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Abstract. Existing work on theorem proving for the assertion language
of separation logic (SL) either focuses on abstract semantics which are
not readily available in most applications of program verification, or on
concrete models for which completeness is not possible. An important
element in concrete SL is the points-to predicate which denotes a singleton
heap. SL with the points-to predicate has been shown to be non-recursively
enumerable. In this paper, we develop a first-order SL, called FOASL,
with an abstracted version of the points-to predicate. We prove that
FOASL is sound and complete with respect to an abstract semantics, of
which the standard SL semantics is an instance. We also show that some
reasoning principles involving the points-to predicate can be approximated
as FOASL theories, thus allowing our logic to be used for reasoning about
concrete program verification problems. We give some example theories
that are sound with respect to different variants of separation logics from
the literature, including those that are incompatible with Reynolds’s
semantics. In the experiment we demonstrate our FOASL based theorem
prover which is able to handle a large fragment of separation logic with
heap semantics as well as non-standard semantics.

1 Introduction

Separation Logic (SL) is widely used in program verification and reasoning
about memory models [29, 31]. SL extends the traditional Hoare Logic with
logical connectives ∗,−∗ from the logic of Bunched Implications (BI). These
new connectives in BI provide an elegant way to reason about resources locally,
enabling analyses of large scale programs. Current work on SL can be divided into
two categories: one on the abstract separation logics and the other on the concrete
ones. On the abstract side there has been study on BI and its Boolean variant
BBI [28, 23]. Closely related are abstract separation logic and its neighbours [9,
22]. Abstract separation logics lack the interpretation of the points-to predicate
7→, which represents a single memory cell. In this setting, the semantics is just
an extension of commutative monoids with certain properties usually called
separation theory [13, 8]. On the concrete side there have been developments
along several directions, such as proof methods for SL with memory model
semantics [15, 17, 25], and symbolic heaps [2, 1, 27, 6]. There have been numerous
modifications of SL, e.g., Fictional Separation Logic [19], Rely/Guarantee [35],
Concurrent Separation Logic [4].



To support reasoning about Hoare triples, it is essential to have proof methods
for the assertion logic. In the reminder of this paper we focus on the assertion
logic of separation logic. Although theorem proving for propositional abstract
separation logics (PASLs) is undecidable [23, 7], there have been semi-decision
procedures for those logics [5, 30, 16, 8, 24]. However, since PASLs do not impose
a concrete semantic model, they usually cannot be directly used in program
verification. The situation is more intriguing for separation logic with memory
model semantics. Calcagno et al. showed that the full logic is not recursively
enumerable [10], thus it is not possible to have a sound and complete finite
proof system for the full separation logic. Interestingly, their result uses only
an extension of first-order logic, without function symbols, but with a two-field
points-to predicate, i.e., predicates of the form [a 7→ c, d], which represents
a memory cell with a record of two fields. Recent study also shows that the
points-to predicate 7→ is a source of undecidability. For example, restricting the
record field (i.e., right hand side) of 7→ to one variable and allowing only one
quantified variable reduces the satisfiability of SL to PSPACE-complete [12].
The above work indicates that directly handling the points-to predicate in the
logic may not be easy. Section 4 of [17] details related issues on various proof
systems for separation logic with memory model. Another complicating factor in
designing a proof system for separation logic is the “magic wand” −∗ connective.
The separation conjunction ∗ can be encoded using −∗ , but not the other way
around [3, 11]. Consequently, most proof methods for SL with concrete semantics
are restricted to fragments of SL, typically omitting −∗ . The connective −∗ ,
however, has found many applications, such as tail-recursion [26], iterators [20],
“septraction” in rely/guarantee [35], amongst other motivating examples discussed
in the introduction of [25].

Since completeness with respect to Reynolds’s model is not possible, an
interesting question arises as to what properties of points-to (−∗ is not so crucial
in terms of the completeness property) one should formalize in the system, and
what kind of semantics the resulting proof system captures. There have been at
least a couple of attempts at designing a proof system that features both −∗ and
points-to; one by Lee and Park [25] and the other by Hou et al. [17]. In [25], Lee
and Park claimed incorrectly that their proof system is complete with respect to
Reynolds’s semantics, though this claim was later retracted.1 In [17], Hou et al.
give a proof system LSSL that is sound with respect to Reynolds’s semantics, but
no alternative semantics was proposed nor any completeness result stated. It is
also not clear in general what proof rules one should include in the proof system
such as that in [17]. This has led to the introduction of various ad hoc proof
rules in [17], which are often complex and unintuitive, in order to capture specific
properties of the underlying concrete separation logic models (e.g., Reynolds’s
model), resulting in a complex proof system, which is both hard to implement
and hard to reason about.

1 See http://pl.postech.ac.kr/SL/ for the revised version of their proof system,
which is sound but not complete w.r.t. Reynolds’s semantics.



In this paper, we revisit our previous work [17] in order to provide an abstract
semantics and a sound and complete proof system with respect to that abstract
semantics, that are useful for reasoning about the meta-theory of the proof
system, and easy to extend to support reasoning about various concrete models of
separation logic. Our point of departure is to try to give a minimal proof system
and encode as many properties of points-to as possible using logical theories,
rather than proof rules, and to formalize as inference rules only those properties
that cannot be easily encoded as theories. This led us to keep only two proof
rules for the points-to predicate from [17] (see the rules  1 and  2 in Figure 1
in Section 3). Semantically, these two rules are justified by a new semantics of an
abstract version of the points-to predicate (notationally represented by  here,
to distinguish it from the points-to predicate 7→ in the concrete SL), that is, it is
a function that constructs a heap from a tuple of values. In particular, we do not
assume that the constructed heap from a tuple is a singleton heap, so a points-to
predicate such as [a b, c] in our semantics denotes a heap, but not necessarily
a singleton heap mapping a to a two-field record (b, c). Reasoning in the concrete
models, such as Reynolds’s SL, which may require properties of singleton heaps,
can be approximated by adding theories to restrict the interpretation of points-to
(see e.g., Section 5.1). Obviously one would not be able to completely restrict the
interpretation of  to singleton heaps via a finite theory, as one would then run
into the same incompleteness problem as shown in [10].

The proof system for the first-order abstract separation logic that we introduce
here, called LSFOASL, is based on the proof system LSPASL for propositional
abstract separation logic (PASL) [16], which is a labelled sequent calculus. We
choose labelled calculi as the framework to formalize our logic since it has been
shown to be a good framework for proof search automation for abstract separation
logics [17, 24]. Formulas in a labelled sequent in LSPASL are interpreted relative
to the interpretation of the labels they are attached to, so a labelled formula
such as h : F , where h is a label and F is a formula, denotes the truth value of
F when evaluated against the heap h. In extending PASL to the first-order case,
especially when formulating theories for specific concrete models, it turns out
that we need to be able to assert that some formulas hold universally for all heaps,
or that they hold in some unspecified heap, both of which are not expressible
in PASL. To get around this limitation, we introduce modal operators to allow
one to state properties that hold globally in all heaps or in some heap. Section 5
shows some examples of uses of these modal operators in theories approximating
concrete models of separation logics.

The semantics of FOASL is formally defined in Section 2. In Section 3 we
present the proof system LSFOASL, which is an extension of LSPASL with
rules for first-order quantifiers, the points-to predicate and modal operators.
In Section 4, we prove soundness and completeness of LSFOASL with respect
to the semantics described in Section 2. The completeness proof is done via
a counter-model construction similar to that in [21, 16] for the propositional
case, but our proof is significantly more complicated as we have to deal with
the first-order language and the construction of the model for the points-to



predicate, which requires a novel proof technique. We show in Section 5 that all
the inference rules for points-to in the labelled sequent calculus LSSL [17] can be
derived using theories in our logic, except one rule called HC, which is not used
in the current program verification tools. Our theories for points-to cover the
widely-used symbolic heap fragment of SL, thus our logic can be used in many
existing program verification methods. Furthermore, we can also prove many
formulae that are valid in SL but which cannot be proved by most existing tools.
An implementation is discussed in Section 6, we show that our prover can reason
about the standard heap semantics and the non-standard ones.

2 First-order Abstract Separation Logic

This section introduces First-order Abstract Separation Logic (FOASL). The
formulae of FOASL are parameterized by a first order signature Σ = (R, C),
consisting of a set of predicate symbols R and a set of constants C. Constants are
ranged by a, b and c, and predicate symbols by p and q (possibly with subscripts).
We also assume an infinite set V of first-order variables, ranged over by x, y, z.
A term is either a constant or a variable, and is denoted by e, s and t. We
assume that R includes a symbol =, denoting the equality predicate, and a finite
collection of abstract points-to predicates. We shall use the notation n to denote
an abstract points-to predicate of arity n. We use an infix notation when writing
the abstract points-to predicates. For an abstract points-to predicate of arity k,
taking arguments t1, . . . , tk, we write it in the form:

t1  
k t2, . . . , tk.

We shall omit the superscript k when the arity of  is not important or can
be inferred from the context of discussion. Note that the abstract points-to  
is not the points-to predicate in SL, but is a weaker version whose properties
will be discussed later. To simplify presentation, we do not consider function
symbols in our language, but it is straightforward to add them. In any case, the
incompleteness result for concrete SL of [10] holds even in the absence of function
symbols, so the omission of function symbols from our logic does not make the
completeness proof for our logic conceptually easier.

The formulae of FOASL are given by the following grammar:

F ::= >∗ | ⊥ | p(t1, . . . , tk) | s t1, . . . , tl | s = t | F → F |
F ∗ F | F−∗ F | ♦F | ∃x.F

The logical constant ⊥, the connective→ and the quantifer ∃ are the usual logical
operators from first-order logic. The operator ♦ is a modal operator (denoting
“possibility”). Classical negation ¬F is defined as F → ⊥. Other operators, i.e., >,
∨, ∧, ∀, and �, can be defined via classical negation, e.g., �A = ♦(A→ ⊥)→ ⊥.
The connectives ∗ and −∗ correspond to separation conjunction and the “magic
wand” from separation logic [31], and >∗ is the multiplicative truth.

The semantics of FOASL is defined based on a separation algebra, i.e., a
commutative monoid (H, ◦, ε) where H is a non-empty set, ◦ is a partial binary



M, v, h 
 p(t1, · · · , tn) iff (tM1 , · · · , tMn ) ∈ pI
M, v, h 
 A→ B iffM, v, h 6
 A or M, v, h 
 B

M, v, h 
 >∗ iff h = ε
M, v, h 
 ⊥ iff never

M, v, h 
 A ∗B iff h1 ◦ h2 = h and M, v, h1 
 A and M, v, h2 
 B for some h1, h2

M, v, h 
 A−∗ B iff for all h1, h2, if h ◦ h1 = h2 and M, v, h1 
 A, then M, v, h2 
 B
M, v, h 
 ∃x.A(x) iff ∃d ∈ D.M, v[d/x], h 
 A(x)
M, v, h 
 ♦A iff ∃h1 ∈ H.M, v, h1 
 A
M, v, h 
 t1 = t2 iff tM1 and tM2 are the same element in D.
M, v, h 
 t1  t2, . . . , tk iff fk(tM1 , . . . , tMk ) = h.

Table 1. The semantics of FOASL.

function H × H ⇀ H written infix, and ε ∈ H is the unit. This separation
algebra satisfies the following conditions, where ‘=’ is interpreted as ‘both sides
undefined, or both sides defined and equal’:

identity: ∀h ∈ H.h ◦ ε = h.
commutativity: ∀h1, h2 ∈ H.h1 ◦ h2 = h2 ◦ h1.
associativity: ∀h1, h2, h3 ∈ H.h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3.
cancellativity: ∀h1, h2, h3, h4 ∈ H. if h1 ◦ h2 = h3 and h1 ◦ h4 = h3 then

h2 = h4.
indivisible unit: if h1 ◦ h2 = ε then h1 = ε.
disjointness: ∀h1, h2 ∈ H. if h1 ◦ h1 = h2 then h1 = ε.
cross-split: if h1 ◦ h2 = h0 and h3 ◦ h4 = h0, then ∃h13, h14, h23, h24 ∈ H such

that h13 ◦ h14 = h1, h23 ◦ h24 = h2, h13 ◦ h23 = h3, and h14 ◦ h24 = h4.

Note that partial-determinism is assumed since ◦ is a partial function: for any
h1, h2, h3, h4 ∈ H, if h1 ◦ h2 = h3 and h1 ◦ h2 = h4 then h3 = h4.

A FOASL model is a tuple M = (D, I, v,F , H, ◦, ε) where D is a non-empty
domain, I is an interpretation function mapping constant symbols to elements
of D, and predicate symbols, other than = and  , to relations. The function v
is a valuation function mapping variables to D. We use a set F of functions to
interpret the abstract points-to predicates. To each abstract points-to predicate of
arity n, we associate an n-argument total function fn : D×· · ·×D 7→ H ∈ F . The
tuple (H, ◦, ε) is a separation algebra. For a predicate symbol p and a constant
symbol c, we write pI and cI , respectively, for their interpretations under I. We
write tM for the interpretation of term t in the model M. For a variable x,
xM = v(x). A term t is closed if it has no variables, and we write tI for the
interpretation of t since it is independent of the valuation function v.

A separation algebra (H, ◦, ε) can be seen as a Kripke frame, where H is the
set of worlds and the (ternary) accessibility relation R is defined as: R(h1, h2, h3)
iff h1 ◦ h2 = h3. Modal operators are thus a natural extension to FOASL.

The semantics of FOASL formulae are defined via Kripke style notations in
Table 1, where M = (D, I, v,F , H, ◦, ε) is a FOASL model, and h, h1, h2 ∈ H.
In the table, we write v[c/x] to denote the valuation function that may differ
from v only in the mapping of x, i.e., v[c/x](x) = c and v[c/x](y) = v(y) if
y 6= x. A FOASL formula A is true at h in the model M = (D, I, v,F , H, ◦, ε)
if M, v, h 
 A. It is true in M if it is true at some h in H. A formula is valid



if it is true in all models; a formula is satisfiable if it is true in some model. A
formula is called a sentence if it has no free variables.

Besides the first-order language, FOASL has two main extensions over PASL:
the abstract points-to predicate and the modality ♦. We explain their intuitions
here. In the concrete SL models, the points-to predicate [a 7→ b] is true only in
a singleton heap that maps a to b. In our abstract semantics for [a  b], we
drop the requirement that the heap must be singleton. Instead, we generalize
this by parameterizing the semantics with a function (the function f discussed
earlier) that associates values to (possibily non-singleton) heaps. The predicate
[a b] is true in a world h iff h is the image of f2(a, b). As a consequence of this
interpretation of  , we have the following properties where ~t is a list of fields:

– (Injectivity) If s ~t holds in both h1 and h2, then h1 = h2.
– (Totality) For any s and ~t, there is some h such that s ~t holds in h.

The latter in particular is a consequence of the fact that functions in F are
total functions. We do not impose any other properties on  . For example,
we do not assume an invalid address nil such that nil 7→ ~t must be false. The
reason we cannot disprove nil  ~t is partly because we do not insist on a fixed
interpretation of nil in our logic. This does not mean that nil  ~t is valid in our
logic; it is only satisfiable. We can strengthen  by adding more theories to it,
including a formula to force nil  ~t to be unsatisfiable. See Section 5 and 6 for
details.

To motivate the need for the modal operators, consider an example to approx-
imate, in our framework, a separation logic where the points-to relation maps an
address to a multiset of addresses. In the binary case, one could formalize this as:

F = ∀x, y, z.(x 7→ y, z)→ (x 7→ z, y)

We can encode this property as a rule in a labelled sequent calculus as shown
below left. When generalising this to points-to of (n+ 1)-arities, we will have to
consider adding many variants of rules that permute the right hand side of 7→,
which is what we are trying to avoid. Alternatively, we can add the formula F to
the antecedent of the sequent, and attach a label l to F , and do a forward-chaining
on l : F , as shown below right, where Γ,∆ are sets of labelled formulae:

Γ ; l : (a 7→ c, b) ` ∆
Γ ; l : (a 7→ b, c) ` ∆

· · · Γ, l : F, l : (a 7→ c, b) ` ∆
Γ, l : F, l : (a 7→ b, c) ` ∆

where the · · · are the instantiation of x, y, z with a, b, c respectively, and the
discharge of the assumption (x 7→ y, z) of F . However, if (a 7→ b, c) in the
conclusion is attached to another label (world) m, we then have to add m : F to
the sequent. In effect, we would have to add an infinite set of labelled formulae
of the form k : F to the sequent to achieve the same effect of the inference rule.
With modalities, we can simply use l : �F , which would then allow F to be used
at any world in the antecedent of the sequent.

Example 1. Consider Reynolds’s semantics for separation logic [31], with an
abstract points-to predicate of arity two. This can be shown to be an instance



of our abstract semantics, where the domain D is the set of integers, H is the
set of heaps (i.e., finite partial maps from integers to integers), ε denotes the
empty heap, and the function f2 is defined as f2(a, b) = [a 7→ b] where [a 7→ b]
is the singleton heap, mapping a to b. The operation ◦ on H is defined as heap
composition. It can be shown that (H, ◦, ε) forms a separation algebra. Note
that if we relax the interpretation of H to allow infinite heaps, (H, ◦, ε) is still
a separation algebra, which shows that our semantics may admit non-standard
interpretations of separation logic.

3 LSFOASL: A Labelled Calculus for FOASL

Let LVar be an infinite set of label variables, the set L of labels is LVar ∪ {ε},
where ε 6∈ LVar is a label constant. We overload the notation and write h with
subscripts as labels. A function ρ : L → H from labels to worlds is a label mapping
iff it satisfies ρ(ε) = ε, mapping the label constant ε to the identity world of H. A
labelled formula is a pair consisting of a label and a formula. We write a labelled
formula as h : A, when h is the label and A is the formula of the labelled formula.
A relational atom is an expression of the form (h1, h2 . h3), where h1, h2 and h3
are labels, this corresponds to h1 ◦ h2 = h3 in the semantics. A relational atom is
not a formula; rather it can be thought of as a structural component of a sequent.
A sequent takes the form G;Γ ` ∆ where G is a set of relational atoms, Γ,∆ are
sets of labelled formulae, and ; denotes set union. Thus Γ ;h : A is the union of
Γ and {h : A}. The left hand side of a sequent is the antecedent and the right
hand side is the succedent.

We call our labelled proof system LSFOASL. The logical rules of LSFOASL
are shown in Figure 1, structural rules are in Figure 2. To simplify some rules,
we introduce the notation h1 ∼ h2 as an abbreviation of (ε, h1 . h2). We use the
notation [t/x] to denote a variable substitution, and similarly [h′/h] for a label
substitution, where h is a label variable. The equality rules, for terms (=1 and
=2) and labels (∼1 and ∼2), are the usual equality rules (see e.g., [34]). These
rules allow one to replace a term (label) with its equal anywhere in the sequent.
Note that in those rules, the replacement of terms (labels) need not be done for
all occurrences of equal terms; one can replace just one occurrence or more. For
example, below left is a valid instance of =2. This is because both the premise
and the conclusion of the rules are instances of the sequent below right:

h : s = t;h1 : p(t, s) ` h2 : q(s, s)
=2

h : s = t;h1 : p(s, s) ` h2 : q(s, s)
h : s = t;h1 : p(x, s) ` h2 : q(s, s)

i.e., the premise sequent is obtained from the above sequent with substitution
[t/x], and the conclusion sequent with [s/x]. A similar remark applies for label
replacements in sequents affected via ∼2 . The rules  1 and  2 respectively
capture the injectivity and the totality properties of the underlying semantic
function interpreting  .

An extended model (M, ρ) is a FOASL model M equipped with a label
mapping ρ. A sequent G;Γ ` ∆ is falsifiable in an extended model if: (1) every



id
G;Γ ;h : A ` h : A;∆

⊥L
G;Γ ;h : ⊥ ` ∆

G;h ∼ ε;Γ ` ∆
>∗L

G;Γ ;h : >∗ ` ∆
>∗R

G;Γ ` ε : >∗;∆

G;Γ ;h : A ` h : B;∆
→ R

G;Γ ` h : A→ B;∆

G;Γ ` h : A;∆ G;Γ ;h : B ` ∆
→ L

G;Γ ;h : A→ B ` ∆

(h1, h2 . h0);G;Γ ;h1 : A;h2 : B ` ∆
∗L

G;Γ ;h0 : A ∗ B ` ∆
(h1, h0 . h2);G;Γ ;h1 : A ` h2 : B;∆

−∗ R
G;Γ ` h0 : A−∗ B;∆

(h1, h2 . h0);G;Γ ` h1 : A;h0 : A ∗ B;∆ (h1, h2 . h0);G;Γ ` h2 : B;h0 : A ∗ B;∆
∗R

(h1, h2 . h0);G;Γ ` h0 : A ∗ B;∆

(h1, h0 . h2);G;Γ ;h0 : A−∗ B ` h1 : A;∆ (h1, h0 . h2);G;Γ ;h0 : A−∗ B;h2 : B ` ∆
−∗ L

(h1, h0 . h2);G;Γ ;h0 : A−∗ B ` ∆

G;Γ ;h : A(y) ` ∆
∃L

G;Γ ;h : ∃x.A(x) ` ∆
G;Γ ` h : A(t);h : ∃x.A(x);∆

∃R
G;Γ ` h : ∃x.A(x);∆

G;Γ ;h′ : A ` ∆
♦L

G;Γ ;h : ♦A ` ∆

G;Γ ;h : t = t ` ∆
=1

G;Γ ` ∆
G;h : s = t;Γ [t/x] ` ∆[t/x]

=2
G;h : s = t;Γ [s/x] ` ∆[s/x]

G;Γ ` h′ : A;h : ♦A;∆
♦R

G;Γ ` h : ♦A;∆

G;Γ ;h : s ~t ` ∆
 1

G;Γ ` ∆
G;h1 ∼ h2;Γ ;h1 : s ~t;h2 : s ~t ` ∆

 2

G;Γ ;h1 : s ~t;h2 : s ~t ` ∆

Side conditions:
In ∗L and −∗ R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion. In ♦L, h′ does not occur in the conclusion.
In  1, h does not occur in the conclusion.

Fig. 1. Logical rules in LSFOASL.

relational atom (h1, h2 . h3) ∈ G is true, i.e., ρ(h1) ◦ ρ(h2) = ρ(h3); (2) every
labelled formula h : A ∈ Γ is true, i.e.,M, v, ρ(h) 
 A; (3) every labelled formula
h′ : B ∈ ∆ is false, i.e., M, v, ρ(h′) 6
 B. A sequent is falsifiable if it is falsifiable
in some extended model.

To prove a formula F , we start from the sequent ` h : F with an arbitrary
label h 6= ε, and try to derive a closed derivation by applying inference rules
backwards from this sequent. A derivation is closed if every branch can be closed
by a rule with no premises. The soundness of LSFOASL can be proved by arguing
that each rule preserves falsifiability upwards. The proof is given in [18].

Theorem 1 (Soundness). For every FOASL formula F , if ` h : F is derivable
in LSFOASL for any label h, then F is a valid FOASL formula.

4 Counter-model Construction

We now give a counter-model construction for LSFOASL to show that LSFOASL
is complete w.r.t. FOASL. The proof here is motivated by the completeness proof
of the labelled sequent calculus and labelled tableaux for PASL [16, 21], but this



h ∼ h;G;Γ ` ∆
∼1

G;Γ ` ∆
h1 ∼ h2;G[h2/h];Γ [h2/h] `∆[h2/h] ∼2
h1 ∼ h2;G[h1/h];Γ [h1/h] ` ∆[h1/h]

(h2, h1 . h0); (h1, h2 . h0);G;Γ ` ∆
E

(h1, h2 . h0);G;Γ ` ∆
(h1, h1 . h2);h1 ∼ ε;G;Γ ` ∆

D
(h1, h1 . h2);G;Γ ` ∆

(h3, h5 . h0); (h2, h4 . h5); (h1, h2 . h0); (h3, h4 . h1);G;Γ ` ∆
A

(h1, h2 . h0); (h3, h4 . h1);G;Γ ` ∆

(h1, h2 . h0);h0 ∼ h3;G;Γ ` ∆
P

(h1, h2 . h0); (h1, h2 . h3);G;Γ ` ∆
(h1,h2. h0);h2 ∼ h3;G;Γ ` ∆

C
(h1,h2. h0); (h1, h3 . h0);G;Γ `∆

(h5, h6 . h1); (h7, h8 . h2); (h5, h7 . h3); (h6, h8 . h4); (h1, h2 . h0); (h3, h4 . h0);G;Γ `∆
CS

(h1, h2 . h0); (h3, h4 . h0);G;Γ ` ∆

Side conditions:
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Fig. 2. Structural rules in LSFOASL.

proof is significantly more complex, as can be seen in the definition of Hintikka
sequent below, which has almost twice as many cases as the previous work. The
constructed model extends the non-classical logic model in the previous work
with a Herbrand model as in first-order logic. For space reasons we only set up
the stage here and give the full proofs in [18].

We define a notion of saturated sequent, i.e., Hintikka sequent, on which all
possible rule instances in LSFOASL have been applied. In the following, we denote
with R a relational atom or a labelled formula.

Definition 1 (Hintikka sequent). Let L be a FOASL language and let T be the
set of closed terms in L. A labelled sequent G;Γ ` ∆, where Γ,∆ are sets of labelled
sentences, is a Hintikka sequent w.r.t. L if it satisfies the following conditions for
any sentences A,B, any terms t, t′, and any labels h, h0, h1, h2, h3, h4, h5, h6, h7:

1. If h1 : A ∈ Γ and h2 : A ∈ ∆ then h1 ∼ h2 6∈ G.
2. h : ⊥ 6∈ Γ .
3. If h : >∗ ∈ Γ then h ∼ ε ∈ G.
4. If h : >∗ ∈ ∆ then h ∼ ε 6∈ G.
5. If h : A→ B ∈ Γ then h : A ∈ ∆ or h : B ∈ Γ.
6. If h : A→ B ∈ ∆ then h : A ∈ Γ and h : B ∈ ∆.
7. If h0 : A∗B ∈ Γ then ∃h1, h2 ∈ L s.t. (h1, h2 .h0) ∈ G, h1 : A ∈ Γ and h2 : B ∈ Γ.
8. If h3 : A ∗ B ∈ ∆ then ∀h0, h1, h2 ∈ L if (h1, h2 . h0) ∈ G and h0 ∼ h3 ∈ G then

h1 : A ∈ ∆ or h2 : B ∈ ∆.
9. If h3 : A−∗ B ∈ Γ then ∀h0, h1, h2 ∈ L if (h1, h2 . h0) ∈ G and h2 ∼ h3 ∈ G, then

h1 : A ∈ ∆ or h0 : B ∈ Γ.
10. If h2 : A−∗ B ∈ ∆ then ∃h0, h1 ∈ L s.t. (h1, h2 . h0) ∈ G, h1 : A ∈ Γ and

h0 : B ∈ ∆.
11. If h : ∃x.A(x) ∈ Γ then h : A(t) ∈ Γ for some t ∈ T .
12. If h : ∃x.A(x) ∈ ∆ then h : A(t) ∈ ∆ for every t ∈ T .
13. If h : ♦A ∈ Γ then ∃h1 ∈ L s.t. h1 : A ∈ Γ .



14. If h : ♦A ∈ ∆ then ∀h1 ∈ L, h1 : A ∈ ∆.
15. For any t ∈ T , ∃h ∈ L s.t. h : t = t ∈ Γ .
16. If h1 : t = t′ ∈ Γ and h2 : A[t/x] ∈ Γ (h2 : A[t/x] ∈ ∆) then h2 : A[t′/x] ∈ Γ (resp.

h2 : A[t′/x] ∈ ∆).
17. For any label h ∈ L, h ∼ h ∈ G.
18. If h1 ∼ h2 ∈ G and a relational atom or a labelled formula R[h1/h] ∈ G ∪ Γ (resp.

R[h1/h] ∈ ∆), then R[h2/h] ∈ G ∪ Γ (resp. R[h2/h] ∈ ∆).
19. If (h1, h2 . h0) ∈ G then (h2, h1 . h0) ∈ G.
20. If {(h1, h2 . h0); (h3, h4 . h6);h1 ∼ h6} ⊆ G then ∃h5 ∈ L. {(h3, h5 . h0), (h2, h4 .

h5)} ⊆ G.
21. If {(h1, h2 . h0); (h3, h4 . h9);h0 ∼ h9} ⊆ G then ∃h5, h6, h7, h8 ∈ L s.t. {(h5, h6 .

h1), (h7, h8 . h2), (h5, h7 . h3), (h6, h8 . h4)} ⊆ G.
22. For every abstract points-to predicate  k in the language and for any t1, . . . , t

′
k ∈ T ,

∃h ∈ L s.t. h : t1  k t2, . . . , tk ∈ Γ .
23. If {h1 : s ~t, h2 : s ~t} ⊆ Γ then h1 ∼ h2 ∈ G.
24. If {(h1, h3 . h2), h1 ∼ h3} ⊆ G then h1 ∼ ε ∈ G.
25. If {(h1, h2 . h0), (h4, h5 . h3), h1 ∼ h4, h2 ∼ h5} ⊆ G then h0 ∼ h3 ∈ G.
26. If {(h1,h2. h0), (h4, h5 . h3), h1 ∼ h4, h0 ∼ h3} ⊆ G then h2 ∼ h5 ∈ G.

The next lemma shows that we can build an extended FOASL model (M, ρ)
where M = (D, I, v,F , H, ◦, ε) that falsifies the Hintikka sequent G;Γ ` ∆.
The D, I part is a Herbrand model as in first-order logic. The construction of
the monoid (H, ◦, ε) is similar to the one for PASL [16], where H is the set of
equivalent classes of labels in the sequent. The interpretation of the predicate  
is defined based the set of functions F . For each n-ary predicate  n, there is a
function fn ∈ F defined as below:

fn(t1, · · · , tn) = [h]G iff h′ : t1  
n t2, · · · , tn ∈ Γ and h ∼ h′ ∈ G.

where [h]G is the class of labels equivalent to h in G. F is the set of all such
functions. By Condition 22 and 23 of the Hintikka sequent, each function in F
must be a total function. The full proof is in [18].

Lemma 1 (Hintikka’s Lemma). Suppose L is a FOASL language with a
non-empty set of closed terms. Every Hintikka sequent w.r.t. L is falsifiable.

Then we show how to construct a Hintikka sequent for an unprovable formula
using the proof system LSFOASL. Unlike the usual procedure, we have to consider
the rules with no (or more than one) principal formulae. To this end, we define a
notion of extended formulae as in the previous work [16]:

ExF ::= F | ≡1 | ≡2 | 7→1 | 7→2 | E | A | CS | ≈1 | ≈2 |
P | C | D

Here, F is a FOASL formula, the other symbols correspond to the special rules in
LSFOASL. For example, ≡1 and ≡2 correspond to rules =1 and =2; 7→1 and 7→2

correspond to  1 and  2; ≈1 and ≈2 correspond to ∼1 and ∼2. The saturation
procedure is performed according to a schedule, which is defined below.



Definition 2 (Schedule). A rule instance is a tuple (O, h,ExF,R, S, n), where
O is either 0 (left) or 1 (right), h is a label, ExF is an extended formula, R is
a set of relational atoms such that |R| ≤ 2, S is a set of labelled formulae with
|S| ≤ 2, and n is a natural number. Let I denote the set of all rule instances. A
schedule is a function from natural numbers N to I. A schedule φ is fair if for
every rule instance I, the set {i | φ(i) = I} is infinite.

It is easy to verify that a fair schedule must exist. This is proved by checking
that I is a countable set [21], which follows from the fact that I is a finite product
of countable sets. We fix a fair schedule φ for the following proofs. We assume
the set L of labels is totally ordered and can be enumerated as h0, h1, h2, · · · ,
where h0 = ε. Similarly, we assume an infinite set of closed terms which can
be enumerated as t0, t1, t2, · · · , all of which are disjoint from the terms in F .
Suppose F is an unprovable formula, we start from the sequent ` h1 : F and
construct an underivable sequent as below.

Definition 3. Let F be a formula which is not provable in LSFOASL. We assume
that every variable in F is bounded, otherwise we can rewrite F so that unbounded
variables are universally quantified. We construct a series of finite sequents
〈Gi;Γi ` ∆i〉i∈N from F where G1 = Γ1 = ∅ and ∆1 = a1 : F . Suppose
Gi;Γi ` ∆i has been defined, we define Gi+1;Γi+1 ` ∆i+1 in the sequel. Suppose
φ(i) = (Oi, hi, ExFi, Ri, Si, ni). When we use ni to select a term (resp. label) in
a formula (resp. relational atom), we assume the terms (resp. labels) are ordered
from left to right. If ni is greater than the number of terms in the formula (labels
in the relational atom), then no effect is taken. We only show a few cases here,
and display this rather involved construction in the Appendix of [18].

– If Oi = 0, ExFi is a FOASL formula Ci = F1 ∗ F2 and hi : Ci ∈ Γi, then
Gi+1 = Gi ∪{(h4i, h4i+1 . hi)}, Γi+1 = Γi ∪{h4i : F1, h4i+1 : F2}, ∆i+1 = ∆i.

– If ExFi is ≡1 and Si = {hi : tn = tn}, where n ≤ i + 1, then Gi+1 = Gi,
Γi+1 = Γi ∪ {hi : tn = tn}, and ∆i+1 = ∆i.

– If ExFi is ≡2 and Si = {h : t = t′, h′ : A[t/x]} ⊆ Γi, where x is the nith
term in A, then Gi+1 = Gi, Γi+1 = Γi ∪ {h′ : A[t′/x]}, and ∆i+1 = ∆i.

– If ExFi is ≡2 and Si = {h : t = t′, h′ : A[t/x]} where h : t = t′ ∈ Γi,
h′ : A[t/x] ∈ ∆i, and x is the nith term in A. Then Gi+1 = Gi, Γi+1 = Γi,
and ∆i+1 = ∆i ∪ {h′ : A[t′/x]}.

The first rule shows how to use the ∗L rule and how to deal with fresh
variables. The indexing of labels guarantees that the choice of h4i, h4i+1, h4i+2,
h4i+3 are always fresh for the sequent Gi;Γi ` ∆i. Similarly, the term ti+1 does
not occur in the sequent Gi;Γi ` ∆i. The second rule generates an identity
equality relation for the term tn. The last two rules find a formula h′ : A in the
antecedent and succedent respectively, and replace t with t′ in A. The construction
in Definition 3 non-trivially extends a similar construction of Hintikka CSS due
to Larchey-Wendling [21] and a similar one in [16].

We also borrow the notions of consistency and finite-consistency from Larchey-
Wendling’s work [21]. We say G′;Γ ′ ` ∆′ ⊆ G;Γ ` ∆ iff G′ ⊆ G, Γ ′ ⊆ Γ



and ∆′ ⊆ ∆. A sequent G;Γ ` ∆ is finite if G, Γ,∆ are finite sets. Define
G′;Γ ′ ` ∆′ ⊆f G;Γ ` ∆ iff G′;Γ ′ ` ∆′ ⊆ G;Γ ` ∆ and G′;Γ ′ ` ∆′ is finite. If
G;Γ ` ∆ is a finite sequent, it is consistent iff it does not have a derivation in
LSFOASL. A (possibly infinite) sequent G;Γ ` ∆ is finitely-consistent iff every
G′;Γ ′ ` ∆′ ⊆f G;Γ ` ∆ is consistent.

We write Li for the set of labels occurring in the sequent Gi;Γi ` ∆i, and
write Di for the set of terms which are disjoint from those in F in that sequent.
Thus L1 = {a1} and D1 = ∅. The following lemma states some properties of the
construction of the sequents Gi;Γi ` ∆i.

Lemma 2. For any i ∈ N , the following properties hold:

1. Gi;Γi ` ∆i has no derivation
2. Li ⊆ {a0, a1, · · · , a4i−1}

3. Di ⊆ {t0, t1, · · · , ti}
4. Gi;Γi ` ∆i ⊆f Gi+1;Γi+1 ` ∆i+1

Given the construction of the series of sequents in Definition 3, we define a
notion of a limit sequent as the union of every sequent in the series.

Definition 4 (Limit sequent). Let F be a formula unprovable in LSFOASL.
The limit sequent for F is the sequent Gω;Γω ` ∆ω where Gω =

⋃
i∈N Gi and

Γω =
⋃
i∈N Γi and ∆ω =

⋃
i∈N ∆i and where Gi;Γi ` ∆i is as defined in Def.3.

The last step is to show that the limit sequent is a Hintikka sequent, which
gives rise to a counter-model of the formula that cannot be proved.

Lemma 3. If F is a formula unprovable in LSFOASL, then the limit sequent
for F is a Hintikka sequent.

Now we can finish the completeness theorem: whenever a FOASL formula
has no derivation in LSFOASL, there is an infinite counter-model. The theorem
states the contraposition.

Theorem 2 (Completeness). If F is valid in FOASL, then F is provable in
LSFOASL.

5 Theories for 7→ in Separation Logics

Our predicate  admits more interpretations than the standard 7→ predicate in
SL heap model semantics. We can, however, approximate the behaviors of 7→ by
formulating additional properties of 7→ as logical theories. We show next some of
the theories for 7→ arising in various SL semantics.

5.1 Reynolds’s semantics

The 7→ predicate in Reynolds’s semantics can be formalized as follows, where
the store s is a total function from variables to values, and the heap h is a finite
partial function from addresses to values:



7→ L1G;Γ ; ε : e1 7→ e2 ` ∆

(ε, h0 . h0);G[ε/h1, h0/h2];Γ [ε/h1, h0/h2];h0 : e1 7→ e2 ` ∆[ε/h1, h0/h2]

(h0, ε . h0);G[ε/h2, h0/h1];Γ [ε/h2, h0/h1];h0 : e1 7→ e2 ` ∆[ε/h2, h0/h1]
7→ L2

(h1, h2 . h0);G;Γ ;h0 : e1 7→ e2 ` ∆

7→ L3
(h1, h2 . h0);G;Γ ;h1 : e 7→ e1;h2 : e 7→ e2 ` ∆

G;Γθ;h : e1θ 7→ e2θ ` ∆θ
7→ L4G;Γ ;h : e1 7→ e2;h : e3 7→ e4 ` ∆

G[h1/h2];Γ [h1/h2];h1 : e1 7→ e2 ` ∆[h1/h2]
7→ L5G;Γ ;h1 : e1 7→ e2;h2 : e1 7→ e2 ` ∆

(h1, h0 . h2);G;Γ ;h1 : e1 7→ e2 ` ∆
HE

G;Γ ` ∆

Side conditions:
Each label being substituted cannot be ε. In 7→ L4, θ = mgu({(e1, e3), (e2, e4)}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.

Fig. 3. Points-to rules in LSSL.

s, h 
 x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y).

Here we tackle the problem indirectly from the abstract separation logic angle.
We give the following theories to approximate the semantics of 7→ in SL:

1. �∀e1, e2.(e1 7→ e2)∧>∗ → ⊥ 2. �∀e1, e2.(e1 7→ e2)→ ¬(¬>∗ ∗ ¬>∗)
3. �∀e1, e2, e3, e4.(e1 7→ e2) ∗ (e3 7→ e4)→ ¬(e1 = e3)
4. �∀e1, e2, e3, e4.(e1 7→ e2) ∧ (e3 7→ e4)→ (e1 = e3) ∧ (e2 = e4)
5. �∃e1∀e2.¬((e1 7→ e2)−∗ ⊥) 6. �∀e1, e2.(e1 7→ e2)→ (e1  e2)

Note that the opposite direction (e1  e2)→ (e1 7→ e2) does not necessarily hold
because  is weaker than 7→. The above theories intend to capture the inference
rules for 7→ in LSSL [17], the captured rules are given in Figure 3. The first five
formulae simulate the rules 7→ L1, 7→ L2, 7→ L3, 7→ L4, and HE respectively.
The rule 7→ L5 can be derived by  2 and Formula 6.

Lemma 4. The inference rules in Figure 3 are admissible in LSFOASL when
Formula 1 ∼ 6 are assumed true.

The validity of Formula 1 to 6 w.r.t. Reynolds’s SL model is easy to check,
the rationale is similar to the soundness of corresponding rules in LSSL [17].
Therefore Reynolds’s SL is an instance of our logic.

Lemma 5. Formula 1 ∼ 6 are valid in Reynolds’s SL semantics.

The rules in Figure 3 cover most of the rules for 7→ in LSSL [17], but we have
not found a way to handle the following rule (with two premises):

(h1, h2 . h0);G;Γ ` ∆
(h3, h4 . h1); (h5, h6 . h2);G;Γ ;h3 : e1 7→ e2;h5 : e1 7→ e3 ` ∆

HC

G;Γ ` ∆



The rule HC effectively picks two arbitrary heaps h1 and h2, and does a case
split of whether they can be combined or not. This rule seems to require more
expressiveness than our logic. However, the above formulae cover most of prop-
erties about 7→ that existing tools for SL can handle, including the treatments
in [17] and those for symbolic heaps [2].

5.2 Vafeiadis and Parkinson’s SL

Vafeiadis and Parkinson’s SL [35] is almost the same as Reynolds’s definition,
but they only consider values as addresses. This is a common setting in many
applications, such as [14]. In this setting, the following formula is valid: >∗ →
¬((e1 7→ e2)−∗ ¬(e1 7→ e2)). This formula, however, is invalid in Reynolds’s SL.
Obviously Formula 1 to 6 are valid in Vafeiadis and Parkinson’s SL, thus their
logic is also an instance of our abstract logic. To cater for the special feature, we
propose a formula for “total addressability”:

7. ∀e1, e2.♦(e1 7→ e2)

This formula ensures that there must exist a heap (e1 7→ e2) no matter what
values e1, e2 have. This is sound because in Vafeiadis and Parkinson’s SL, e1
must denote a valid address, thus h with dom(h) = {s(e1)} and h(s(e1)) = s(e2),
where s is the store, must be a legitimate function, which by definition is a heap.

5.3 Lee et al.’s SL

Lee et al.’s proof system for SL corresponds to a non-standard semantics (although
they used Reynolds’s semantics in their paper) [25]. While there is not a reference
of a formal definition of their non-standard semantics, their inference rule −∗ Disj
suggests that they forbid “incompatible heaps”. For example, if there exists a
heap e1 7→ e2, then there shall not exist another heap (e1 7→ e3), where e2 6= e3.
Their −∗ Disj rule can help derive the following formula, which is invalid in
Reynolds’s SL:

(((e1 7→ e2) ∗ >)−∗ ⊥) ∨ (((e1 7→ e3) ∗ >)−∗ ¬((e1 7→ e2)−∗ ⊥)) ∨ (e2 = e3)

If we assume that the above non-standard semantics conform with Reynolds’s
SL in other aspects (as validated by Formula 1 to 6), then it can be seen as a
special instance of our abstract logic. The compatibility property can then be
formulated as follows:

8. ∀e1, e2.♦(e1 7→ e2)→ ¬(∃e3.¬(e2 = e3) ∧ ♦(e1 7→ e3))

With Formula 8 we can prove the invalid formula above.



5.4 Thakur et al.’s SL

There are SL variants that forbid heaps with cyclic lists, for example, the one
defined by Thakur et al. [33]. Consequently, the following two formulae are
unsatisfiable in their SL:

e1 7→ e1 e1 7→ e2 ∗ e2 7→ e1

To formulate this property, we first define a notion of a path:

∀e1, e2.�(path(e1, e2) ≡ e1 7→ e2 ∨ (∃e3.(e1 7→ e3) ∗ path(e3, e2)))

where ≡ denotes logical equivalence (bi-implication). Now the property of “acy-
clism” can be formulated as

9. ∀e1, e2.�(path(e1, e2)→ e1 6= e2)

which renders cyclic paths unsatisfiable in our logic, too. Note that since our proof
system does not support inductive definitions, we cannot force the interpretation
of path to be the least fixed point of its definition. We leave the incorporation of
inductive definitions to future work.

6 Implementation and Experiment

Our theorem prover for FOASL extends our previous prover for Reynolds’s SL [17]
with the ability to handle (non-inductive) predicates and modalities. To speed
up proof search, instead of implementing =2 and ∼2, we use the following rules:

G;Γ [s/t] ` ∆[s/t]
=′2G;h : s = t;Γ ` ∆

Gθ;Γθ ` ∆θ
∼′2

h1 ∼ h2;G;Γ ` ∆

where θ = [h1/h2] if h2 6= ε and θ = [h2/h1] otherwise.

These two rules can be shown to be interchangeable with =2 and∼2. One direction,
i.e., showing that =′2 and ∼′2 can be derived in FOASL, is straightforward. The
other direction requires some further justification. Let LS′FOASL be LSFOASL
with =2 and ∼2 replaced by =′2 and ∼′2 respectively, we then need to show that
=2 and ∼2 are admissible in LS′FOASL. To prove this, we follow a similar proof
for free-equality rules for first-order terms by Schroeder-Heister [32]. The key part
in that proof is in showing that provability is closed under substitutions. In our
setting, we need to show that LS′FOASL is closed under both term substitutions
and label substitutions, which are stated below.

Lemma 6. If G;Γ ` ∆ is derivable in LS′FOASL, then so is G;Γ [s/t] ` ∆[s/t]
for any terms s and t.

Lemma 7. If G;Γ ` ∆ is derivable in LS′FOASL, then so is G[h1/h2];Γ [h1/h2] `
∆[h1/h2] for any label h1 and label variable h2.



Formula Time

1 ((>−∗ (((k 7→ c, d)−∗ (l 7→ a, b))→ (l 7→ a, b)))→ (l 7→ a, b)) < 0.001s

2 ((∃x2.((∃x1.((x2 7→ x1, b)→ ⊥))→ ⊥))→ (∃x3.(x3 7→ a, b))) < 0.001s

3 (((>∗ → ⊥)→ ⊥)→ ((∃x1.((x1 7→ a, b) ∗ >))→ ⊥)) < 0.001s

4 ((∃x3 x2 x1.(((x3 7→ a, x2) ∗ (x1 7→ c, d)) ∧ x2 = x1))→
(∃x5 x4.((x4 7→ c, d) ∗ (x5 7→ a, x4)))) < 0.001s

5 ((((e1 7→ e2) ∗ >) ∧ (((e3 7→ e4) ∗ >)∧
(((e5 7→ e6) ∗ >) ∧ (¬(e1 = e3) ∧ (¬(e1 = e5) ∧ ¬(e3 = e5))))))→
(((e1 7→ e2) ∗ ((e3 7→ e4) ∗ (e5 7→ e6))) ∗ >)) 0.9s

6 ((((e1 7→ e2) ∗ ¬((e3 7→ e4) ∗ >)) ∧ ((e3 7→ e4) ∗ >))→ e1 = e3) < 0.001s

7 ¬((¬>∗ ∗ ¬>∗)−∗ ⊥) 0.0015s

8 ((¬(((l1 7→ p) ∗ (l2 7→ q))−∗ (¬(l3 7→ r))))→
(¬((l1 7→ p)−∗ (¬(¬((l2 7→ q)−∗ (¬(l3 7→ r)))))))) < 0.001s

9 ((¬((l1 7→ p)−∗ (¬(¬((l2 7→ q)−∗ (¬(l3 7→ r)))))))→
(¬(((l1 7→ p) ∗ (l2 7→ q))−∗ (¬(l3 7→ r))))) < 0.001s

10 ((¬((lx 7→ ly)−∗ (¬((l1 7→ p) ∗ (l2 7→ q)))))→
(¬((¬((¬((lx 7→ ly)−∗ (¬(l1 7→ p)))) ∗ ((l2 7→ q)∧
(¬(∃x1.((lx 7→ x1) ∗ >)))))) ∧ (¬((¬((lx 7→ ly)−∗
(¬(l2 7→ q)))) ∗ ((l1 7→ p) ∧ (¬(∃x2.((lx 7→ x2) ∗ >))))))))) < 0.001s

11 ((∀x2 x1.♦(x2 7→ x1))→ (>∗ → ¬((e1 7→ e2)−∗ ¬(e1 7→ e2)))) < 0.001s

12 ((∀x3 x2.(♦(x3 7→ x2)→ ¬(∃x1.(¬(x2 = x1) ∧ ♦(x3 7→ x1)))))→
((((e1 7→ e2) ∗ >)−∗ ⊥) ∨ ((((e1 7→ e3) ∗ >)−∗ ¬((e1 7→ e2)−∗ ⊥))
∨e2 = e3))) 0.0025s

Table 2. Experiment on selected formulae.

Note that by restricting h2 to a label variable, we forbid ε to be substituted in
the above lemma. These two lemmas require induction on the height of derivations,
and routine checks confirm that they both hold. Then it is a corollary that =2

and ∼2 are admissible in LS′FOASL.
Since the heap model is widely used, our prover also includes useful rules

to reason in the heap model, such as the derived rules in Figure 3. But we
currently have not included the HC rule in our proof search procedure. Since
many applications of SL involve reasoning about invalid addresses, such as nil,
we also add a theory to capture a simple aspect of the invalid address nil:

10. �∀~e.(nil 7→ ~e)→ ⊥

Since the current prover is an extension of our previous prover, it builds in the
inference rules for linked lists and binary trees for reasoning about the symbolic
heap fragment of SL. It is also capable of proving theorems used in verification
of a tail-recursive append function [26], as shown in [17]. However, we do not
exploit these aspects here.

We illustrate a list of formulae provable by our prover in Table 2. Formulae
1 to 4 are examples drawn from Galmiche and Méry’s work on resource graph
tableaux for SL [15]. Formula 5 is a property about overlaid data structures: if
the current heap contains (e1 7→ e2) and (e3 7→ e4) and (e5 7→ e6), and they are
pairwise distinct, then the current heap contains the combination of the three



heaps. Formula 6 says that if the current heap can be split into two parts, one is
(e1 7→ e2) and the other part does not contain (e3 7→ e4), and the current heap
contains (e3 7→ e4), then we deduce that (e3 7→ e4) and (e1 7→ e2) must be the
same heap, therefore e1 = e3. Formula 7 says that any heap can be combined with
a composite heap. We give a derivation of formula 7 in Appendix A. Formulae
8 to 10 are properties of “septraction” in SL with Rely-Guarantee [35]. Finally,
formulae 11 and 12 show that our prover can easily support reasoning about
Vafeiadis and Parkinson’s SL (cf. Section 5.2) and Lee et al.’s SL (cf. Section 5.3)
by simply adding the corresponding theories as assumptions. This is a great
advantage over our previous work where new rules have to be implemented to
extend the ability of the prover. To our knowledge most existing provers for
SL cannot prove the formulae in Table 2. Examples of larger formulae used in
program verification can be found in the experiment of our previous prover [17],
upon which this prover is built.

7 Conclusion

This paper presents a first-order abstract separation logic with modalities. This
logic is rich enough to express formulae in real-world applications such as program
verification. We give a sound and complete labelled sequent calculus for this
logic. The completeness of the finite calculus implies that our logic is recursively
enumerable. To deal with 7→, we give a set of formulae to approximate the
semantics of memory model. Of course, we cannot fully simulate 7→, but we can
handle most properties about 7→ compared with existing tools for SL. Moreover,
we can prove numerous formulae that many existing tools for SL cannot handle.
The techniques discussed in this paper are demonstrated in a rather flexible
theorem prover which supports automated reasoning in different SL variants
without any change to the implementation. With this foundation, one can simply
add formulae as “assumption”, and prove theorems that cannot be proved in the
base logic.
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11. Stéphane Demri and Morgan Deters. Expressive completeness of separation logic
with two variables and no separating conjunction. In CSL/LICS, 2014.
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18. Zhe Hóu and Alwen Tiu. Completeness for a first-order abstract separation logic.
arXiv:1608.06729 [cs.LO], 2016.

19. Jonas B. Jensen and Lars Birkedal. Fictional separation logic. In ESOP, volume
7211 of LNCS, pages 377–396, 2012.

20. Neelakantan R. Krishnaswami. Reasoning about iterators with separation logic. In
SAVCBS, pages 83–86. ACM, 2006.

21. Dominique Larchey-Wendling. The formal strong completeness of partial monoidal
Boolean BI. JLC, 2014.

22. Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation between
intuitionistic BI and Boolean BI: An unexpected embedding. MSCS, 19(3):435–500,
2009.

23. Dominique Larchey-Wendling and Didier Galmiche. The undecidability of Boolean
BI through phase semantics. LICS, 0:140–149, 2010.

24. Dominique Larchey-Wendling and Didier Galmiche. Looking at separation algebras
with Boolean BI-eyes. TCS, 2014.

25. Wonyeol Lee and Sungwoo Park. A proof system for separation logic with magic
wand. In POPL, pages 477–490. ACM, 2014.

26. Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. Extended alias type system
using separating implication. In TLDI, pages 29–42. ACM, 2011.
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A An example derivation

We sometimes write r × n when it is obvious that the rule r is applied n times.
We omit some formulae to save space. The derivation is given in the next page.
The sub-derivation Π1 is similar to Π2.
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