There are data access fees on local disks of the Azure VM.8 To model this we
use gr:hasPriceSpecification max 1 cocoon:StorageTransactionsPriceSpecification.
For a short example of cocoon:ComputeService, see Listing 1.1.

Listing 1.1. Virtual Machine
@prefix schema: <https://schema.org/> .
@prefix unit: <http://qudt.org/vocab/unit#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

8 https://www.rhipe.com/azure-storage-transactions/

http://www.w3.org/2002/07/owl#qualifiedCardinality
http://purl.org/goodrelations/v1#BusinessEntity
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#NetworkService
https://w3id.org/cocoon/v1.0.1#numberOfCores
http://www.datypic.com/sc/xsd/t-xsd_decimal.html
https://w3id.org/cocoon/v1.0.1#hasCPUcapacity
https://w3id.org/cocoon/v1.0.1#hasMemory
https://w3id.org/cocoon/v1.0.1#LocalStorage
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#hasMaxNumberOfDisks
https://w3id.org/cocoon/v1.0.1#hasMaxStorageSize
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#CloudService
http://purl.org/goodrelations/v1#hasPriceSpecification
http://purl.org/goodrelations/v1#UnitPriceSpecification
http://purl.org/goodrelations/v1#hasPriceSpecification
https://w3id.org/cocoon/v1.0.1#StorageTransactionsPriceSpecification
https://w3id.org/cocoon/v1.0.1#ComputeService
https://www.rhipe.com/azure-storage-transactions/

6 Q. Zhang et al.

@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix cocoon: <https://w3id.org/cocoon/v1.0.1#> .
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<2019-02-12/ComputeService/Gcloud/CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE>

a cocoon:ComputeService ;
rdfs:label "CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE" ;
gr:hasPriceSpecification [a cocoon:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.72 ;
gr:hasUnitOfMeasurement unit:Hour ;
cocoon:inRegion <Region/Gcloud/us-east1>

] ;
cocoon:hasMemory [a schema:TypeAndQuantityNode ;

schema:amountOfThisGood 86.4 ;
schema:unitCode cocoon:GB

] ;
cocoon:hasProvider cocoon:Gcloud ;
cocoon:numberOfCores "96"^^xsd:decimal ;
schema:dateModified "2019-02-12"^^xsd:date .

3.3.2 Storage Service Two subclasses for cocoon:StorageService have been
defined: cocoon:LocalStorage and cocoon:NetworkStorage.

On the Azure Cloud, snapshot options are available for storage, which is
modelled with the object property cocoon:canHaveSnapshot. This information
is manually interpreted from the documentation.9 There are also caps on in-
put/output operations per sec (IOPS) and throughput, which are modeled with
cocoon:hasStorageIOMax and cocoon:hasStorageThroughputMax. We have also
defined corresponding units, which is explained in Section 3.7.

In Listing 1.2, we show a cocoon:NetworkStorage service from cocoon:Azure,
which is a Cloud provider we have pre-defined as a named instance. More details
on its corresponding storage transaction prices can be found in Section 3.4.3.

Next, an example of the Azure provisional Ultra SSD storage service is pre-
sented. It has configurable IOPS and throughput. Prices are based on provisioned
storage size, IOPS and throughput. There is also a reservation charge imposed
if you enable Ultra SSD capability on the VM without connecting an Ultra SSD
disk, whose rate is provisioned at per vcpu/hour.

Listing 1.2. Storage
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<2019-03-07/NetworkStorage/Azure/premiumssd-p30>

a cocoon:NetworkStorage ;
rdfs:label "premiumssd-p30" ;
gr:hasPriceSpecification <CloudStorageTransactionsPriceSpecification/Azure/

↪→ managed_disk/transactions-ssd> ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.13200195133686066 ;
gr:hasUnitOfMeasurement cocoon:GBPerMonth ;
cocoon:inRegion <Region/Azure/australia-east>

] ;
cocoon:canHaveSnapshot <NetworkStorage/Azure/standardssd-snapshot> , <NetworkStorage/

↪→ Azure/standardhdd-snapshot-zrs> , <NetworkStorage/Azure/premiumssd-snapshot>
↪→ , </NetworkStorage/Azure/standardhdd-snapshot-lrs> ;

cocoon:hasProvider cocoon:Azure ;

9 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/azure/storage.md#disk-snapshots

https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#LocalStorage
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#canHaveSnapshot
https://w3id.org/cocoon/v1.0.1#hasStorageIOMax
https://w3id.org/cocoon/v1.0.1#hasStorageThroughputMax
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#Azure
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/storage.md#disk-snapshots
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/storage.md#disk-snapshots

CoCoOn v1.0.1 7

cocoon:hasStorageIOMax [a schema:TypeAndQuantityNode ;
schema:amountOfThisGood "5000"^^xsd:nonNegativeInteger ;
schema:unitCode cocoon:IOPs
] ;

cocoon:hasStorageSize [a schema:TypeAndQuantityNode ;
schema:amountOfThisGood "1024"^^xsd:nonNegativeInteger ;
schema:unitCode cocoon:GB
] ;

cocoon:hasStorageThroughputMax [a schema:TypeAndQuantityNode ;
schema:amountOfThisGood "200"^^xsd:nonNegativeInteger ;
schema:unitCode unit:MegabitsPerSecond
].

<2019-03-07/NetworkStorage/Azure/ultrassd>
a cocoon:NetworkStorage ;
rdfs:label "ultrassd" ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

rdfs:label "vcpu" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.003 ;
gr:hasUnitOfMeasurement cocoon:VcpuPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

rdfs:label "throughput" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000685 ;
gr:hasUnitOfMeasurement cocoon:MegabitsPerSecondPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

rdfs:label "stored" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000082 ;
gr:hasUnitOfMeasurement cocoon:GBPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

rdfs:label "iops" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000034 ;
gr:hasUnitOfMeasurement cocoon:IOPsPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] .

3.3.3 Network Service We classify network services into the following cate-
gories: cocoon:InternetService, cocoon:LoadBalancing, cocoon:StaticIPService and
cocoon:DNSService.

Internet Service There is generally no charge to ingress cocoon:InternetService,
unless there is a load balancer used. We use the cocoon:hasDirection object prop-
erty to indicate the direction of traffic. A class cocoon:TrafficDirection is also
defined with two disjoint subclasses, cocoon:Egress and cocoon:Ingress. Those
can be used to indicate the direction of traffic.

Internet egress rates are based on usage and destination. For example,
Google Cloud has three destination categories10: Australia, China (excluding
Hong Kong) and Worldwide (excluding China and Australia, but including

10 Effective until end of June 2019, when this paper has been submitted, after that new
pricing takes effect based on not only the destination but also the sources.

https://w3id.org/cocoon/v1.0.1#InternetService
https://w3id.org/cocoon/v1.0.1#LoadBalancing
https://w3id.org/cocoon/v1.0.1#StaticIPService
https://w3id.org/cocoon/v1.0.1#DNSService
https://w3id.org/cocoon/v1.0.1#InternetService
https://w3id.org/cocoon/v1.0.1#hasDirection
https://w3id.org/cocoon/v1.0.1#TrafficDirection
https://w3id.org/cocoon/v1.0.1#Egress
https://w3id.org/cocoon/v1.0.1#Ingress

8 Q. Zhang et al.

Hong Kong). In this case, the object properties cocoon:hasDestination and co-
coon:excludesDestination can be used to specify destination ranges. Because traf-
fic destinations are not constrained by Cloud service regions, cocoon:Location is
used, which has more explanations in Section 3.6.

The internet egress traffic rates can be modelled by co-
coon:CloudNetworkPriceSpecification. For more details, see Section 3.4.4.11

Load Balancing Both hardware and software-based load balancing solutions
exist. Here we consider load balancing as a hardware feature unless it is known
otherwise. We create a class cocoon:LoadBalancing to represent such a service.
It is further broken down into two subclasses: cocoon:LoadBalancingData and
cocoon:ForwardingRule.

Ingress data processed by a load balancer is charged (per GB) based on its
region. Listing 1.3 models such cases with cocoon:LoadBalancingData.

Listing 1.3. Load Balancing Data Price Specification

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .
<LoadBalancingData/Gcloud>

a cocoon:LoadBalancingData ;
gr:hasPriceSpecification [a gr:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.008 ;
gr:hasUnitOfMeasurement cocoon:GB ;
cocoon:inRegion <Region/Gcloud/us>

] ;
cocoon:hasDirection cocoon:Ingress ;
cocoon:hasProvider cocoon:Gcloud ;
schema:dateModified "2019-02-12"^^xsd:date .

Forwarding rules that are created for load balancing are also charged on
an hourly base, regardless of how many forwards. This can be modelled by
cocoon:ForwardingRule and cocoon:CloudNetworkPriceSpecification.12

Static IP Address The IP address of a VM instance usually is not guaranteed
to stay the same between reboots/resets. So you may want to reserve a static
external IP address for your customers or users to have reliable access. It can be
modelled with cocoon:StaticIPService and cocoon:CloudServicePriceSpecification.

3.4 Cloud Service Price

For price modelling, we extend the GoodRelations vocabulary [7]. GoodRela-
tions is a Web Ontology Language-compliant ontology for Semantic Web online
data, dealing with business-related goods and services. In November 2012, it was
integrated into the Schema.org ontology.

11 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#internet-service

12 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#forwarding-rule

https://w3id.org/cocoon/v1.0.1#hasDestination
https://w3id.org/cocoon/v1.0.1#excludesDestination
https://w3id.org/cocoon/v1.0.1#excludesDestination
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
https://w3id.org/cocoon/v1.0.1#LoadBalancing
https://w3id.org/cocoon/v1.0.1#LoadBalancingData
https://w3id.org/cocoon/v1.0.1#ForwardingRule
https://w3id.org/cocoon/v1.0.1#LoadBalancingData
https://w3id.org/cocoon/v1.0.1#ForwardingRule
https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
https://w3id.org/cocoon/v1.0.1#StaticIPService
https://w3id.org/cocoon/v1.0.1#CloudServicePriceSpecification
Schema.org
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#internet-service
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#internet-service
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#forwarding-rule
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#forwarding-rule

CoCoOn v1.0.1 9

3.4.1 Cloud Service Price Specification We define co-
coon:CloudServicePriceSpecification as a subclass of gr:UnitPriceSpecification.
As one service can be offered in multiple regions, we extend our specialized
class with: cocoon:inRegion some cocoon:Region. For more details on region, see
Section 3.6.

In GoodRelations, there is a gr:hasCurrencyValue property taking a xsd:float
as range. However, floats can introduce cumulative rounding errors. So we ex-
tend the existing class to allow xsd:decimal, which can represent exact monetary
values: cocoon:hasCurrencyValue exactly 1 xsd:decimal.13 For more usages, see
Section 3.3.1.

We also define specialized subclasses to handle the following scenarios:
price of a VM image (cocoon:CloudOSPriceSpecification), price of storage trans-
actions (cocoon:CloudStorageTransactionsPriceSpecification), and price of net-
work services (cocoon:CloudNetworkPriceSpecification). These sub-classes are
owl:disjointWith each other. Because each case has very different requirements, it
is clearer to model them with different subclasses rather than define all properties
in the base class cocoon:CloudServicePriceSpecification.

3.4.2 Price of Virtual Machine Images Under the class co-
coon:CloudOSPriceSpecification, the data property cocoon:chargedPerCore speci-
fies if the price is charged per core. For instance, Windows Server images on some
machine types from Google Cloud are charged based on the number of CPUs
available, i.e., n1-standard-4, n1-highcpu-4, and n1-highmem-4 are machine-
types with four vCPUs, and are charged at $0.16 USD/hour (4 × $0.04 US-
D/hour).

The data property cocoon:forCoresMoreThan is used to describe a price
for machines with more than the specified number of cores. Similarly, co-
coon:forCoresLessEqual is used to describe a price for machines with less than
or equal to the specified number of cores. They can be used together to quantify
a range. Listing 1.4 presents an example for OS Price Specification.

Listing 1.4. OS Price Specification

@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .
<SystemImage/Gcloud/suse-sap>

a cocoon:SystemImage ;
rdfs:label "suse-sap" ;
gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.41 ;
cocoon:chargedPerCore false ;
cocoon:forCoresMoreThan "4"^^xsd:decimal

] ;
gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.34 ;
cocoon:chargedPerCore false ;
cocoon:forCoresLessEqual "4"^^xsd:decimal ;
cocoon:forCoresMoreThan "2"^^xsd:decimal

13 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#cloud-service-price-specification

https://w3id.org/cocoon/v1.0.1#CloudServicePriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudServicePriceSpecification
http://purl.org/goodrelations/v1#UnitPriceSpecification
https://w3id.org/cocoon/v1.0.1#inRegion
https://w3id.org/cocoon/v1.0.1#Region
http://purl.org/goodrelations/v1#hasCurrencyValue
http://www.datypic.com/sc/xsd/t-xsd_float.html
http://www.datypic.com/sc/xsd/t-xsd_decimal.html
https://w3id.org/cocoon/v1.0.1#hasCurrencyValue
http://www.datypic.com/sc/xsd/t-xsd_decimal.html
https://w3id.org/cocoon/v1.0.1#CloudOSPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudStorageTransactionsPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
http://www.w3.org/2002/07/owl#disjointWith
https://w3id.org/cocoon/v1.0.1#CloudServicePriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudOSPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudOSPriceSpecification
https://w3id.org/cocoon/v1.0.1#chargedPerCore
https://w3id.org/cocoon/v1.0.1#forCoresMoreThan
https://w3id.org/cocoon/v1.0.1#forCoresLessEqual
https://w3id.org/cocoon/v1.0.1#forCoresLessEqual
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-service-price-specification
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-service-price-specification

10 Q. Zhang et al.

] ;
gr:hasPriceSpecification [a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.17 ;
cocoon:chargedPerCore false ;
cocoon:forCoresLessEqual "2"^^xsd:decimal

] .

3.4.3 Price of Storage Transactions For storage transactions, we use the
class cocoon:CloudStorageTransactionsPriceSpecification to define the price. There
are different prices in different regions, but there is a common transaction price
specification for a group of cloud storage offers.14

3.4.4 Price of Network Services cocoon:CloudNetworkPriceSpecification
can be used to model network services prices, including internet egress traffic
and load balancing forwarding rules.

For instance, there are three (monthly) usage tiers for Google Internet egress
traffic price: 0-1 TB, 1-10 TB and 10+ TB. Properties cocoon:forUsageLessEqual
and cocoon:forUsageMoreThan can be used to specify the upper/lower usage
limits. We combine this with schema:TypeAndQuantityNode to define the values
with their units.

There are also some special rates, e.g., for Google Cloud Internet Traffic:
Egress between zones in the same region (per GB) is 0.01; egress between regions
within the US (per GB) is 0.01; egress to Google products (such as YouTube,
Maps, and Drive), whether from a VM in GCP with an external or internal
IP address is no charge. The property cocoon:specialRateType can be used to
model those situations. See an online example for price of Google internet egress
between zones in the same region.15

3.5 Cloud Service Performance

We use terms from a number of ontologies when modeling QoS, such as SSN [6]
and SOSA [8]. The Semantic Sensor Network (SSN) ontology is an ontology for
describing sensors and their observations, involved procedures, studied features
of interest, samples, and observed properties, as well as actuators. SSN includes
a lightweight but self-contained core ontology called SOSA (Sensor, Observation,
Sample, and Actuator) for its elementary classes and properties. “SSN System”
contains the terms defined for system capabilities, operating ranges, and survival
ranges.

14 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#cloud-storage-transactions-price-specification

15 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#cloud-network-price-specification

https://w3id.org/cocoon/v1.0.1#CloudStorageTransactionsPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
https://w3id.org/cocoon/v1.0.1#forUsageLessEqual
https://w3id.org/cocoon/v1.0.1#forUsageMoreThan
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#specialRateType
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-storage-transactions-price-specification
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-storage-transactions-price-specification
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-network-price-specification
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-network-price-specification

CoCoOn v1.0.1 11

3.5.1 Quality Of Service Property QoS parameters are grouped under
cocoon:QualityOfService. We define cocoon:QualityOfService to be an equivalent
class of ssn-system:SystemProperty. Then we extend it with the subclass co-
coon:DataTransferSpeed.

Data Transfer Speed cocoon:DataTransferSpeed is measured multiple times
with different file sizes, for both the uplink and downlink, which are represented
by subclasses cocoon:DownlinkSpeed and cocoon:UplinkSpeed. See an example
online.16

Latency There is an existing ssn-system:Latency class, which we can use. We
extend this class with a specialized subclass cocoon:DNSQueryLatency, which is
the latency for completing the DNS query. The term latency is most commonly
referred to as the round-trip delay time, which is the one-way latency for the
request to travel from a source to a destination plus the one-way latency for the
response to travel back.

3.5.2 Measurement QoS measurements are modeled with co-
coon:Measurement, which is an equivalent class to sosa:Observation. The
cocoon:Measurement can use sosa:hasFeatureOfInterest to specify which feature
it measures. Since cocoon:Service is equivalent to sosa:FeatureOfInterest, all its
subclasses can be used to describe features, and we have some examples can be
viewed online.17

3.5.3 Device We extend sosa:Sensor with a subclass cocoon:Device to describe
computers used to measure QoS. Listing 1.5 shows an example for device.

Listing 1.5. Device

@base <https://w3id.org/cocoon/data/v1.0.1/> .
<Device/150.203.213.249/lat=-35.271475/long=149.121434>

a cocoon:Device ;
rdfs:comment "The computer used to conduct the tests, belongs to Australian National

↪→ University College of Engineering & Computer Science."@en ;
rdfs:label "CECS-030929"@en ;
cocoon:inPhysicalLocation [a schema:Place ;

schema:geo [a schema:GeoCoordinates ;
schema:address "Hanna Neumann Building #145,

↪→ Science Road, Canberra ACT 2601" ;
schema:latitude -35.271475 ;
schema:longitude 149.121434
]

] ;
cocoon:ipv4 "150.203.213.249" .

16 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#downlink-speed

17 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/
example/quickstart.md#measurement

https://w3id.org/cocoon/v1.0.1#QualityOfService
https://w3id.org/cocoon/v1.0.1#QualityOfService
http://www.w3.org/ns/ssn/systems/SystemProperty
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://w3id.org/cocoon/v1.0.1#DownlinkSpeed
https://w3id.org/cocoon/v1.0.1#UplinkSpeed
http://www.w3.org/ns/ssn/systems/Latency
https://w3id.org/cocoon/v1.0.1#DNSQueryLatency
https://w3id.org/cocoon/v1.0.1#Measurement
https://w3id.org/cocoon/v1.0.1#Measurement
http://www.w3.org/ns/sosa/Observation
https://w3id.org/cocoon/v1.0.1#Measurement
http://www.w3.org/ns/sosa/hasFeatureOfInterest
https://w3id.org/cocoon/v1.0.1#Service
http://www.w3.org/ns/sosa/FeatureOfInterest
http://www.w3.org/ns/sosa/Sensor
https://w3id.org/cocoon/v1.0.1#Device
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#downlink-speed
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#downlink-speed
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#measurement
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#measurement

12 Q. Zhang et al.

3.6 Location and Region

cocoon:Location is a permissible class that can be used to represent any kind of lo-
cation, i.e. Worldwide, Australia and Hong Kong. In comparison, cocoon:Region,
the subclass of cocoon:Location, is more specialized to represent known/prede-
fined cloud service regions. We link regions from each Cloud provider to GeoN-
ames data18, and at the same time make it compatible with Schema.org. So we
define it as the union of gn:Feature and schema:Place. If a specific location or
address is known, a physical location can be set with cocoon:inPhysicalLocation.
Otherwise, we only describe the approximate location with cocoon:inJurisdiction.
Some regions can be in multiple jurisdictions, i.e. nam-eur-asia1 belongs to
North America, Europe, and Asia. Usually, a region cannot be in more than one
physical location. Each region can also specify which cocoon:continent it is in,
which provider it belongs to (with cocoon:hasProvider), and a human readable
name with rdfs:label. Currently, there is a simple script written for matching a
region to a gn:Feature, but it can be further optimised in future work. We have
also obtained some geographic coordinates from the QoS measurements, and
modelled such information with schema:geo and schema:GeoCoordinates. Some
examples for Location and Region are available online.19

3.7 Named Individuals

We define several useful named individuals to be included in this ontology.

Unit: We define cocoon:UnitOfMeasure as an owl:equivalentClass of qudt:Unit,
and then use the instances from the unit vocabulary, i.e. unit:Hour and
unit:MegabitsPerSecond. We also define a number of custom units with
reference to qudt:InformationEntropyUnit and qudt:DataRateUnit, i.e., co-
coon:GB, cocoon:GBPerHour, cocoon:GBPerMonth, cocoon:GCEU (which is
the Google Compute Engine Unit), cocoon:IOPs, cocoon:IOPsPerHour, co-
coon:MegabitsPerSecondPerHour, cocoon:TB, and cocoon:VcpuPerHour.

Provider: We define providers as a gr:BusinessEntity, i.e. cocoon:Gcloud and
cocoon:Azure.

Quantity and type: We define some frequently used quantities as named in-
dividuals, using schema:TypeAndQuantityNode, i.e. cocoon:1TB. This will save
us from redefining each value every time it is used. Since schema:unitCode can
take schema:URL, it means we can pass in any external defined units, i.e. co-
coon:UnitOfMeasure.

18 https://www.geonames.org/
19 https://github.com/miranda-zhang/cloud-computing-schema/blob/master/

example/quickstart.md#location-and-region

https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#Region
https://w3id.org/cocoon/v1.0.1#Location
Schema.org
http://www.geonames.org/ontology#Feature
http://schema.org/Place
https://w3id.org/cocoon/v1.0.1#inPhysicalLocation
https://w3id.org/cocoon/v1.0.1#inJurisdiction
https://w3id.org/cocoon/v1.0.1#continent
https://w3id.org/cocoon/v1.0.1#hasProvider
https://www.infowebml.ws/rdf-owl/label.htm
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/geonames_rdf/azure
http://www.geonames.org/ontology#Feature
http://schema.org/geo
http://schema.org/GeoCoordinates
https://w3id.org/cocoon/v1.0.1#UnitOfMeasure
http://www.w3.org/2002/07/owl#equivalentClass
http://qudt.org/schema/qudt#Unit
http://qudt.org/1.1/vocab/OVG_units-qudt-(v1.1).ttl
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/unit/QUDT.md#Hour
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/unit/QUDT.md#MegabitsPerSecond
http://qudt.org/schema/qudt#InformationEntropyUnit
http://qudt.org/schema/qudt#DataRateUnit
https://w3id.org/cocoon/v1.0.1#GB
https://w3id.org/cocoon/v1.0.1#GB
https://w3id.org/cocoon/v1.0.1#GBPerHour
https://w3id.org/cocoon/v1.0.1#GBPerMonth
https://w3id.org/cocoon/v1.0.1#GCEU
https://w3id.org/cocoon/v1.0.1#IOPs
https://w3id.org/cocoon/v1.0.1#IOPsPerHour
https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
https://w3id.org/cocoon/v1.0.1#TB
https://w3id.org/cocoon/v1.0.1#VcpuPerHour
http://purl.org/goodrelations/v1#BusinessEntity
https://w3id.org/cocoon/v1.0.1#Gcloud
https://w3id.org/cocoon/v1.0.1#Azure
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#1TB
http://schema.org/unitCode
http://schema.org/URL
https://w3id.org/cocoon/v1.0.1#UnitOfMeasure
https://w3id.org/cocoon/v1.0.1#UnitOfMeasure
https://www.geonames.org/
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#location-and-region
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#location-and-region

CoCoOn v1.0.1 13

4 Usage Cases

CoCoOn’s intended usage is illustrated in Figure 2. A possible visualisation of
Azure’s Compute service offers and regions is shown in Figure 3, with offers in
green and regions in purple. Regions with more offers have a bigger size.

Fig. 2. CoCoOn Data Integration Workflow

4.1 Mapping Service Info to Ontology

Data can be obtained from a provider’s API, either in JSON or JS format.
We first clean up/transform such data with jq. Next, we map the cleaned data
to our ontology.20 Additional information is added both in jq and SPARQL-
Generate scripts. Listing 1.6 shows a jq script example which transforms json
data from Google API. In this script, we add the number of cores obtained from
the vendor’s documentation.

Listing 1.6. Script in jq that transforms data from Google API
.gcp_price_list | . |=with_entries(select(.key| contains("VMIMAGE"))) |
[to_entries[] |

{
"name": .key,
"cores":(

if (.key|contains("F1-MICRO")) then
0.2

elif (.key|contains("G1-SMALL")) then
0.5

else .value.cores end
),
"memory": .value.memory,
"gceu": (

if .value.gceu == "Shared CPU, not guaranteed" then
null

20 The complete process with input and output for each step is documented online

https://stedolan.github.io/jq/
https://cloudpricingcalculator.appspot.com/static/data/pricelist.json
https://cloudpricingcalculator.appspot.com/static/data/pricelist.json
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/gcloud/compute.md

14 Q. Zhang et al.

Fig. 3. Azure Services Regions

else .value.gceu end
),
"maxNumberOfPd": .value.maxNumberOfPd,
"maxPdSize": .value.maxPdSize,
"price":
[

.value | del(
.cores, .memory, .gceu,
.fixed, .maxNumberOfPd, .maxPdSize, .ssd)

| to_entries[] | { "region": .key, "price": .value }
]

}
]

For converting data from various sources to semantic data, we used SPARQL-
Generate [11, 15] for defining the mappings. We developed many SPARQL-

https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/sparql-generate

CoCoOn v1.0.1 15

Generate scripts for this process. For example, a script can map json data from
Azure API to CoCoOn v1.0.1, and produce annotated RDF data.

4.2 Gathering QoS Stats

We provided live demos of QoS tests, e.g. Downlink Speed and Latency tests for
Google Cloud Services. Uplink tests scripts are written in Python as selenium
is required. Additional details on using cloudharmony for measuring QoS are
documented online.21

4.3 Result Datasets

We have also made the complete datasets (132,282 triples) available at https:
//w3id.org/cocoon/data. It is hosted with a Linked Data Fragments Server on
the Google Cloud. This server can be slow to access as we only used an always
free micro instance. It is recommended to download the data and investigate
with a triplestore. For example, you can run a query as shown in Listing 1.7,
and the results are shown in Table 1.

Table 1. Instance counts of the classes

Class Count

cocoon:NetworkStorage 45
cocoon:ComputeService 1021
cocoon:Region 55
cocoon:StorageService 161
cocoon:Location 5
cocoon:InternetService 6
cocoon:SystemImage 10

Listing 1.7. A SPARQL query
PREFIX cocoon: <https://w3id.org/cocoon

↪→ /v1.0.1#>
PREFIX gr: <http://purl.org/

↪→ goodrelations/v1#>
SELECT ?cls (COUNT(?s) AS ?count)
{

VALUES ?cls {cocoon:ComputeService
↪→ cocoon:SystemImage cocoon:
↪→ StorageService cocoon:
↪→ NetworkStorage cocoon:
↪→ NetworkService cocoon:
↪→ InternetService cocoon:
↪→ Region cocoon:Location gr:
↪→ BusinessEntity

} ?s a ?cls
} GROUP BY ?cls

5 Conclusion

This work presents CoCoOn v1.0.1, which captures Cloud service characteristics,
including the price and QoS of public cloud service offers. We also presented
several semantic datasets developed using this ontology and a range of solutions
for different use-case scenarios of our ontology and datasets.

For future work, several possible extensions can be made: More providers
should be included to verify the completeness of our model further; Units can
be improved with Custom Datatypes (cdt:ucum [10]), so composite units do not
need to be defined specifically, i.e. instead of cocoon:MegabitsPerSecondPerHour,
something like ”MB/s/h” could be used; Improve mapping regions to Geonames
dataset; and modelling various discounts.

21 https://github.com/miranda-zhang/cloud-computing-schema/tree/master/
example/cloudharmony

https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/sparql-generate
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/sparql-generate
https://azure.microsoft.com/api/v2/pricing/managed-disks/calculator/?culture=en-au&discount=mosp
https://azure.microsoft.com/api/v2/pricing/managed-disks/calculator/?culture=en-au&discount=mosp
https://miranda-zhang.github.io/cloud-computing-schema/cloudharmony/google/test.html
https://miranda-zhang.github.io/cloud-computing-schema/cloudharmony/google/test.html
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/cloudharmony/selenium/cloudharmony.py
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony/selenium
https://w3id.org/cocoon/data
https://w3id.org/cocoon/data
http://linkeddatafragments.org/
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#Region
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#InternetService
https://w3id.org/cocoon/v1.0.1#SystemImage
https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/geonames_rdf/azure
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/geonames_rdf/azure
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony

16 Q. Zhang et al.

References

1. Boukadi, K., Rekik, M., Ben-Abdallah, H., Gaaloul, W.: Cloud service description
ontology : Construction, evaluation and interrogation. In: Cloud Service Descrip-
tion Ontology : Construction , Evaluation and Interrogation (2016)

2. Dobson, G., Lock, R., Sommerville, I.: QoSOnt: a QoS Ontology for Service-Centric
Systems. In: SEAA. pp. 80–87 (2005)

3. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int Journal of Human-Computer Studies 43(5-6), 907–928 (1995)

4. Guha, R.V., Brickley, D., MacBeth, S.: Schema.org: Evolution of structured data
on the web. Queue 13(9), 10:10–10:37 (Nov 2015)

5. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A semantic
service-oriented architecture. In: ICWS. pp. 321–328 (2005)

6. Haller, A., Janowicz, K., Cox, S.J.D., Lefrançois, M., Taylor, K., Phuoc, D.L.,
Lieberman, J., Garćıa-Castro, R., Atkinson, R., Stadler, C.: The modular SSN
ontology: A joint W3C and OGC standard specifying the semantics of sensors,
observations, sampling, and actuation. Semantic Web 10(1), 9–32 (2019)

7. Hepp, M.: GoodRelations: An ontology for describing products and services offers
on the web. In: EKAW. pp. 329–346 (2008)

8. Janowicz, K., Haller, A., Cox, S.J., Phuoc, D.L., Lefrançois, M.: SOSA: a
lightweight ontology for sensors, observations, samples, and actuators. Journal of
Web Semantics 56, 1 – 10 (2019)

9. Joshi, K.P., Yesha, Y., Finin, T.W.: Automating cloud services life cycle through se-
mantic technologies. IEEE Transactions on Services Computing 7, 109–122 (2014)

10. Lefrançois, M., Zimmermann, A.: The unified code for units of measure in RDF:
cdt:ucum and other UCUM datatypes. In: ESWC (2018)

11. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for gener-
ating RDF from heterogeneous formats. In: ESWC (2017)

12. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M.,
Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to
web services with OWL-S. World Wide Web 10(3), 243–277 (2007)

13. Moscato, F., Aversa, R., Martino, B.D., Fortis, T.F., Munteanu, V.I.: An analysis
of mOSAIC ontology for Cloud resources annotation. FedCSIS pp. 973–980 (2011)

14. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied On-
tology 1(1), 77–106 (2005)

15. SPARQL-generate, http://w3id.org/sparql-generate/
16. Wikidata, https://www.wikidata.org/wiki/Wikidata:WikiProject Ontology
17. Zhang, M., Ranjan, R., Georgakopoulos, D., Strazdins, P., Khan, S.U., Haller,

A.: Investigating Techniques for Automating the Selection of Cloud Infrastructure
Services. International Journal of Next-Generation Computing 4(3) (2013)

18. Zhang, M., Ranjan, R., Haller, A., Georgakopoulos, Dimitrios Menzel, M., Nepal,
S.: An ontology-based system for Cloud infrastructure services’ discovery. In: Col-
laborateCom (2012)

19. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A declarative recom-
mender system for cloud infrastructure services selection. In: Economics of Grids,
Clouds, Systems, and Services. pp. 102–113 (2012)

20. Zhang, Y., Teng, J., He, H., Wang, Z.: On P2P-based semantic service discovery
with QoS measurements for pervasive services in the universal network. Journal of
Computers 9 (2014)

http://w3id.org/sparql-generate/
https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology

	CoCoOn: Cloud Computing Ontology for IaaS Price and Performance Comparison
	Introduction
	Related Work
	Concepts and Design of CoCoOn v1.0.1
	New Features
	Design Rationale
	Cloud Service
	Compute Service
	Storage Service
	Network Service
	Internet Service
	Load Balancing
	Static IP Address

	Cloud Service Price
	Cloud Service Price Specification
	Price of Virtual Machine Images
	Price of Storage Transactions
	Price of Network Services

	Cloud Service Performance
	Quality Of Service Property
	Data Transfer Speed
	Latency

	Measurement
	Device

	Location and Region
	Named Individuals

	Usage Cases
	Mapping Service Info to Ontology
	Gathering QoS Stats
	Result Datasets

	Conclusion

