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Abstract. Linear temporal logic (LTL) has been widely used to specify runtime
policies. Traditionally this use of LTL is to capture the qualitative aspects of the
monitored systems, but recent developments in metric LTL and its extensions
with aggregate operators allow some quantitative policies to be specified. Our in-
terest in LTL-based policy languages is driven by applications in runtime Android
malware detection, which requires the monitoring algorithm to be independent of
the length of the system event traces so that its performance does not degrade as
the traces grow. We propose a policy language based on a past-time variant of
LTL, extended with an aggregate operator called the counting quantifier to spec-
ify a policy based on the number of times some sub-policies are satisfied in the
past. We show that a broad class of policies, but not all policies, specified with
our language can be monitored in a trace-length independent way without sacri-
ficing completeness, and provide a concrete algorithm to do so. We implement
and test our algorithm in an existing Android monitoring framework and show
that our approach can effectively specify and enforce quantitative policies drawn
from real-world Android malware studies.

1 Introduction

Linear temporal logic (LTL) has been widely used as a specification language to specify
runtime properties of systems and languages. Traditionally, this use of LTL is concerned
mainly with qualitative properties, such as relative ordering of events, or eventuality of
events, etc. Our interest in the LTL-based policy languages is motivated by the demand
for Android malware detection. In this setting, some attack patterns cannot be stated
as pure LTL formulas as they require specifications of quantitative measures such as
frequency of certain activities (e.g., sending SMS) commonly found in botnet attacks.
Recent studies [22,21] indicate that Android malware is increasingly designed to turn
infected phones into botnets, so to be practically useful, any monitoring framework for
Android needs to take into account quantitative measures in their policy specifications.

One way to detect the kind of botnet attacks mentioned above is to count the number
of certain events, such as SMS messages sent from an app, and notify the user once the
count goes beyond some limit. To design a monitoring framework that can enfoce this
kind of policies, one approach is to build into LTL a notion of counting of events [7],
or more generally, aggregate operators [6]. The main problem is that monitoring algo-
rithms for such extensions have not been well studied, and can be very inefficient, e.g.,
PSPACE complete (in the size of policy and the trace) for the extension of LTL with the
counting quantifier [7], and PTIME (in the size of the trace) when the policy is fixed. In



the online monitoring of OS kernels, where near real-time decisions need to be made,
the dependence of the monitor on the size of the trace would make it impractical even
if its complexity is PTIME (assuming the policy is fixed), as its performance would de-
grade as the trace size grows. We attempt to address this problem in a minimal setting
to demonstrate that it is possible to design a monitoring framework that is expressive
enough to specify various quantitative properties and enforceable efficiently.

In this work, we propose an extension of Past Time LTL (PTLTL) [19], named
PTLTLcnt, to support the counting quantifier, which is motivated and extended from [7],
and arithmetic functions and relations. PTLTLcnt considers only the fragment of PTLTL
with past time operators, as this is sufficient for our purpose to enforce history-sensitive
access control. For our intended application of monitoring Android applications, once
we fix the policy to be monitored, the monitoring algorithm space requirement and
runtime should be constant, i.e., independent of the length of the system event trace.
Following [8], we call this type of monitoring algorithms as trace-length independent
(TLI) monitoring algorithms. Note that we require that the generated TLI algorithms
to be complete with respect to the policy specifications; otherwise the problem would
be trivial as one could simply make various ad hoc restrictions such as restricting the
time window for the monitoring. In [19], it is shown that a trace-length independent
monitor can be generated for every formula of PTLTL. For richer logics, such as those
considered in [7,8] and our own PTLTLcnt, this is not always possible, i.e., there are
formulas for which the monitor needs to store the entire history of events. For example,
in PTLTLcnt one can write a formula that compares the numbers of two events, say
e1 and e2. Let x and y denote the number of past occurrences of events of e1 and e2,
respectively. To check the relation x < y at any state, we would need to keep the counts
of both e1 and e2; such counts would grow as the trace grows, so the space requirement
for monitoring this formula is not bounded. We could only store ∣x− y∣ in this case, but
this absolute value can still grow infinitely.

As far as we know, there has been so far no study on trace-length independence
monitoring for LTL with aggregate operators like the counting quantifier. To solve this
issue, we first formally identify the precise characteristics of the class arithmetic rela-
tions that can be monitored in a trace-length independent way. Then we show that if all
arithmetic relations in a PTLTLcnt formula are TLI-monitorable, the formula itself is
also TLI-monitorable. More importantly, we show how to construct a TLI monitoring
algorithm when all relations are TLI-monitorable.

We have performed a number of case studies on Android to show the practicality of
our specification language for malware detection. We have implemented the proposed
language and algorithm based on an existing Android monitoring framework called
LogicDroid [17]. The experimental results shows that our approach can effectively
specify and enforce a range of quantitative policies drawn from real-world Android
malware.
Organization Section 2 presents the formal syntax and semantics of PTLTLcnt. Sec-
tion 3 proposes the trace-length independent monitoring algorithm for PTLTLcnt with
univariate countingparts. This is generalized this to the multivariate case in Section 4.
Some Android policy examples are introduced in Section 5. Section 6 describes the
implementation of our algorithms for monitoring in LogicDroid. The related works are
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discussed in Section 7. Section 8 concludes the paper. Due to space constraints, some
proofs are omitted but they will be made available in an extended version of this paper.

2 The Policy Specification Language PTLTLcnt

In this section, we formally introduce PTLTLcnt as an extension of PTLTL extended
with a counting quantifier, which counts how many times a sub-policy has been satisfied
in the past, as well as arithmetic operators and relations. Our counting quantifier has a
slightly different semantics compared to that of [7] as explained later. Our language
admits the usual arithmetic operators such as +, − and ×, and relations =, <, ≤ and
≥. We assume a countably infinite set of constants. We use a, b, c and d to range over
constant symbols of type integers. We denote withAP the set of propositional variables.
Elements ofAP are ranged over by P ,Q and S. We assume an infinite set V of variables
of type integers, whose elements are ranged over by x, y and z. Terms are built from
constants, variables and arithmetic operators, and are denoted by s, t, u and v.

The syntax of PTLTLcnt is defined via the following grammar:

φ ∶= � ∣ AP ∣ (t > 0) ∣ ¬φ ∣ φ ∨ φ ∣ ●φ ∣ φ S φ ∣ Cx ∶ ⟨φ,φ⟩.φ

The operators are those of PTLTL except for the counting quantifier C and the relation
t > 0. The variable x in Cx ∶ ⟨φ1, φ2⟩.ϕ is a bound variable, whose scope is over ϕ, so
x is not free in either φ1 or φ2. Intuitively, the meaning of Cx ∶ ⟨φ1, φ2⟩.ϕ is as follows:
suppose that φ2 is true at exactly n states since the latest state where φ1 holds; then the
instance of ϕ with x mapped to n must also be true. The formula φ1 acts as a counter
reset condition. We assume the reader is familiar with the notion of free and bound
variables. We assume that bound variables in a formula are pairwise distinct. We write
φ(x1, . . . , xn) to mean that the free variables of φ are in {x1, . . . , xn} and we write
φ(t1, . . . , tn) to denote the instance of φ(x1, . . . , xn) where ti is substituted for xi.

In the definition of formulas, we have kept a minimum number of logical operators.
The omitted operators can be derived using the given operators, e.g., propositional op-
erators such as ⊺ (truth), ∧ (conjunction),→ (implication), and modal operators such as
⧫ (sometime in the past), which is defined as ⧫φ ≡ ⊺ S φ, and ∎ (globally in the past),
which is defined as ∎φ ≡ ¬⧫¬φ. Note also that all other arithmetic relations can be de-
rived from the relation of the form (t > 0) and logical connectives: s > t ≡ (s − t) > 0,
s ≤ t ≡ ¬(s > t), s = t ≡ (s ≤ t)∧(t ≤ s), s ≥ t ≡ s > t∨s = t, and s < t ≡ s ≤ t∧¬(s = t).

The semantics of PTLTLcnt is defined with respect to a finite trace model, as in [19].
A trace is just a sequence of states, where each state itself consists of a set of atomic
propositions. These atomic propositions correspond to events of interests that are being
monitored in a system. We assume an interpretation function I which maps constant
symbols to integers, and arithmetic operators and relation symbols to their correspond-
ing semantic counterparts. We assume the usual arithmetic operators, and in addition,
depending on applications, we may assume a fixed set of function symbols denoting
computable functions over the integer domain. Since terms and relations can contain
variables, we additionally need to interpret these variables. This is done via a valuation
function, i.e., a function from variables to integers. Formally, given an interpretation
function I and a valuation function ν, the interpretation of a term t, written tI,ν is
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defined as in first-order logic [16]. However, since we shall only work within a fixed
interpretation, we shall drop the superscript I in the following semantics definition.

A model for PTLTLcnt is a triple (ρ, ν, i), where ρ is a trace, ν is a valuation function
and i is a natural number. For a trace ρ, we write ρi to denote its i-th state. For a
valuation ν, we write ν[x↦ n] to denote the function which is identical to ν except for
the valuation of x, i.e., ν[x ↦ n](y) = ν(y), when y /= x, and ν[x ↦ n](x) = n. The
satisfiability relation between a model (ρ, ν, i) and a formula φ, written ρ, ν, i ⊧ φ, is
defined by induction on φ below, where ρ, ν, i /⊧ φ if ρ, ν, i ⊧ φ is false.

– ρ, ν, i /⊧ φ if i < 1 or i > ∣ρ∣.
– ρ, ν, i /⊧ �.
– ρ, ν, i ⊧ P iff P ∈ ρi.
– ρ, ν, i ⊧ t > 0 iff tν > 0 is true.
– ρ, ν, i ⊧ ¬φ iff ρ, ν, i /⊧ φ.
– ρ, ν, i ⊧ φ ∨ ψ iff ρ, ν, i ⊧ φ or ρ, ν, i ⊧ ψ.
– ρ, ν, i ⊧ ●φ iff i > 1 and ρ, ν, i − 1 ⊧ φ.
– ρ, ν, i ⊧ φ1 S φ2 iff ρ, ν, i ⊧ φ2, or ρ, ν, i ⊧ φ1 and ρ, ν, i − 1 ⊧ φ1 S φ2 with i > 1.
– ρ, ν, i ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ iff ρ, ν[x↦ n], i ⊧ ϕ where

n = ∣{j∣r ≤ j ≤ i and ρ, ν, j ⊧ ψ}∣ and r =max({j∣ρ, ν, j ⊧ φ, j ≤ i}∪{1})

We write ρ, i ⊧ φ when ρ, ν, i ⊧ φ for every valuation ν.

Example 1. For an authentication server (e.g., bank) which validates a user’s credential,
a common login policy can be that if a user fails to enter the correct password three
times in a row, then the user’s account is temporarily disabled. Let us consider only two
system events: a correct password was entered (cp), and a wrong password was entered
(wp) by a particular user. The logic policy can be specified as follows:

∎ [¬(cp ∧wp) ∧ (Cx ∶ ⟨cp,wp⟩.x < 3)]. (1)

The first conjunct expresses a consistency property, i.e., a password entered cannot be
both correct and wrong at the same time. The variable x stores the number of times a
wrong password was entered since the last time a correct password was entered (or since
the beginning of the trace, if no correct password has been entered so far). Consider the
event trace ρ = [{wp};{cp};{wp};{wp};{cp};{wp}]. Then formula (1) above is true
at every state. ⊓⊔

In general, the counting quantifier can be used to express quantitative properties
within a ‘session’ (e.g., an authentication session, a life cycle of a process, etc). One
could introduce two events: start and end, to mark the beginning and the end of a
session. Then to check that the number of occurrences of an event e within a session is
less than n, for example, one can simply use the formula Cx ∶ ⟨start, e ∧ ¬end⟩. x < n
in conjunction with other formulas expressing the well-formedness of a session (e.g.,
every end corresponds to a start, etc). If e is a simple event (e.g., the wp event in
Example 1), one could encode this in LTL using standard temporal operators, but at the
expense of conciseness, i.e., one needs to expand the parameter n into n instances of
e ∧ ¬end. For example, Example 1 can be alternatively specified as

∎[¬(cp ∧wp) ∧ ¬(●wp ∧ ●(wp ∧ ●wp)))].
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That is, there cannot be three consecutive wp events any time in the past. However,
this is the case only when there are no events being monitored other than cp and wp.
When other events are possible, then we need to specify that events other than cp can
happen in between two consecutivewp events. In general, in a formula Cx ∶ ⟨φ1, φ2⟩.φ3,
any of the φi could be a complicated temporal formula, e.g., it could involve nested
counting quantifiers and other temporal operators. In such a case, the encoding into
pure LTL becomes less obvious and less concise. We shall see more examples drawn
from Android malware study in Section 5.

Our counting quantifier is a generalization of Bauer et. al.’s counting quantifier [7].
Their counting quantifier is semantically defined as follows: ρ, ν, i ⊧ Nx ∶ ψ.ϕ iff
ρ, ν[x ↦ n], i ⊧ ϕ where n = ∣{j∣1 ≤ j ≤ i and ρ, ν, j ⊧ ψ}∣. However, in terms of
expressiveness, they are actually equivalent, as shown next.

Proposition 1. The counting quantifiers C and N are equivalent, i.e., one can be de-
fined in terms of the other.

Proof. (Outline.) The quantifierN can be encoded using C as follows:Nx ∶ φ.ψ ≡ Cx ∶
⟨�, ψ⟩.ϕ. Conversely, C can be encoded using N as follows:

Cx ∶ ⟨φ,ψ⟩.ϕ ≡ N z ∶ φ. Nx ∶ (ψ ∧N y ∶ φ.y = z). ϕ.

Note that the subformula N y ∶ φ.y = z acts essentially as a counter reset. It is not
difficult to check from their semantics that these encodings are correct. ⊓⊔

Note that although C can be encoded using N , the encoding introduces nested occur-
rences ofN and one needs to compare at least two counting variables. In general, poli-
cies involving two or more counting variables are impossible to enforce in a trace-length
independent way, as our example in the introduction shows. We could have simply used
the original counting quantifier N , but we would then have to use the encoding above,
that involves comparing two or more variables, to capture the idea of a session. Such
encodings would thus obscure the underlying structure of the problem, and makes it
harder to systematically generate TLI monitors from a given specification. For instance,
the policy described in Example 1 uses only one counting variable when expressed us-
ing C, and results in Section 3 would guarantee the existence of TLI monitors for that
particular policy. Had we chosen to encode it using N , we would have to work harder
in order to show that the policy is in fact TLI monitorable.

3 Trace-length Independent Monitoring for PTLTLcnt

In a setting with limited storage and computation resource (e.g., an OS kernal or em-
bedded devices), an online monitoring algorithm that requires the storage of the entire
event trace is no practical, even if its complexity is PTIME. Ad hoc restrictions such
as limiting the time window or enforcing bounded storage of events are not desirable
as they may introduce incompleteness with respect to the policies being enforced, i.e.,
there may be violations to the policies that can only be detected on a trace of events
longer than what could fit in the storage. In early work such as [19], monitoring algo-
rithms are designed so that their memory requirement is constant, when one fixes the
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formula to be monitored, without compromising the completeness of the monitor with
respect to the formula. For example, for PTLTL [19], one needs to maintain only two
states of each subformula of a policy to enforce without losing completeness of the
algorithms. Following [8], we call this type of monitoring algorithms as trace-length
independent monitoring algorithms, and we call formulas that can be monitored in a
trace-length independent way trace-length independent formulas, or TLI-formulas for
short, and such formulas are said to be TLI-monitorable.

Since a main difference between PTLTLcnt and PTLTL is the presence of arithmetic
relations, we first look at a class of relations φ(x1, . . . , xn) that are TLI-monitorable
(the precise definition will be given later). If all relations in a formula are all TLI-
monitorable, then it is straightforward to check that the formula itself must be TLI-
monitorable. In this section, we look at the univariate case, i.e., functions with arity 1.
We generalize this to the multivariate case in Section 4.

In the following, all variables range over integers and the domains of functions are
assumed to be tuples of integers, unless otherwise stated. Further, given a function F of
arity n, we denote with ϕF (x1, . . . , xn) the relation F (x1, . . . , xn) > 0.

Definition 1. Given a function F , we construct a binary function FG as follows:

FG(x1, . . . , xn) = { 0 if F (x1, . . . , xn) ≤ 0
1 otherwise

We call FG the G-function of F , which can be seen as the characteristic function of ϕF .

Definition 2. A function F defined on domain D is said to be periodic over interval I
with period T if we have

F (x) = F (x + T )

for all values of x ∈ D ∩ I , with also (x + T ) ∈ D ∩ I.

Definition 3. A total function F ∶ N → R is said to be lower-bounded periodic, or
lb-periodic for short, if there is a b ∈ N such that F is periodic on interval [b,+∞).

Definition 4. Let F ∶ N → R be a total function. Then ϕF is TLI-monitorable if there
are two constants c and k, with c ≥ k ≥ 1 and c, k ∈ N, such that

ϕF (x) =H(ϕF (x − 1), . . . , ϕF (x − k))

for x ≥ c, where H is a total computable Boolean function.

Intuitively, TLI-monitorable relations are those for which the F (x) > 0 can be solved
incrementally, i.e., if we know the truth values of F (y) > 0 for a finite number of
y < x, we would be able to compute the truth value of F (x) > 0. Notice that there is no
need to store the actual value of the counting variable x nor F (x) in this incremental
computation; all that matters is the truth value of the relation F (x) > 0. Thus the space
required for monitoring such relations remain constant irrespective of the value of x.

Example 2. Let F (x) = x2 − 8x + 15, where x ∈ N. The G-function of F in this case is

FG(x) = { 0 if 3 ≤ x ≤ 5
1 otherwise

This is because F (x) ≤ 0 is satisfied only when 3 ≤ x ≤ 5. ⊓⊔
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We now characterize precisely the class of relations which are TLI-monitorable
according to Definition 4.

Lemma 1. Let F ∶ N → R be a total function. Then ϕF is TLI-monitorable if FG is
lb-periodic.

Example 3. The function FG in Example 2 is lb-periodic, with the lower bound 6, and
period 1. So ϕF is TLI-monitorable according to Lemma 1. ⊓⊔

We now prove the converse: every TLI-monitorable function must be lb-periodic.

Lemma 2. Given a total function F ∶ N → R, if ϕF is TLI-monitorable, then FG is
lb-periodic.

With sufficiency and necessity proved in Lemma 1 and Lemma 2 respectively, we
get the following theorem:

Theorem 1. Given a total function F ∶ N → R, ϕF is TLI-monitorable iff FG is lb-
periodic.

The abstract characterization in Theorem 1 is in a way quite obvious from the defini-
tion of TLI-monitorable relations. The important part is that monitorability is associated
with periodic “relations” (FG) rather than functions (F ). That is, F may not be periodic
yet still be TLI-monitorable (see Theorem 2 below). In concrete applications, since we
are usually only given the function F and not FG, the difficult problem is in deciding
whether FG is lb-periodic given F. In the following, we show some broad classes of
functions for which their G-functions are lb-periodic.

Theorem 2. Given a computable total function F ∶ N → R, ϕF is TLI-monitorable if
F satisfies one of the following conditions:

1. F is lb-periodic.
2. F is monotonously increasing/decreasing.
3. F is a univariate polynomial.

Now, we shall look at the monitoring problems for formulas in which all relations
and functions are univariate and TLI-monitorable.

To monitor a formula Cx ∶ ⟨φ,ψ⟩.ϕ(x), we first extract all functions involving x
from ϕ. Suppose as F (x) is one of the functions extracted. According to Theorem 1,
the G-functionFG(x) forF (x) should be lb-periodic forϕF (x) to be TLI-monitorable.
Then the track of ϕF (x) can be seen as a path ended with a loop. Then the values of
ϕF (x) repeats periodically as x increases. We can thus quotient the values of x based
on the period of FG to form a finite set of equivalence classes.

Definition 5. Given a TLI-monitorable relation ϕF with lb-periodic function FG that
is periodic over [b,+∞) with period T , we define the equivalence class for the domain
of F as:

[i] = {{i} if i < b
{a∣((a − b) mod T + b) ≡ i} otherwise
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Obviously, the number of the equivalence classes should be (b + T ) and every el-
ement within an equivalence class will have the same ϕF value. To check the value of
ϕF (x) at any point x, it is sufficient to check the value of ϕF at the equivalence class
of x. For simplicity, each equivalence class is indexed with the minimal element in the
set. The reset condition φ is orthogonal to the issue of quotienting the values of x; when
it is satisfied, the count for x is reset to 0. We write r(ρ, i,Cx ∶ ⟨φ,ψ⟩.ϕ) to denote the
index of equivalence class to which the counter of ψ belongs with model (ρ, ν, i).

In the following, we shall assume that, given a formula ϕ, every subformula of
ϕ of the form Cx ∶ ⟨φ,ψ⟩.ϕ has the property that x occurs exactly once in a univariate
function. This is not a real limitation as the case where x is vacuous or occurs more than
once (in different univariate functions) can be encoded into an equivalent formula where
each quantified variable occurs exactly once. If x is vacuous in ϕ, then Cx ∶ ⟨φ,ψ⟩.ϕ
is logically equivalent ot ϕ. If x occurs twice, i.e., ϕ is, e.g., ϕ1(x) ∧ ϕ2(x), then we
rewrite the formula to an equivalent one: Cx ∶ ⟨φ,ψ⟩.Cy ∶ ⟨φ,ψ⟩.ϕ1(x) ∧ ϕ2(y). This
holds because x and y are bound to the same value at every state. The same technique
generalizes to the cases where x occurs more than twice in ϕ.

Given the above restriction on the syntax of formulas, in a formula Cx ∶ ⟨φ,ψ⟩.ϕ,
we can extract exactly one function F where x is used. As in the case of monitoring
algorithms in [19,17], the key to get the trace-length independence property is to express
the semantics of all logical operators in a recursive form, i.e., the truth value of ϕ at
state i is a function of truth values of subformulas of ϕ and/or the truth value of ϕ at
state i − 1. All operators except the counting quantifier are already in recursive form.
The next theorem shows that the semantics of the counting quantifier also admits a
recursive form, when all relations in the formula to be monitored are univariate and
TLI-monitorable.

Theorem 3. Given a model (ρ, ν, i) and a closed formula Cx ∶ ⟨φ,ψ⟩.ϕ(x) where x
occurs in a function F , and ϕF (x) is TLI-monitorable with the lb-periodic function FG
that is periodic over [b,+∞) with period T , the following holds for every 1 < i ≤ ∣ρ∣ ∶

ρ, ν, i ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ iff ρ, ν, i ⊧ φ, and ρ, ν, i ⊧ ϕ(0);
or ρ, ν, i ⊧ ψ, r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) < b, and ρ, ν, i ⊧ ϕF ((r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) + 1);
or ρ, ν, i ⊧ ψ, r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) ≥ b, and ρ, ν, i ⊧ ϕF ((r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) + 1 − b)

mod T + b);
or ρ, ν, i ⊧ ¬φ, ρ, i ⊧ ¬ψ, and ρ, ν, i − 1 ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ(x)

Once we get the semantics of all logical operators of PTLTLcnt in a recursive form,
we can use dynamic programming to design a trace-length independence algorithm for
PTLTLcnt. Following the algorithm for PTLTL [19], we compute the truth values of
every subformula of a given formula ϕ, at exactly two successive states. However, for
quantified formulas, its subformulas would contain free variables, and their truth values
would thus depend on the values of x. To avoid coding valuation of variables explicitly
in the monitoring algorithm, we need to instantiate x to concrete terms before comput-
ing their truth values. Given the restriction imposed on the formulas as discussed above,
we can associate each quantified variable x in ϕ with exactly one univariate function;
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s t r u c t C n t I n f o {
i n t indexEC ;
i n t p e r i o d ;
i n t lowerBound ;

}

Fig. 1: CntInfo Data Structure

Algorithm 1: Monitor(ρ, i, φ)

1 Init(ρ,φ, prev, cur, cnt);
2 for j = 1 to i do
3 Iter(ρ, j, φ, prev, cur, cnt);

4 return cur[idx(φ)];

let us call it Fx. Since ϕFx is TLI-monitorable, by Definition 5, we can compute a
finite set of equivalence classes for the values of x. Suppose this set has n elements
{e1, . . . , en}. Then we need to instantiate x only with these n values. So given a sub-
formula Cx ∶ ⟨φ,ψ⟩.θ(x) of ϕ, we define its immediate subformulas as: φ, ψ and ϕ(ei),
for 1 ≤ i ≤ n. We let Sub(ϕ) denote the set of all subformulas of ϕ.

Now we will describe how monitoring can be done for φ, given ρ and 1 ≤ i ≤ ∣ρ∣. Let
φ1, φ2, . . . , φm be an enumeration of Sub(φ) respecting the order that any formula has
an enumeration number greater than that of all its subformulae. Following the notations
in [17], we can assign to each ψ ∈ Sub(φ) an index i, such that ψ = φi in this enumera-
tion. We refer to this index as idx(ψ).We maintain two Boolean arrays prev[1, . . . ,m]

and cur[1, . . . ,m]. The intention is that given ρ and i > 1, the value of prev[k] corre-
sponds to the truth value of the judgment ρ, ν, i − 1 ⊧ φk and the truth value of cur[k]
corresponds to the truth value of the judgment ρ, ν, i ⊧ φk.

Recall that each quantified variable is used in exactly one univariate function. For
each variable x, we keep a data structure CntInfo, shown in Figure 1, which stores the
lower bound (lowerBound) and the period of (period) the G-function, and the index
of the equivalence class induced by the G-function (indexEC). The initialization of an
instance of CntInfo is conducted in init counter(), which will set lowerBound and pe-
riod the accordingly, and zero the indexEC. The array cnt[1, . . . , l] in both Init and
Iter algorithm stores a list of CntInfo objects associated with each variables. We as-
sign an index idxc(x) to each variable x, and cnt[idxc(x)] maintains the information
associated with the counter variable x.

The main monitoring algorithm (Algorithm 1) is divided into two sub-procedures:
the initialisation procedure (Algorithm 2) and the iterative procedure (Algorithm 3). In
the pseudocode of the algorithms, we overload some logical symbols to denote opera-
tors on boolean values. It is straightforward to see that, once the formula to be monitored
is fixed, the space required to run the algorithm does not grow with the length of traces.
In particular, the values of the counter variables (the indexEC field) is bounded, i.e., it
never grows beyond period + lowerBound.

4 Extension to Multivariate Relations

We now look at the case where relations can be multivariate. We shall restrict our dis-
cussions to the bivariate case; the extension to the multivariate case is straightforward
and does not require any new techniques so we omit details here.
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Algorithm 2: Init(ρ,φ, prev, cur, cnt)
1 for k = 1 to m do
2 switch φk do
3 case � cur[k]← false;
4 case P cur[k]← P ∈ ρ1;
5 case ¬ψ cur[k]← ¬cur[idx(ψ)];
6 case t > 0 cur[k]← tν > 0;
7 case ψ1 ∨ ψ2 cur[k]← cur[idx(ψ1)] ∨ cur[idx(ψ2)];
8 case ●ψ cur[k]← false;
9 case ψ1 S ψ2 cur[k]← cur[idx(ψ2)];

10 case Cx ∶ ⟨ψ1, ψ2⟩.ϕ(x)
11 init counter(cnt[idxc(x)]);
12 if !cur[idx(ψ1)] then
13 if cur[idx(ψ2)] then
14 cnt[idxc(x)].count + +;
15 cur[k]← cur[idx(ϕ(1))];

16 else cur[k]← cur[idx(ϕ(0))];

17 return cur[idx(φ)];

Definition 6. Let F ∶ N×N→ R be a total function, then ϕF is TLI-monitorable if there
are constants c1, c2 and k1, k2, with c1 ≥ k1 ≥ 1, c2 ≥ k2 ≥ 1 and c1, c2, k1, k2 ∈ N,
such that

ϕF (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F (x, y) > 0 if x < c1 and y < c2,

H

⎛
⎜⎜
⎝

ϕF (x − k1, y), . . . , ϕF (x − 1, y),
ϕF (x − k1, y − 1), . . . , ϕF (x, y − 1),
ϕF (x − k1, y − k2), . . . , ϕF (x, y − k2)

⎞
⎟⎟
⎠

otherwise.

where H is a total computable Boolean function.

Theorem 4. Given a total function F ∶ N×N→ R, if there are constants Tx, cx, Ty and
cy such that FG(x, c) is lb-periodic with period Tx for any c ∈ N ≥ cy , and FG(d, y) is
lb-periodic with period Ty for any d ∈ N ≥ cx, then ϕF is TLI-monitorable.

Essentially, Theorem 4 says that ϕ is TLI-monitorable if the period of a projection
of F into one of its parameter is independent of the other parameter, once the value
of that parameter exceeds a certain threshold. This allows us to quotation the values of
each parameters into their own equivalence classes independently of each other.

The monitoring algorithm is surprisingly the same as the univariate case. We still
need to adopt the same restriction regarding the occurrences of variables as in the uni-
variate case, i.e., that each quantified variable appears exactly once in a bivariate func-
tion. The main difference between the univarite and the bivariate case is finding the right
lower bound and the periods of each variables, a process which takes place outside the
algorithm; once these parameters are defined, the monitoring algorithm proceeds as in
the univariate case.
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Algorithm 3: Iter(ρ, i, φ, prev, cur, cnt)
1 prev ← cur;
2 for k = 1 to m do
3 switch φk do
4 case � cur[k]← false;
5 case P cur[k]← P ∈ ρi;
6 case ¬ψ cur[k]← ¬cur[idx(ψ)];
7 case t > 0 cur[k]← tν > 0;
8 case ψ1 ∨ ψ2 cur[k]← cur[idx(ψ1)] ∨ cur[idx(ψ2)];
9 case ●ψ cur[k]← prev[idx(ψ)];

10 case ψ1 S ψ2 cur[k]← cur[idx(ψ2)] ∨ (cur[idx(ψ1)] ∧ prev[idx(ψ2)]);
11 case Cx ∶ ⟨ψ1, ψ2⟩.ϕ(x)
12 if !(cur[idx(ψ1)] ∨ cur[idx(ψ2)]) then cur[k]← pre[k];
13 else
14 if cur[idx(ψ1)] then
15 cnt[idxc(x)].indexEC ← 0;

16 else
17 if cur[idx(ψ2)] then
18 n← + + cnt[idxc(x)].indexEC;
19 lowerBound← cnt[idxc(x)].lowerBound;
20 period← cnt[idxc(x)].period;
21 if n ≥ lowerBound + period then
22 cnt[idxc(x)].indexEC ←

(n − lowerBound) mod period + lowerBound;

23 cur[k]← cur[idx(ϕ(cnt[idxc(x)].indexEC))];

24 return cur[idx(φ)];

The extension to the multivariate case follows the same idea, i.e., a sufficient con-
dition for ϕF , when F is an n-ary function, to be monitorable is that the period of any
of its projection is independent of the other projections.

5 Case Studies in Android

In this section, some concrete policies in Android systems are provided as case studies
for PTLTLcnt. In the rest of this paper, we assume the following atomic propositions
in Android OS. Si (or Ei) means the application with UID i starts to run (or stops
running). Mi means the application with UID i sends out a message. Ii means the
application with UID i opens an Internet connection socket. Fi : the application with
UID i forks a new child process. Ci means the application with UID i accesses the
contact database.

The following policies refer to the malicious access patterns that are forbidden in
Android systems. At any moment, if ρ, ν, ∣ρ∣ /⊧ φ holds, and when a new event P occurs,
the monitor checks whether [ρ;P ], ν, ∣ρ∣ + 1 /⊧ φ holds. If it does, the process forwards
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fluently. Otherwise, a suspicious alert will send to the user. As for the specific limit on
specific counted amount, we just give a rough estimation for illustration purpose.

1. Cx ∶ ⟨Si,Mi ∧ ¬Ei⟩.(x > 5)
This policy is to guarantee that an app with UID i cannot send more that 5 SMS
messages during a single run, which is inspired by [3] for stopping unintended SMS
transmissions. In [21], authors found that current Android botnets are exploiting
SMS messages to gather money by sending SMS to premium-rate numbers. With
the specified policy, it helps to make possible discovery of an Android bot.

2. Cx ∶ ⟨Si, Ii ∧ ¬Ei⟩.(x > 200)
This policy says that an app cannot open Internet connection socket for more than
200 times in a single run. If an Android app aims at flooding a targeted server to
launch a DDoS attack, one way to achieve this is to open massive Internet con-
nections. This policy can help to control the amount of Internet connections, thus
preventing some potential malware.

3. Cx ∶ ⟨Si, Fi ∧ ¬Ei⟩.(x > 216)
This policy says that during the life cycle of an application, it is not allowed to
create more than 216 child processes to exhaust the pid, i.e., the process identi-
fier in Linux kernel. RageAgainstTheCage [1] is a well-known exploit in Android,
which can perform unauthorized privileged actions by gaining the root access. This
malware uses a vulnerability in Android kernel to get the root privilege by keeping
forking the child process to 216. With this policy specified using PTLTLcnt, con-
straint is set to how many child processed an application can fork in a single run, it
will be much helpful to prevent this attack.

6 Implementation and Evaluation
We have implemented the monitoring algorithm for PTLTLcnt and evaluated it on Log-
icDroid platform [17], which is a modified Android system based on Android 4.1. The
Android IPC (Inter-process communication) calls, like opening Internet socket, send-
ing SMS and accessing contact database hooked by LogicDroid form the set of events
against which policies in PTLTLcnt need to be checked. Since LogicDroid does not yet
implement hooks to detect the start or end of a process or an app, the reset conditions
in our example policies are not applicable. In particular, policy 3 in Section 5, which
counts the child processes forked by an app, has not yet been tested due to the lack of
support for process forking detection in LogicDroid.

The list of six policies adopted in our experiments is presented in Figure 2. among
which the first two are that introduced in Section 5, and the others are artificial examples
to evaluate the robustness of our approach. To keep the diversity of the policies, the
number of counters in the six policies is 1, 1, 2, 3, 6, 10 separately. Also there are
policies with complicate reset conditions. Each policy is implemented as a Linux kernel
module according to the algorithm described in Section 3. For every counter variable in
the tested policies, the initialization of fields period and lowerBound in CntInfo struct
are currently done manually.

To test the practicability and efficiency of our approach, we implement a fuzzy
testing app to trigger three kinds of IPC calls (Mi, Ii and Ci in Section 5) randomly.
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1. Cx ∶ ⟨Si,Mi ∧ ¬Ei⟩.(x > 5)
2. Cx ∶ ⟨Si, Ii ∧ ¬Ei⟩.(x > 200)
3. Cx ∶ ⟨�,Mi⟩.Cy ∶ ⟨�, Ii⟩.K(x, y) > 0 with the definition of function K as follows:

K(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3x − 4y if x < 5 and y < 4,

K(x − 3, y) if x ≥ 5 and y < 4,

K(x, y − 2) if x < 5 and y ≥ 4,

K(x − 3, y − 2) otherwise.

Note that each projection of function K becomes periodic once x > 9 and y > 13, so it is
easy to show that ϕK is TLI-monitorable.

4. (Ii S Ci) ∧ Cx ∶ ⟨�,Mi⟩.Cy ∶ ⟨�, Ii⟩.Cz ∶ ⟨�,Cj⟩.H(x, y, z) > 0 with function H defined
as follows:

H(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x − 4y + 2z if x < 19 and y < 13 and z < 5,

H(x − 9, y, z) if x ≥ 19 and y < 13 and z < 5,

H(x, y − 2, z) if x < 19 and y ≥ 13 and z < 5,

H(x, y, z − 1) if x < 19 and y < 13 and z ≥ 5,

H(x − 9, y − 2, z) if x ≥ 19 and y ≥ 13 and z < 5,

H(x, y − 2, z − 1) if x < 19 and y ≥ 13 and z ≥ 5,

H(x − 9, y, z − 1) if x ≥ 19 and y < 13 and z ≥ 5,

H(x − 9, y − 2, z − 1) otherwise.

Each projection of function H is periodic when x > 19, y > 13 and z > 5, so ϕH is TLI-
monitorable.

5. Cx1 ∶ ⟨�, ●Ci⟩∧Cx2 ∶ ⟨�,¬Ii⟩∧Cx3 ∶ ⟨Ii,Ci⟩∧Cx4 ∶ ⟨�, ●Ii⟩∧Cx5 ∶ ⟨�,Mi⟩∧Cx6 ∶ ⟨�, Ii⟩
6. Cx1 ∶ ⟨�, ●Ci⟩ ∧ Cx2 ∶ ⟨�,¬Ii⟩ ∧ Cx3 ∶ ⟨Ii,Ci⟩ ∧ Cx4 ∶ ⟨�, ●Ii⟩ ∧ Cx5 ∶ ⟨�,Mi⟩ ∧ Cx6 ∶

⟨�, Ii⟩ ∧ Cx7 ∶ ⟨�,¬Mi⟩ ∧ Cx8 ∶ ⟨�, ●Mi⟩ ∧ Cx10 ∶ ⟨Cx9 ∶ ⟨�,¬Ci⟩,Mi⟩

Fig. 2: Additional policies used in the experiments.

For the evaluation, we measure the detection time of the monitoring process (i.e., the
execution time of a policy monitoring kernel module for processing a single event) and
the memory used by the system with the extra policy monitoring kernel module. All the
experiments are conducted in the LogicDroid emulator on 64-bit Ubuntu 14.04LTS with
16GB RAM and an Intel Xeon(R) CPU E5-1650 v2 with 3.50GHz. Our implementation
and the models shown in this section are available in [2].

Figure 3 shows the time used by the monitor for a single event check. To measure
the detection time, we launch the fuzzy testing app to send 1000 IPC calls continuously,
therefore the monitor kernel module will be invoked 1000 times. We record the detec-
tion time in every 50 calls as shown in Figure 3. It can be seen from the figure that
the time used for each policy monitoring kernel module is stable, i.e., does not increase
with trace length grows. There is no obvious difference between the time cost for differ-
ent policies, and the average checking time is 6 to 8 microseconds. Figure 4 shows the
memory usage of the emulator with the six different kernel modules. To consider the
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impact of the additional kernel module on memory usage in the emulator more accu-
rately, we measure the memory when every 1000 IPC calls are triggered for continuous
10 times. Clearly, all of the memory usage measured for the emulator with different
kernel module installed in turn are quite stable (i.e., does not increase with the time),
which supports our claim that the proposed algorithm is trace-length independent.

Note that the six policies module tested in the experiment are with a increasing
number of counters. From the results shown in Figure 3 and Figure 4, we can know that
the number of counters involved in a policy has little timing and memory influence.

To give an emperical validation of the effectiveness of our monitoring algorithm,
comparison experiments have been done with a direct primitive counting mechanism,
where all events will be recorded and the entire history will be searched to get the
statistics of count when the monitor checks the validation. The results of monitoring
the policy 3 in Figure 2 are shown in Figure 5 and Figure 6. For the detection time, it is
following the previous measure experiment. While the memory is measured when every
10000 IPC calls are triggered for continuous 10 times. We choose a different setting
to make visible the gradually increasing tendency of memory used by the primitive
monitor. As can be seen, there is obvious increase of the time and space required by the
primitive monitor as the trace length grows.
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7 Related Work

This section lists some recent works on counting quantifier combined with different
kinds of logic theories, aiming to increase the expressiveness of the logic. A brief outline
of the history of trace-length independent runtime monitoring will also be given.

Inspired by the aggregation operators in database query language like SQL, Basin
et al. [6] extend metric first-order temporal logic (MFOTL) with aggregation operators,
like SUM, CNT, MAX and AVG, and proposed a monitoring algorithm for language.
The core of this work is to translate policies specified with the extended MFOTL to the
corresponding extended relational algebra. For their monitoring algorithm, functions
are handled similarly to Prolog. Even through some optimizations are taken to accel-
erate computations in monitoring, the aggregation operators are out of their consider-
ation. Another language, SOLOIST [11], is based on a many-sorted first-order metric
temporal logic and extended with new temporal modalities that support aggregate op-
erators for events occurring in a certain time window. For its monitoring, Bianculli et
al. [12] proposed to translate the formulae in SOLOIST to formulae of CLTLB(D) [10],
and Bersani et al. [9] presented an approach to encode SOLOIST formulae into QF-
EUFIDL formulae. Nevertheless, both approaches depend on SMT-solver to do the fi-
nal satisfiability checking. The evaluations of the above two works show that increasing
time and memory will be needed when the length of the trace grows.

Laroussinie et al. [20] presented a quantitative extension for LTL, called CLTL,
allowing to specify the number of states satisfying certain sub-formulas along paths,
which provided the same semantics with ours. They also showed even though CLTL
formulae can be translated into classical LTL, an exponential blow-up in formula size
is inevitable. As for the satisfiability and model-checking problems for CLTL, they
turned out to be EXPSPACE-complete, but PSPACE-complete when restricting CLTL
to a fragment. Actually this fragment is just a subset of the TLI-formulas defined in our
work, for which the relation function will grow monotonously with any involved count
increasing.

Other monitoring approaches that provide support for different kinds of aggrega-
tions are LarvaSat [13], LOLA [14], as well as rule-based EAGLE [4], RULER [5] and
LOGFIRE [18], and one based on algebraic alternating automata [15], However, all
monitoring algorithms for the above languages still need to record the specific counted
values, even though most of them avoided storing the entire trace history. In principle,
these counters can increase indefinitely, so their space complexity is not constant unlike
our monitoring algorithms.

There are some works [19,8,17] concentrate on designing trace-length independent
monitoring algorithms. In particular, this work can be seen as an effort to extend the
LogicDroid framework to incorporate the counting quantifier of [7]. Although the con-
cept of trace-length independence is proposed in 2013, there are also some prior works
which imply this property in their algorithm design. For the best of our knowledge,
this is first work on designing trace-length independence algorithms involving counting
quantifier, not even other aggregation operators. For now, we are the first one to imple-
ment a trace-length independent runtime verification algorithm for the logic language
with a counting quantifier.
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8 Conclusion

We have presented a formal policy specification language PTLTLcnt that allows ex-
pressions of quantitative policies. We consider the questions of when a formula is trace-
length independent monitorable. For univariate relations, we obtain sufficient and nec-
essary conditions for the relations to be TLI-monitorable. We then discussed an exten-
sion to the multivariate relations. Assuming the relations are all TLI-monitorable, we
construct a TLI monitoring algorithm for PTLTLcnt. We have implemented and tested
our monitoring algorithm, and the experimental results more or less confirm our the-
oretical results. Currently, we have not yet addressed the integration of the counting
quantifier with metric operators and recursive predicates of [17]. This is a subject of
immediate future work. We also plan to look to incorporate other, more expressive ag-
gregrate operators from [6].
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