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Abstract

This thesis investigates the theory and design of recording the spherical harmonic components

of an arbitrary three-dimensional sound field. The approach taken is based on capturing the

spherical harmonic components using a spherical microphone. This choice led to the investi-

gation of various design issues including the inherent limitations of the spherical microphone,

discretization of the theoretical continuous spherical microphone into a microphone array and

associated spatial aliasing problems, calibration errors of these microphones and signal process-

ing issues. A fourth order microphone design was presented and analysed, which allowed the

verification, integration and evaluation of the design issues mentioned earlier, in the context of

this design. Overall, the design was capable of recording a frequency range of [340, 3400]Hz,

thus finding applications in future teleconferencing systems. The design can also be directly

applied to beamforming applications.
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Glossary of Definitions

R real numbers

i the imaginary unit, denoted
√
−1

(x, y, z) point in right-handed Cartesian coordinate system

(r, θ, φ) point in spherical coordinate system, with distance r from

the origin, elevation angle θ and azimuth angle φ

x vector notation of a point in R
3 space

x̂ unit vector in the direction of x

(·)∗ complex conjugation

(·)′ first derivative

| · | absolute value

‖ · ‖ Euclidean distance

δnm Kronecker delta function: δnm = 0 for n 6= m, δnm = 1 for

n = m

sgn(·) signum function: sgn(x) = 0 for x = 0, sgn(x) = x/|x| for

x 6= 0

Z ∼ N (µ, σ) random variable Z is Gaussian distributed with mean µ and

standard deviation σ

PDF probability density function

DFT discrete Fourier transform
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Chapter 1

Introduction

In real life, sound is perceived to originate from all directions and distances. For example,

in a quiet park setting, our auditory system is able to accurately determine the location of

a sound source in three-dimensional space, such as the whistling of a bird (this is referred

to as localisation). As another example, consider a live musical performance. Being able to

perceive the positions of individual instruments present at a live performance contributes to the

enjoyment of the performance. Other aspects that contribute to enjoyment comes from sound

that does not directly originate from sound sources. These include sound that is reflected

from objects and surfaces, as well as reverberation (sound not perceived to originate from

any particular direction), both of which depend on the characteristics of the venue [1]. These

contribute a sense of space and envelopment to the listener. Therefore, both direct and indirect

sounds are important acoustic aspects that capture the event.

In order to reproduce the auditory sensation of being at an event, for example, one would

require surround sound technology, which exhibits certain characteristics. Most importantly

is the ability to record and reproduce sound such that sources are perceived to be localised.

Another is the ability to preserve the indirect and reverberant effects of the event. One way

is to capture the sound pressure at each point in a given three-dimensional space, known as

a sound field. If one can record and reproduce the sound field, one or more listeners will be

able to experience the recorded event as if they were actually present. This thesis shall explore

the recording problem and will not address the reproduction of sound fields. Such a recording

system is referred to as a three-dimensional audio recording system [2].

There are many applications of three-dimensional audio recording systems. We have al-

ready described one above, that is, to capture an acoustic event. To some extent, they could

also be applied to the recording of movie sound tracks, broadcast drama and virtual reality

situations [1]. Perhaps the most promising future application, however, is its potential use in

telepresence. This is the idea that interaction between parties at remote locations can be made

more effective and efficient if it makes use of as much perceptual information as possible [3].

That is, to emulate real interaction that occurs between people in the physical world. An

artist’s impression of its application to teleconferencing in the future is given in Figure 1.1

(reproduced from [4]). Three-dimensional audio is one such tool which could be used to record

and reproduce voices of remote parties so that their voices appear to originate from particu-

lar locations in a room [3]. Alternatively, it is possible to “steer” the three-dimensional audio

recording system towards a desired sound source, such as a person speaking, whilst attenuating

1



2 Introduction

undesired sounds and ambient noise. This technology is known as beamforming.

PSfrag replacements

θ

φ

Figure 1.1: An artist’s impression of a futuristic teleconference.

1.1 Background and Motivation

Existing surround sound recording and reproduction technology has room for improvement in

terms of providing a sense of realism, in the way we described above. The well known two-

channel stereo sound technology in popular use today, makes it possible to record information

about sound sources and reproduce this information so that these sources can be localised

within a range of angles about a horizontal plane from the listener’s perspective [5]. This was

first introduced by Alan Dower Blumlein, who was issued a patent for his work in 1931 (Refer

to [6]). However, stereo has the limitation that it cannot be used as a surround sound system

simply because it cannot envelope the listener with two speakers.

Dolby attempted to fix this problem with Dolby Surround technology1. Although this

is a sound reproduction technology, we discuss it here because its deficiencies are partly the

motivations for technologies to be described in this thesis. In Dolby Surround systems, the

front left, front right and front centre speakers are used to create a highly localised sound

image, whilst two rear surround speakers are used to create an ambient sound field [8,9]. This

turns out to be especially effective in a cinema setting where the idea is to direct dialogue

towards the front in order to coordinate well with the picture. Reverberant sound is directed

to the rear surround channels to envelope the audience in sound, as if one was actually at the

event, such as on the sidelines of a football stadium, for example [1,9]. However, because Dolby

Surround systems are targeted for use primarily in the cinema, it was intentionally designed so

that localisation of sound sources is imprecise. This means that it is not suitable for accurate

reproduction of an acoustic event.

The technologies that attempt to solve this problem is based on the recording and repro-

duction of the original sound field. One is called wave field synthesis, where work has been

published in [10]. We will not pursue this technology further in this thesis. Instead, we will

discuss another called ambisonics, which is based on the work by a group of British researchers

at the Mathematical Institute of Oxford [11], most notably, the work in [12] by Michael Ger-

1For a brief coverage of the development of Dolby Surround technology, the reader is referred to [7].



1.2 Problem Statement 3

zon. Work by Bamford in [8] suggests that the first order ambisonic reproduction system is

superior to both Dolby Surround and stereo in terms of localisation. The theory uses a math-

ematical representation of a sound field based on spherical harmonic components. Once the

spherical harmonic components have been recorded, these serve as an interface to the repro-

duction problem. The more spherical harmonic components (or said another way, the higher

the order) of the sound field that are recorded, the greater the directional effects and more pre-

cise localisation of sound sources [1]. However, the recording would require a greater number

of channels [8]. A commercial microphone exists called the SoundField microphone, which is

capable of recording the first order spherical harmonic components [13].

However, a drawback of ambisonics is that it is inherently limited by the way the spherical

harmonic components of the sound field are recorded. This is because the theory requires that

the sound field is captured by microphones coincident at a single point in space. In practice,

placing discrete microphones coincidently at a single point is not possible, so they are placed in

a regular geometric arrangement and the spherical harmonic components are obtained by taking

linear combinations of the signals from these microphones. The requirement of having to use

regular geometric arrangements makes design of higher order microphones difficult, especially

because regular polyhedra are few. For example, microphones are placed at the vertices of

a regular dodecahedron arrangement (the regular polyhedron with the greatest number of

vertices [14]) in the design of a second order sound field microphone, as presented in [1].

An alternative approach, also based on recording the spherical harmonic components of

a sound field, was taken by Abhayapala and Ward in [2] and Elko and Meyer in [15]. At a

given radius (as opposed to recording at a single point in ambisonics), they used a theoretical

continuous spherical microphone (that is, a microphone capable of picking up the sound pressure

at any point on a spherical surface) to capture the spherical harmonic components via signal

processing. The advantage of this approach is that it is not limited by the need to use fixed

geometrical arrangements. Instead, it requires a discrete approximation to the continuous

spherical microphone in a practical design [2]. Both papers demonstrated a microphone design

capable of capturing up to and including third order spherical harmonic components of a sound

field. Abhayapala and Ward were able to demonstrate that their design was able to capture

a frequency range of [340,3400]Hz. Elko and Meyer have commercialised their third order

microphone called the EigenMike [16]. More recently, there has been work done by Laborie,

Bruno and Montoya [17], which also uses this alternative approach. A third order system was

also considered and in addition, their design did not restrict microphones to be placed in a

spherical arrangement. The main drawback of these systems is that they have been limited to

third order designs.

1.2 Problem Statement

In this thesis, we extend the work already done using this alternative approach by investigating

design issues of recording higher order spherical harmonic components of a sound field and

by designing a higher order microphone that preserves the frequency range of [340,3400]Hz

achieved in [2]. We will present an analysis of this design to provide better insight in relation to

its performance (more details provided in the next section). Beamforming has been investigated

in a number of sources, most relevant being [18] and [15]. Thus, this topic will only be lightly
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mentioned in this thesis. Sound field reproduction will not be covered and for information

regarding this, work has been published in [19] and further investigated in [20].

1.3 Contributions

The work presented in this thesis has made the following main contributions to sound field

recording:

• Analysis of the role of rigid spheres in improving microphone design.

• Analysis of various microphone arrangements, which are applicable to microphone array

design.

• A model for analysing the error due to inexact positioning of microphones in an array

was presented.

• A set of error measures was proposed for error analysis of spherical microphones.

• Design and analysis of a fourth order spherical microphone.

1.4 Outline of Thesis

This thesis shall take on a structure which is roughly divided into three phases, namely, theory,

design and simulation. The content of a chapter tends to rely on the previous chapters and so

to get the most out of this thesis, we recommend that it be read in a chapter-by-chapter basis.

The content shall be described below.

• Chapter 2: provides an overview of the theory. It gives a brief presentation of the

solution to the wave equation in spherical coordinates and the resulting modal analysis

tools that shall be used to represent arbitrary sound fields. Spherical scattering theory is

introduced. It consolidates the theory presented in this chapter and sets out the recording

problem that is to be investigated in the rest of this thesis.

• Chapter 3: identifies the various issues relating to the design of a practical microphone

array. It covers the inherent limitations, modal aliasing, discretization of the continuous

spherical microphone into a microphone array, calibration errors and signal processing

issues.

• Chapter 4: applies the material addressed in Chapter 3 to produce a practical design

and presents error measures and simulation results to assess the design’s performance,

both quantitatively and qualitatively.

All items in this thesis that were produced via numerical calculations are documented in Ap-

pendix H. This gives an index to the software item, which is located on the attached CD-ROM.



Chapter 2

Theory of Spherical Harmonic

Representation of Sound Field

2.1 Introduction

An arbitrary sound field can be modelled as a three-dimensional scalar field. This field quan-

tifies the sound pressure at every point in an arbitrary coordinate system. All homogeneous

sound fields (ie. no sound sources inside the region of interest) satisfy the well-known classical

wave equation1 given by

∇2s =
1

c2

∂2s

∂t2
, (2.1)

where ∇2 is the Laplacian operator, which can be expanded according to the desired coordinate

system and c is the speed of wave propagation in the medium of interest. The sound field is

denoted as s = s(x, t) at point x ∈ R
3 and at time t [18].

We chose to use the spherical coordinate system to exploit spherical symmetry. We shall

use the convention where the elevation angle (from the vertical axis) is represented by θ and

the azimuth angle is represented by φ. The radial coordinate shall be represented by r. This

is shown in Figure 2.1.

1The derivation of this is accessible in many sources including [18, 21–23].

5
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Figure 2.1: The relationship between the spherical coordinate system and the right-handed

Cartesian coordinate system.

The spherical coordinate (r, θ, φ) has an equivalent right-handed Cartesian coordinate (x, y, z)

and they are related by:

x = r sin θ cos φ

y = r sin θ sinφ

z = r cos θ.

The direction implied by (θ, φ) can be represented by x̂, where x̂ = x/‖x‖.

2.2 General Solution to the Wave Equation in Spherical Coor-

dinates

In this section, we give a concrete background to the mathematics used to represent an arbitrary

sound field in a region of space. As will be discussed below, the form of this solution is too

general for our purposes but it will give insight to the representation of a homogeneous sound

field given in the next section, which we will use in the remaining part of this thesis.

Referring back to the wave equation, (2.1), we chose to expand the Laplacian operator into

spherical coordinates. This was shown in [24] as

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
.

By substituting this back into (2.1), we obtain the wave equation in spherical coordinates as

1

r2

∂

∂r

(

r2 ∂s

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂s

∂θ

)

+
1

r2 sin2 θ

∂2s

∂φ2
=

1

c2

∂2s

∂t2
. (2.2)

This equation is a partial differential equation in four independent variables (namely the spa-

tial coordinates, r, θ, φ and temporal coordinate, t) and can be solved using the method of
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separation of variables [25]. This is done by assuming the solution of (2.2) to be of the form

s(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t). (2.3)

Since literature is widely available on its solution in spherical coordinates, rather than showing

all the working, the separated differential equations and their solutions shall be explained

below. Firstly, the separated differential equation for the temporal variable, t, is given by

1

T (t)

1

c2

d2T (t)

dt2
= −k2. (2.4)

The assumption has been made that the separation of variables constant, −k2, is negative

because this leads to the desired time solutions corresponding to propagating and standing

waves, whereas decaying exponentials would be modelled if a positive constant was assumed

[23]. Equation (2.4) has the general solution

T (t) = T1e
iωt + T2e

−iωt, (2.5)

where

ω = kc. (2.6)

Note that ω = 2πf is the temporal frequency. In this thesis, we assume that the medium of

propagation is homogeneous and therefore c is constant. Since k is proportional to ω, we shall

also refer to k as the temporal frequency.2 We chose to set T2 to zero since e−iωt represents a

wave propagating backwards in time and so has no physical meaning [26]. Thus

T (t) = T1e
iωt. (2.7)

By substituting the time solution of (2.7) into (2.3), and then substituting the expression into

(2.1), we obtain

∇2u + k2u = 0, (2.8)

where u = u(r, θ, φ) = R(r)Θ(θ)Φ(φ). Equation (2.8) is known as the Helmholtz equation. This

equation describes the spatial solution of the wave equation. A similar method of separation

of variables is used to solve it, where we use −m2 as the separation of variables constant. The

differential equation relating to the azimuth angle φ is

1

Φ(φ)

d2Φ(φ)

dφ2
= −m2, (2.9)

which has the general solution,

Φ(φ) = Φ1e
imφ + Φ2e

−imφ. (2.10)

Both solutions are kept. In both cases, the constant, m, must be an integer to ensure continuity

and periodicity of Φ(φ) [27, p.185]. The differential equation relating to the radial coordinate

2In this thesis, we will use the variables ω, f and k interchangeably, where appropriate.
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r is given by
d

dr

(

r2 dR(r)

dr

)

+
[
k2r2 − n(n + 1)

]
R(r) = 0. (2.11)

Here, the separation of variables constant has been written as n(n + 1) since (2.11) has con-

tinuous solutions only if n is an integer [23, p.380]. This equation is known as the spherical

Bessel differential equation, which has two types of solutions, namely, jn(x) (called the spher-

ical Bessel function of the first kind) and yn(x) (called the spherical Bessel function of the

second kind). The general solution to the spherical Bessel differential equation is

R(r) = R1 jn(kr) + R2 yn(kr). (2.12)

The differential equation relating to the elevation angle θ is

sin θ
d

dθ

(

sin θ
dΘ(θ)

dθ

)

+
[
n(n + 1) sin2 θ − m2

]
Θ(θ) = 0. (2.13)

This equation is known as the associated Legendre differential equation and has two types of

solutions, namely, P m
n (x) (called the associated Legendre function of the first kind) and Qm

n (x)

(called the associated Legendre function of the second kind).3 The general solution to the

associated Legendre differential equation is

Θ(θ) = Θ1 Pm
n (cos θ) + Θ2 Qm

n (cos θ), (2.14)

where n is a non-negative integer and −n ≤ m ≤ n. However, we are interested in solutions

which model sound phenomena, and so we require solutions which are unique, continuous and

finite for −1 ≤ cos θ ≤ 1. Since Qm
n (x) are not finite at cos θ = ±1, we chose to set Θ2 to

zero [23, p.384].

The angle functions of (2.10) and (2.14) are combined into single functions called spherical

harmonics and are defined as

Ynm(x̂) =

√

2n + 1

4π

(n − |m|)!
(n + |m|)!Pn|m|(cos θ)eimφ, (2.15)

where n is a non-negative integer and −n ≤ m ≤ n. Here, n is referred to as the order and m

is referred to as the mode of the spherical harmonic [2]. These functions are orthonormal and

satisfies ∫

Ynm(x̂)Y ∗
n′m′(x̂)dx̂ = δnn′δmm′ , (2.16)

where n and n′ index the order, and m and m′ index the mode of the corresponding spherical

harmonic functions. Note that the integration is performed over the unit sphere.4 This is

referred to as the orthonormality property [2].

Any solution to the wave equation of (2.1) can therefore be written as

S(x; k) =
∞∑

n=0

n∑

m=−n

[
Anm(k)jn(k‖x‖) + Bnm(k)yn(k‖x‖)

]
Ynm(x̂), (2.17)

3For more information about Legendre polynomials, refer to [24, 27, 28].
4That is, dx̂ = d(cos θ)dφ = sin θdθdφ and the limits are for θ, from 0 to π and for φ, from 0 to 2π.
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where the coefficients, Anm(k) and Bnm(k), are generally complex valued. Note that we have

taken the frequency domain representation of s(x, t), where the temporal dependence is implied

by the frequency dependence of these coefficients [27, p.186].

2.3 A Homogeneous Sound Field

The form of (2.17) is too general for our purposes. Consider a sound field in a region Ω ∈ R
3,

where all sources are outside this region, as shown in Figure 2.2.

O

qy

PSfrag replacements Ω

qth point source

x

Figure 2.2: The sound field of interest Ω, with respect to the point sources.

This is known as a homogeneous sound field. Suppose there are Q point sources located at

yq /∈ Ω, q = 1, . . . , Q, and let the qth source radiate a signal vq(t). Then, the sound field at a

point x ∈ Ω is given by

s(x; t) =

Q
∑

q=1

1

‖yq − x‖ vq

(

t − ‖yq − x‖
c

)

. (2.18)

Here, we assume free space wave propagation. Taking the temporal Fourier transform of (2.18)

and using the time-shift property yields

S(x; k) =

Q
∑

q=1

e−ik(‖yq−x‖)

‖yq − x‖ Vq(k), (2.19)

where Vq(k) is the Fourier transform of vq(t), S(x; k) is the Fourier transform of s(x; t) and

k = 2πf/c. We use the identity

e−ik(‖yq−x‖)

‖yq − x‖ = 4π(−i)k
∞∑

n=0

n∑

m=−n

h(2)
n (k‖yq‖)Y ∗

nm(ŷq)jn(k‖x‖)Ynm(x̂), (2.20)
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for ‖yq‖ > ‖x‖, where h
(2)
n (x) = jn(x) − inn(x) (called the spherical Hankel function of the

second kind) [29, p.30], to write

S(x; k) =

∞∑

n=0

n∑

m=−n

( Q
∑

q=1

4π(−i)kh(2)
n (k‖yq‖)Y ∗

nm(ŷq)Vq(k)
)

︸ ︷︷ ︸

jn(k‖x‖)Ynm(x̂)

S(x; k) =

∞∑

n=0

n∑

m=−n

γnm(k)jn(k‖x‖)Ynm(x̂), (2.21)

where the under-braced term γnm(k) is constant with respect to the position x. We represent

these frequency dependent expressions as

γnm(k) =

Q
∑

q=1

4π(−i)kh(2)
n (k‖yq‖)Y ∗

nm(ŷq)Vq(k), (2.22)

which are the corresponding coefficients of the terms, jn(k‖x‖)Ynm(x̂), called modes or modal

components.5 These terms are indexed by each order n which has corresponding modes

−n ≤ m ≤ n.6 Therefore, we call these coefficients, the modal coefficients. Equation (2.21)

is referred to as the synthesis equation and this representation is only valid for homogeneous

sound fields. From here onwards, all sound fields that we consider will be assumed to be ho-

mogeneous. Note that (2.21) implies that a homogeneous sound field is represented using an

infinite number of modal components and corresponding modal coefficients.

If we now multiply both sides of (2.21) by Y ∗
n′m′(x̂) and integrate both sides over the unit

sphere, we obtain

∫

S(x; k)Y ∗
n′m′(x̂)dx̂ =

∞∑

n=0

n∑

m=−n

γnm(k)jn(k‖x‖)
∫

Ynm(x̂)Y ∗
n′m′(x̂)dx̂.

Then, using the orthonormality property of (2.16), the modal coefficients can be written as

γnm(k) =
1

jn(k‖x‖)

∫

S(x; k)Y ∗
nm(x̂)dx̂, (2.23)

provided that jn(k‖x‖) 6= 0. Equation (2.23) is referred to as the analysis equation. The

material outlined in this section is referred to as modal analysis [18].

2.4 Scattering from a Rigid Sphere

In spherical microphone design, there are advantages of using a rigid spherical scatterer (which

serves as an obstruction), as will be discussed in Section 3.3. When a rigid spherical scatterer

is placed inside the sound field, the sound field observed will differ with the situation where

there is no scatterer. Hence, we need to model this phenomenon. This is a scattering problem

5Note that the term mode has been overloaded and refers also to the index, m. Therefore, in this thesis, we
will use the term modal components for this context.

6From here onwards, when we refer to modal components of order n, we implicitly refer to all the modes for
−n ≤ m ≤ n.
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and involves splitting the total pressure field S into a sum of two parts. That is,

S(r, θ, φ; k) = Si(r, θ, φ; k) + Sscat(r, θ, φ; k) (2.24)

where Si is the incident field (the field that would be measured had the scatterer not been

present) and Sscat represent the scattered field, which is a new quantity that measures the

change in the incident field as a result of the presence of the scatterer.

To obtain a boundary condition for this situation, we note that the total radial velocity

must vanish on the surface of a rigid sphere. Therefore, the boundary condition for a rigid

sphere scatterer of radius R, can be expressed as

∂

∂r

(

Si(r, θ, φ; k) + Sscat(r, θ, φ; k)
)
∣
∣
∣
∣
∣
r=R

= 0, (2.25)

as shown in [27, p.228]. Now, from Section 2.3, the incident sound field can be represented by

(2.21) and explicitly in terms of spherical coordinates,

Si(r, θ, φ; k) =

∞∑

n=0

n∑

m=−n

γnm(k)jn(kr)Ynm(θ, φ). (2.26)

The scattered field, however, is different because it consists of outgoing waves. This can be

generally represented as

Sscat(r, θ, φ; k) =
∞∑

n=0

n∑

m=−n

ζnm(k)h(1)
n (kr)Ynm(θ, φ), (2.27)

where h
(1)
n = jn(x)+ inn(x) (called the spherical Hankel function of the first kind) [27]. ζnm(k)

represents the modal coefficients for the scattered field. Now, by taking the derivative of (2.26)

and (2.27) with respect to r, evaluating the derivatives at r = R and then substituting them

into the boundary condition of (2.25), we obtain the relationship,

ζnm(k) = −γnm(k)
j
′

n(kR)

h
(1)′
n (kR)

, (2.28)

where (·)′ indicates the first derivative. By substituting (2.26) and (2.27) into (2.24), and using

(2.28), the sound field, when obstructed by a rigid spherical scatterer is given by

S(r, θ, φ; k) =
∞∑

n=0

n∑

m=−n

γnm(k)
(

jn(kr) − j
′

n(kR)

h
(1)′
n (kR)

h(1)
n (kr)

)

Ynm(θ, φ). (2.29)

In this thesis, we shall denote the radial term in (2.29) as

bn(k‖x‖) , jn(k‖x‖) − j
′

n(kR)

h
(1)′
n (kR)

h(1)
n (k‖x‖), (2.30)

where the expression have been rewritten in terms of ‖x‖, which is the convention we have

adopted. Note that (2.30) is implicitly a function of the radius of the rigid spherical scatterer,

R.
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2.5 Analysis and Synthesis of a Sound Field

Analogous to the Fourier series coefficients for a periodic temporal signal, the modal coefficients

γnm(k) in (2.21) contain all the information about an arbitrary sound field. Therefore, if we

can record them, it is theoretically possible to reconstruct the acoustic environment.

We turn our attention to recording these coefficients by considering the form of the analysis

equation (2.23). It is possible to capture the modal coefficients of a sound field by evaluating

this integral over an arbitrary surface, for each n and −n ≤ m ≤ n desired. This means that

it is only necessary to evaluate the sound field over this surface rather than at each and every

point in the sound field.

Alternatively, if we decide to evaluate the modal coefficients over a spherical surface (by

constraining ‖x‖ = r, where r 6= 0 is an arbitrary constant radius), which has within it a

rigid spherical scatterer of radius 0 ≤ R ≤ r, the resultant sound field is now given by (2.29).

Therefore, the analysis equation becomes

γnm(k) =
1

bn(k‖x‖)

∫

S(x; k)Y ∗
nm(x̂)dx̂. (2.31)

Thus from this equation, we are similarly able to extract the modal coefficients γnm(k).

2.6 Problem Formulation

In this thesis, we specifically chose to examine the recording of the modal coefficients over a

spherical surface, using (2.23) and (2.31). Spherical geometry was chosen because it is relatively

easier to analyse and we can consider issues dealing with the radial and angular representations7

of the sound field separately. These issues are the focus of the next chapter.

7Refer to Section 2.2 for information about these.



Chapter 3

Theory and Design of Spherical

Microphone

3.1 Introduction

In the previous chapter, we have decided to capture the modal coefficients using a spherical

surface. Therefore, we turn our attention to the design issues related to this decision in this

chapter. Firstly, before we embark on analysing intimate details of the microphone itself,

we present the implications of our inability to capture an infinite set of modal coefficients.

Then, we move on to analyse the inherent limitations of recording from a continuous spherical

microphone. Because such a microphone cannot be practically implemented, we look at issues

of discretizing it by using a microphone array, which introduces problems associated with

insufficient spatial sampling. In practice, these discrete microphones cannot be placed exactly

in the location on the sphere as desired, and the calibration errors associated with inexact

positioning are examined. Finally, we look at the signal processing that is required in a practical

system.

3.2 Finite Order Design

The synthesis equation of (2.21) is of the form of an infinite sum, which means an infinite

number of orders of modal components. With a continuous spherical microphone, it is possible

to extract all these components exactly (Refer to Section 3.4) but in terms of practicality, the

fact that such a microphone cannot be implemented and that the signal processing power we

have at our disposal is finite, means that we can only consider recording a finite number of

orders of modal coefficients.

Fortunately, this fact does not halt us from continuing further. One interesting point to

note about the synthesis equation is that it was found in [18, pp.46-7] that the lower orders

are most significant while the higher orders give the finer details to a sound field. This is

analogous to frequency domain analysis of temporal signals since the lower frequencies tend

to be the most significant while the higher frequencies add detail to the signal. This means

that order truncation (limiting to a finite number of orders) of an arbitrary sound field can

be performed to approximate the infinite sum representation of (2.21). To demonstrate the

increased accuracy of the approximation when more orders are considered in the representation

13
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of a plane wave sound field, consider Figure 3.1.
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Figure 3.1: Truncation error of a plane wave sound field when only the modal components of

orders 0 ≤ n < N are considered, for various values of N .

This figure shows the decreasing error due to order truncation (we refer to this error as

truncation error) as more orders of modal components are considered. At lower values of the

argument, k‖x‖ (that is, for the plane wave sound field of frequency k, at a given radius from

the origin, ‖x‖) the decrease in truncation error is apparent. Nevertheless, the error increases

rapidly to 100% as k‖x‖ is increased and this limits the size of the region where high spatial

accuracy can be achieved. In other words, the spatial accuracy decreases rapidly as k‖x‖
increases. Fortunately, the temporal content of the sound field is independent of truncation

error and this means that the temporal content can still be intelligible even when this error

is large. This is analogous to listening to a stereo recording far from the speakers placed in a

standard stereo set up, such that one perceives little spatial content (like a mono recording).

For details of the process of producing Figure 3.1, the reader is referred to Sections 4.2 and

4.3.

3.3 Nature of Spherical Microphone

As introduced earlier in Section 1.1, we idealise the microphone as a continuous spherical sensor,

which we call a continuous spherical microphone. This idealisation allows us to evaluate the

integral of (2.23) exactly for modal coefficients of any order. We retain this idealisation within

this section. Consider the situation where we use a continuous spherical microphone of radius

‖x‖ = r to record the sound field. We assume that the continuous spherical microphone is

transparent with respect to the sound field, such that it does not disturb the sound field in any

way. We shall call this an open spherical configuration.
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Now, observe the radial solution jn(k‖x‖) in the expression of (2.21). This is plotted in

Figure 3.2. Notice that for small values of frequency k, the values of jn(kr) for n ≥ 2 are small.

In addition, jn(kr) has zeros for all n ≥ 0. At the corresponding frequencies k, the modal

components of the corresponding orders n, will be “perceived” by the continuous spherical

microphone to be small or equal to zero, respectively. Therefore, they will be difficult to

record at those frequencies. We would like to record over a band of frequencies say for modal

components of orders 0 ≤ n < N . However, the presence of these zeros in the radial solution

means that we are greatly restricted in the range of frequencies for which an accurate recording

can be made.
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Figure 3.2: Plots of spherical Bessel functions, jn(k‖x‖), for various orders n.

Fortunately, the restriction by the zeros of the spherical Bessel functions can be alleviated if

we decide to use a rigid spherical configuration, which means that the surface of the continuous

spherical microphone of radius ‖x‖ = r coincides with a rigid spherical scatterer (ie. a rigid

sphere). In this case, the rigid spherical scatterer interacts and alters the sound field. As shown

in Section 2.4, the radial solutions are represented by (2.30). These are plotted in Figure 3.3.

Notice that there are no zeros in the functions, bn(k‖x‖). The other noticeable advantage

of these functions is that at lower values of k and for n > 0, bn(kr) is approximately 3dB

greater than jn(kr), as demonstrated in Figure 3.4. This is due to diffraction over the rigid

sphere [15]. At higher values of frequency k, the scattering effects will become more prominent

compared to diffractional effects.
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Figure 3.3: Plots of bn(k‖x‖) for various orders n.
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Figure 3.4: Comparison between jn(k‖x‖) (in red) and bn(k‖x‖) (in blue).

There is a relationship between the open and rigid spherical configurations, which is ex-

pected since a rigid spherical scatterer of zero radius is effectively having an open spherical

configuration. Firstly, in order to determine this relationship, we need to consider the function

bn(k‖x‖) in (2.30). In addition, we also need to consider the recurrence relationship for the

spherical Bessel functions,

j
′

n(kR) = jn−1(kR) − n + 1

kR
jn(kR), (3.1)
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and the small argument approximation,

h(1)′
n (kR) ≈ i(n + 1)(2n − 1)!!

(kR)n+2
, (3.2)

both of which are given in [27, p.197]. Using these, we obtain

lim
R→0

j
′

n(kR)

h
(1)′
n (kR)

= 0. (3.3)

From this result and (2.30), we have

lim
R→0

bn(k‖x‖) = jn(k‖x‖). (3.4)

To demonstrate this relationship, the radius of the continuous spherical microphone r was fixed

while the radius of the rigid sphere R, was gradually reduced. The response of bn(kr) is plotted

in Figure 3.5 for different values of R.
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Figure 3.5: Radial response b0(k|x‖) for a fixed continuous spherical microphone at radius

‖x‖ = r = 0.3m, for various radii of the rigid sphere R.

Notice that in the presence of a rigid spherical scatterer, whether the continuous spherical

microphone coincides with it or not, the first zero of the radial response b0(k|x‖), is shifted to

a larger value of k‖x‖ than in the case of an open spherical configuration. In terms of design,

this means that a larger range of frequencies can be accurately recorded when either a rigid or

an intermediate spherical configuration is used, compared to an open spherical configuration.
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3.4 Modal Aliasing

Modal aliasing occurs when the higher order modal components of the sound field are recognised

as lower order modal components. This is analogous to temporal aliasing of signals, where

higher frequency components are recognised as lower frequency components. Modal aliasing

occurs due to insufficient spatial sampling when the theoretical continuous spherical microphone

is approximated with a discrete microphone array [2, 15]. The analysis we present in this

section is independent of whether we use the open or rigid spherical configurations, described

in Section 3.3.

To see how the effects of aliasing are introduced, consider (2.23). The integral can be

evaluated with a continuous spherical microphone but since it is not possible to implement one,

this can be approximated by a discrete microphone array, say with Q ideal omni-directional

point sensor microphones with real weights wq, distributed over the surface of a sphere of radius

R, using the trapezoidal integration method [30]. In Section 3.5, we will show examples that

demonstrate that a finite value of Q can only resolve a finite number of modal components of a

sound field. For now, assume that Q is sufficiently large and that the microphones are arranged

in a way, such that this approximation is exact for resolving the modal coefficients of a sound

field for orders 0 ≤ n < N . We denote this order truncated sound field that contains only these

modal components as S0:(N−1)(x; k). Then, the modal coefficients for orders 0 ≤ n < N are

γnm(k) =
1

jn(kR)

Q
∑

q=1

S0:(N−1)(Rx̂q; k)Y ∗
nm(x̂q)wq =

1

jn(kR)

∫

S0:(N−1)(Rx̂; k)Y ∗
nm(x̂)dx̂.

(3.5)

where jn(kR) is replaced with bn(kR) if a rigid spherical configuration is considered. However,

when the microphone array is exposed to the total sound field S(x̂; k), the modal coefficients

we are concerned with are corrupted by the sound field due to higher order modal components,

which we denote as SN :∞(x; k). Now, the recorded modal coefficients will be

γ̂nm(k) =
1

jn(kR)

Q
∑

q=1

(
S0:(N−1)(Rx̂q; k) + SN :∞(Rx̂q; k)

)
Y ∗

nm(x̂q)wq (3.6)

= γnm(k) + εnm(k), (3.7)

where, εnm(k) represents the error due to modal aliasing [2]. This is given by

εnm(k) =
1

jn(kR)

Q
∑

q=1

SN :∞(Rx̂q; k)Y ∗
nm(x̂q)wq. (3.8)

By substituting the expanded form of SN :∞(Rx̂q; k) of (2.21) into (3.8), we have

εnm(k) =
1

jn(kR)

∞∑

n′=N

n′

∑

m′=−n′

γn′m′(k)jn′(kR) ×
Q

∑

q=1

Yn′m′(x̂q)Y
∗
nm(x̂q)wq. (3.9)

Thus far, we can see that modal aliasing is introduced when we use an approximation to the

continuous spherical microphone. To observe the case of the continuous spherical microphone,
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this is equivalent to taking

lim
Q→∞

εnm(k) =
1

jn(kR)

∞∑

n′=N

n′

∑

m′=−n′

γn′m′(k)jn′(kR) ×
∫

Yn′m′(x̂)Y ∗
nm(x̂)dx̂ = 0, (3.10)

where the orthonormality property of (2.16) was used. Therefore, there will be no error due to

modal aliasing for all orders n. This is to say that the continuous spherical microphone is able

to resolve all orders exactly. Since practical situations require a finite number microphones, we

can conclude that aliasing is inevitable.

By considering the form of (3.9), it can be observed that it is difficult to quantify the effect

of modal aliasing. We can, however, restrict the amount of modal aliasing that occurs. Firstly,

Figures 3.2 and 3.3 show that for each incremental increase in n, the magnitudes in the baseband

regions of jn(k‖x‖) and bn(k‖x‖), respectively, are significantly smaller. Secondly, (3.9) shows

that the error due to modal aliasing comes from higher order modes, specifically the modal

components of order n ≥ N . Since the modal components are of the form jn(k‖x‖)Ynm(x̂) or

bn(k‖x‖)Ynm(x̂) (depending on the spherical configuration used, refer to Section 3.3), we can

control the magnitude of these for orders n ≥ N by restricting the magnitudes of jn(k‖x‖) and

bn(k‖x‖) for n ≥ N , respectively.

We can specify an upper bound (k‖x‖)u, such that in the interval k‖x‖ = [0, (k‖x‖)u], the

modal components for n ≥ N are at least DdB smaller in magnitude compared to the (N −1)th

modal component. Table 3.1 gives argument values for D = 10dB for a range of N . Note that

for the case of bn(kr), we assume that R = r (the case of a spherical microphone coincident

with a spherical scatterer). Any intermediate configuration have a value that lies between the

values of the two configurations.1 In terms of design, increasing D generally decreases modal

aliasing but reduces the value of (k‖x‖)u.

N Value of (k‖x‖)u for jn(k‖x‖) Value of (k‖x‖)u for bn(k‖x‖)
1 0.89 0.55
2 1.47 1.22
3 2.05 1.91
4 2.63 2.59
5 3.21 3.25
6 3.78 3.87
7 4.36 4.46
8 4.94 5.03
9 5.51 5.59
10 6.09 6.16

Table 3.1: Value of (k‖x‖)u, such that the magnitude of jn(k‖x‖) and bn(k‖x‖) for n ≥ N are
at least 10dB smaller than jN−1(k‖x‖) and bN−1(k‖x‖), respectively.

Now, let us review our assumption where Q was sufficiently large enough to support (3.5) for

0 ≤ n < N . This can now be specified as a constraint on the positions of the omni-directional

point sensor microphones and their weights. This is called the orthonormality constraint and

1This follows from the relationship between the two configurations, (3.4), as shown in Section 3.3.
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is given by [15] as
Q

∑

q=1

Yn′m′(x̂q)Y
∗
nm(x̂q)wq = δnn′δmm′ , (3.11)

for 0 ≤ n < N . This constraint ensures that the Q microphones are able to resolve all γnm(k)

exactly for this range of n, hence the use of the term, orthonormality. The analysis of (3.11) is

not straightforward, and has not been presented in the literature. The approach that shall be

taken is to analyse the degree that a given arrangement of microphones satisfies (3.11). This

will be deferred to the next section.

3.5 Microphone Arrangements and Weights

As was stated earlier, the orthonormality constraint of (3.11) is difficult to analyse and to

directly derive a set of suitable points and weights on a sphere would not be straightforward.

However, the form of (2.23) suggests that intuitively, the goal is to find an integration approx-

imation method for a function over a unit sphere, so that we can resolve the modal coefficients

of orders 0 ≤ n < N as accurate as possible using Q microphones. Fortunately, there are

numerous ways to arrange a finite number of microphones in a spherical array to provide ap-

proximations to the continuous spherical microphone for this purpose. The extent to which

these arrangements satisfy (3.11) gives an indication as to the level of accuracy in which the

modal coefficients for these orders can be resolved.

We will look at specific configurations in detail, namely, the Gaussian and trigonometric

quadrature arrangements as well as the truncated icosahedron arrangement, then lightly in-

troduce cubature arrangements. The merits of each differ and in terms of design, we would

chose the one which best fits our needs. Some of these merits include, for example, scalability,

physical realisability and efficiency, as will be covered below. In analysing these arrangements,

we assume that the microphones are ideal omni-directional point sensors. The positions of the

microphones are intrinsically characteristic of the arrangement under consideration, but since

we are approximating an integration over the unit sphere, the weights of any arrangement must

sum to the surface area of the unit sphere, ie.

Q
∑

q=1

wq = 4π. (3.12)

In order to evaluate the performance of an arrangement of microphones, (3.11) shall be

numerically analysed with respect to the arrangement. That is, we shall evaluate

Cnm,n′m′ =

Q
∑

q=1

Yn′m′(x̂q)Y
∗
nm(x̂q)wq, (3.13)

where we consider Yn′m′(x̂) as input spherical harmonic components to be tested against

Y ∗
nm(x̂), the spherical harmonic components which we would like to resolve. The ideal is

to achieve

Cnm,n′m′ = δnn′δmm′ (3.14)

for 0 ≤ n, n′ < N since this corresponds to the right-hand side of orthonormality constraint of
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(3.11). As an error measure, we evaluate the upper bound of the deviation from this ideal as

∆Cmax , max
∣
∣Cnm,n′m′ − δnn′δmm′

∣
∣, (3.15)

for 0 ≤ n, n′ < N . Essentially, this gives an indication of the extent of integration approxima-

tion error.

Equation (3.13) will be presented as a plot of Cnm,n′m′ as a function of n′,m′ and n,m.

The n′,m′ and n,m axes will be labelled according to the ascending order of modes as shown

in Table 3.2. Colour will be arbitrarily used in these types of plots for ease of reading only.

mode 1 2 3 4 5 6 . . . 9 . . . 16 . . . 25 . . .

n,m 0,0 1,-1 1,0 1,1 2,-2 2,-1 . . . 2,2 . . . 3,3 . . . 4,4 . . .

Table 3.2: The ascending order of modes.

3.5.1 Gaussian and Trigonometric Quadrature Arrangement

The Gaussian and trigonometric quadrature arrangements are based on optimal methods of

evaluating definite integrals. Firstly, consider a sound field S0:(N−1)(x; k), that has been order

truncated to include modal components of orders 0 ≤ n < N . Then, by the definition of

spherical harmonics in (2.15), the highest order of all the modal components in S0:(N−1)(x; k)

is N − 1. This means that the highest degree of the associated Legendre function of the first

kind that we would be concerned with is N − 1, in terms of the variable x = cos θ. To evaluate

the integral of (2.23), it is necessary to be able to evaluate a definite integral of the form

Inm =

∫ 1

−1
Pnm(x)Pn′m′(x)dx

for all 0 ≤ n, n′ < N . The integrand is a polynomial of degree at most 2N − 2 in x. For

such an integral, it is possible to evaluate this exactly with N sample points located in [−1, 1],

using the Gaussian-Legendre quadrature [31, 32].2 The points and corresponding weights for

some values of N can be found in Table A.1. Translating back to the θ variable, we obtain

corresponding sample points in [0, π].

As for the φ variable, it is necessary to be able to approximate an integral of the form

Im =

∫ 2π

0
h(φ)eimφdφ

for all −N < m < N , given that h(φ) is of the form

h(φ) =
∑

|m|<N

ameimφ,

where am are generally complex coefficients. This can be done by using trigonometric quadra-

tures3, where K = 2(N − 1) + 1 points are equally spaced in [0, 2π] with equal weights of 1
K .

2Refer to Appendix A.1 for a more detailed treatment.
3Refer to Appendix A.2 for a more detailed treatment.
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Therefore, the total number of points required for this arrangement is 2N 2 − N , to satisfy

(3.11) for the spherical harmonic components of orders 0 ≤ n < N . The main advantage of

Gaussian and trigonometric quadratures is its scalability since an arrangement can be derived

for any value of N ≥ 2.4 One drawback to this arrangement is that for higher order designs,

the increased packing near the poles may become a practical issue. Fortunately, Mohlenkamp

has suggested an approximation termed, “thinning the grid”, where it is possible to neglect

some points which are very close to the pole [32].

As a way of demonstrating the design process, we chose to obtain a specific arrangement

such that the orthonormality constraint of (3.11) holds for all 0 ≤ n < 5. This implies that

N = 5 and so the number of points required on the θ coordinate is 5, while the number of points

required on the φ coordinate is 9, a total of 45 points. Figure 3.6(a) shows this arrangement

of microphones on the unit sphere. To approximate the integral over the unit sphere with this

arrangement, the weights, wq, were assigned to the products of the weights of the θ and the φ

coordinates and then scaled such that (3.12) holds.

(a) K = 9 with no poles. (b) K = 10 with two poles.

Figure 3.6: Positions of microphones on the unit sphere (shown in green) for the Gaussian and
trigonometric quadratures with N = 5.

Equation (3.13) was evaluated and plotted in Figure 3.7(a) as a function of n ′,m′ and n,m.

The characteristic diagonal row at unity height for spherical harmonic components of orders

0 ≤ n < 5 suggests that these can be resolved at a high level of accuracy. This means that the

corresponding modal components can also be resolved to a high level of accuracy.5 In fact,

for this case, ∆Cmax was found to be less than 0.001. One interesting observation is that very

few 5th order spherical harmonic components (ie. Yn′m′(x̂) for n′ = 5) alias into components

of orders 0 ≤ n < 5 that we are interested in. In fact, only the spherical harmonic component

inputs Yn′m′(x̂) for n′,m′ = 5, 5 and n′,m′ = 5,−5 cause such modal aliasing.

4Note that the nature of Gaussian quadratures requires that N ≥ 2 (Refer to Appendix A.1).
5Recall that each modal component is a spherical harmonic component multiplied by a radially dependent

factor. Here, we assume that the radially dependent factor is sufficiently large (refer to Section 3.3).
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(a) K = 2(N − 1) + 1 microphones along the φ coordinate.

(b) K = 2N microphones along the φ coordinate.

Figure 3.7: Plot of Cnm,n′m′ given by (3.13) for n′ < 7 and n < 6, for the Gaussian and

trigonometric quadrature arrangement with N = 5 and no poles.



24 Theory and Design of Spherical Microphone

The above observation motivates the investigation of improving the spatial sampling of the

microphone arrangement so that we can obtain no modal aliasing due to spherical harmonic

components of order n = 5. The advantage of this improvement is that the spherical harmonic

components that cause modal aliasing are those of order n ≥ 6. This allows us to chose a larger

value of (k‖x‖)u when controlling the magnitudes of the corresponding modal components that

cause modal aliasing (refer to Section 3.4). The θ coordinate shall be left unchanged since the

quadrature is exact, but along the φ coordinate, instead of 9 microphones, the effectiveness

of 10 microphones shall be investigated. The positions of this arrangement of microphones is

characteristically the same as Figure 3.6(a) and therefore, will not be plotted. Figure 3.7(b) is

a plot of Cnm,n′m′ as a function of n′,m′ and n,m, for this new arrangement. Notice that the

modal aliasing caused by the spherical harmonic components n′,m′ = 5, 5 and n′,m′ = 5,−5

are now removed. ∆Cmax was also found to be less than 0.001. In general, this improvement

can be achieved for any order design N , by adding an additional microphone to the φ coordinate

so that K = 2N .

The next challenge is to maintain the performance achieved thus far and to improve effi-

ciency by using less microphones. To do this, we propose that on the θ coordinate, we choose a

Gaussian quadrature that must include as two of its sample points, the two end points, x = 1

and x = −1. These points are conveniently located at the poles of the sphere (ie. x = 1

corresponds to θ = 0, and x = −1 corresponds to θ = π).6 It can be numerically shown

that polynomials of degree up to 2N − 1 require N + 1 points if the two end points are used.

Therefore, following from our previous design of N = 5, we now require 6 sample points on the

θ coordinate. In general, this arrangement requires 2N 2 − 3N + 3 points in order to be able

to resolve all the spherical harmonic components of orders 0 ≤ n < N . The reduction in the

number of sample points required is due to spherical geometry, where only one sample point is

required at each pole. Each pole is weighted K times more than if it were not an end point,

which is as if there were K separate sensors at the same point. This arrangement requires

38 sample points. Again, to obtain no modal aliasing due to spherical harmonic components

of order n = 5, an additional microphone shall be added to the φ coordinate, which brings

the total number of sample points for this arrangement to 42. This arrangement is shown in

Figure 3.6(b).

Visually, the plot of Cnm,n′m′ for this arrangement is characteristically identical to Fig-

ure 3.7(b) and will not be reproduced. It was found that ∆Cmax = 0.018, which is more than

a magnitude larger than for the arrangements considered previously. Therefore, we can ob-

serve a tradeoff between achieving better performance (lower ∆Cmax) and improving efficiency

(smaller number of microphones). This can be explained as the result of changing the level of

spatial sampling used. A summary of the number of points required under different conditions

is given in Table 3.3. No advantages was found when only one pole was used and shall not be

further investigated. Overall, the total number of points required in Gaussian and trigonomet-

ric quadrature arrangements is approximately one half of the number of points required for the

equiangular arrangements suggested in [2].

6Refer to Appendix A.1.
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Condition Points required

φ coordinate K = 2(N − 1) + 1

φ coordinate with no aliasing due to N th order spherical
harmonic components

K = 2N

θ coordinate with no end points N

θ coordinate with two end points N + 1

Arrangement with no poles 2N 2 − N

Arrangement with no poles, with no aliasing due to N th

order spherical harmonic components
2N2

Arrangement with two poles 2N 2 − 3N + 3

Arrangement with two poles, with no aliasing due to N th

order spherical harmonic components
2N2 − 2N + 2

Table 3.3: Number of points required for the Gaussian and trigonometric quadrature under
various conditions. In each case, the aim is to be able to resolve all the spherical harmonic
components of orders 0 ≤ n < N .

3.5.2 Truncated Icosahedron Arrangement

Originally suggested by Elko and Meyer in [15], the position of microphones are placed in the

centre of the faces of a truncated icosahedron, or better known informally as the soccer ball.

This is shown in Figure 3.8.

Figure 3.8: Positions of microphones on the unit sphere (shown in green) for the truncated

icosahedron arrangement.

Notice that the microphones are more equally spaced on the surface of the sphere than

those proposed in Section 3.5.1. In fact, as shall be shown below, this arrangement is more

efficient for an N = 5 design. However, unlike the Gaussian and trigonometric quadrature,

this arrangement lacks scalability and thus cannot be adapted for higher order designs. Having

obtained the points corresponding to the truncated icosahedron arrangement, a set of weights
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would need to be determined to approximate an integral over the unit sphere. Elko and Meyer

did not address this issue in [15] so one could only assume that equal weights that satisfied

(3.12) were used in their work. Evaluating (3.15) for this case, gave ∆Cmax = 0.028. This turns

out to be about two magnitudes higher than for the Gaussian and trigonometric arrangements.

This is largely a result of using inappropriate weights, as shall be shown below.

Instead of equal weights, a set of weights shall be derived based on the scheme that the

weight for a point is proportional to the average of the distances to all the neighbouring points.

In our calculation, we shall deal with distances along the surface of a truncated icosahedron

rather than the actual Euclidean distances for ease of calculation. The symmetry of this

arrangement allows for this simplification. Firstly consider a pentagonal and a hexagonal face

laid out in a plane, as shown in Figure 3.9. This shows two sample points located at the centre

of each face.

h p

L

Figure 3.9: Layout of a hexagonal and pentagonal face connected by a common edge.

Let h denote the length from the centre of the hexagonal face to the perpendicular intercept

at the edge. Similarly, let p be the length from the centre of the pentagonal face to the

perpendicular intercept at the edge. Therefore, the length between any two points is either:

• (h + p), when one point lies in the centre of a hexagonal face and the other lies in the

centre of a pentagonal face, or

• 2h, when both points lie in the centre of a hexagonal faces.

Now note that each of the five neighbouring points, of a point located at the centre of a pen-

tagonal face, are located at the centres of hexagonal faces. Also, three of the six neighbouring

points, of a point located at the centre of a hexagonal face, are located at the centres of hexag-

onal faces, while the rest are located at the centres of pentagonal faces. With this information,

if we denote d̄h as the average distance to neighbouring points from a point located at the

centre of a hexagonal face, and d̄p as the average distance to neighbouring points from a point
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located at the centre of a pentagonal face, the ratio

d̄p

d̄h
=

1
5 [5(h + p)]

1
6 [3(h + p) + 3(2h)]

= 0.9459. (3.16)

The expressions, h = 1/2
tan 30◦ L and p = 1/2

tan 36◦ L, where L is the edge length are derived from

basic trigonometry, and were substituted into (3.16). The final step is to normalise the weights

such that (3.12) holds, to approximate integrals over the unit sphere. Based on the weighting

scheme adopted, the weights wh and wp for points located at the centre of a hexagonal and

pentagonal faces, respectively, are given by

wh =
d̄h

20d̄h + 12d̄p
4π = 0.4008 (3.17)

and

wp =
d̄p

20d̄h + 12d̄p
4π = 0.3791, (3.18)

where (3.16) was used and given that there are 20 hexagonal faces and 12 pentagonal faces on

a truncated icosahedron.

The plot of Cnm,n′m′ for the truncated icosahedron arrangement using the weights given

in (3.17) and (3.18), is shown in Figure 3.10. For this arrangement ∆Cmax = 0.008, which is

around one-third smaller than the value obtained with equal weights. By comparing Figure 3.10

with Figure 3.7(b), we find that the performance in terms of orthogonality and modal aliasing

are similar. However, the truncated icosahedron arrangement requires only 32 sample points,

compared with 42 and 50 for the Gaussian and trigonometric arrangements (N = 5, K = 10)

with two poles and no poles, respectively.

Related to this arrangement are uniform discretizations, which place the points on the

vertices of a platonic solid. However, there are only a few of these solids and none can support

more than 30 points [32]. Therefore, they are only suitable for lower order designs.

3.5.3 Cubature Arrangement

Sample points and corresponding weights were produced by Fliege in [33] for integration over

a sphere based on cubature formulae. However, in the evaluation of Cnm,n′m′ , the efficiency

was found to be significantly poorer that the arrangements discussed above. Therefore, fur-

ther analysis of these arrangements shall not be performed. However, when designing for high

orders, the Gaussian and trigonometric quadrature method poses practical problems of micro-

phone packing near the poles, while the truncated icosahedron arrangement is not extensible.

Cubature arrangements can be used in this situation and would be a topic for further research.

3.5.4 Sphere Packing

Sets of points based on maximising the minimal distance between the points on a sphere were

proposed in [34], but no attempt was made to provide weights for integration over a sphere.

These will not be further investigated in this thesis, but could be the topic of future work.
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Figure 3.10: Plot of Cnm,n′m′ given by (3.13) for n′ < 7 and n < 6 for the icosahedron

arrangement.

3.6 Calibration Errors

The microphone arrangements presented in Section 3.5 achieved their specified performance

when the microphones are positioned exactly. However, in practice this is not possible. In this

section, we analyse the effect of calibration errors due to inexact microphone positioning.

Although we do not expect the Q microphones to lie in their actual positions xq for q =

1, . . . , Q, we would like to specify them in practice, to be “very likely” to lie somewhere within

a specified distance Lmax units along the surface of the unit sphere from their actual positions.

Consider the qth microphone position, xq. We can parameterise a relative offset from xq by

using a distance variable Lq units along the surface of the unit sphere at an angle Aq, relative

to xq.
7

For this single microphone position, we would like to model calibration error by assigning

Lq and Aq to random variables. For the case of Lq, we firstly consider the Gaussian distributed

random variable, Z ∼ N (0, σ), where the mean is zero and standard deviation is σ. Let fZ(z)

be the corresponding probability density function (PDF) of Z. Then, we assign

Lq = g(Z) = |Z|, (3.19)

7Figure C.1 in Appendix C indicates the reference for Aq.
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since we are only concerned with non-negative values for Lq. Therefore, the PDF of Lq is

fLq
(lq) =

{

2fZ(lq), if lq ≥ 0

0, otherwise
. (3.20)

The proof is shown in Appendix B. Now, it is possible to be specific about the meaning of

the phrase, “very likely”, as used above. As an example of a specification, we would like to

have approximately 99.7% of the area under the PDF of Lq to lie in [0, Lmax], and therefore,

we assign σ = Lmax/3.
8 As for Aq, we simply want to assign it to a uniformly distributed

random variable in [0, 2π). In order to “randomise” our microphone position in preparation

for calibration error calculations, xq was offset by a distance Lq units along the surface of the

unit sphere at angles Aq. Appendix C shows how this was performed. This was repeated for

q = 1, . . . , Q.

To assess the effect of calibration errors, for the microphone arrangements described in

Section 3.5, we considered various values of Lmax between 0 and 0.01π. For each Lmax, we

evaluated 40 samples of ∆Cmax in (3.15) and obtained from these, the mean and standard

deviation of ∆Cmax. The means (and standard deviations in parentheses) are plotted in Fig-

ures 3.11(a) to 3.11(c) for each arrangement. The sets of ∆Cmax can be modelled by the gamma

distribution, as shown Appendix D.
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(a) Gaussian and trigonomet-
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(c) Truncated Icosahedron.

Figure 3.11: Plots of means of ∆Cmax for various values of Lmax (and standard deviation in

parentheses), for three microphone arrangements. (N = 5, K = 10 for the two Gaussian and

trigonometric arrangements).

We can observe that both the mean and standard deviation of ∆Cmax increases steadily

899.7% of the area under a Gaussian distribution corresponds to three standard deviations [35]. Conveniently,
this also holds for (3.20).
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with Lmax for all arrangements until a large increase occurs at Lmax = 0.01π. This observation

suggests that to keep calibration error under a narrow allowable range, it is important to

specify small values for Lmax. These results can be generalised to be applied to positioning

of microphones on a sphere of any radius r. That is, if we decide on a value of Lmax that

corresponds to our desired performance of ∆Cmax, then we need to specify

L
′

max = Lmaxr, (3.21)

for our spherical microphone array of radius r. The relationship, s = rθ, was used where θ is

the angle subtended by an arc of length s in a sector of side length r.

3.7 Signal Processing

Thus far, we have considered the various issues related to recording the modal coefficients of a

sound field. Specifically, it was shown in Sections 3.4 and 3.5 that the continuous spherical mi-

crophone could be approximated by a discrete microphone array so that the modal coefficients

could be approximately recorded according to the equation,

γ̂nm(k) ≈ 1

bn(kR)

Q
∑

q=1

S(Rx̂q; k)Y ∗
nm(x̂q)wq. (3.22)

Now, we shall present this equation in a block diagram form, as shown in Figure 3.12, to allow

the reader to appreciate the signal processing involved in recording these modal coefficients.

In the process of translating (3.22) into Figure 3.12, the equation should be viewed as a fre-

quency domain representation. For example, frequency dependent terms are viewed as transfer

functions of temporal filters. The terms, wq and Y ∗
nm(x̂q) for q = 1, . . . , Q, are frequency in-

dependent and so appear as constant gains, but the terms 1/bn(kR), are frequency dependent

and so they are transfer functions of temporal filters.

The modal coefficient outputs, γ̂nm(k), are functions of frequency so they can also be viewed

as generally complex signals in the time domain. Therefore, we can apply temporal low pass

or band pass filters to these signals so to selectively filter out unwanted frequency components.

This is useful because, as shown in Section 3.3, the recorded coefficients become inaccurate

at the lower frequencies. These temporal filters can be used to select different frequency

bands from microphone arrays of different radii, to obtain an accurate recording over a larger

frequency band.

3.8 Directional Beamformer

Having obtained the modal coefficients, γ̂nm(k), we can use these directly in beamforming

applications. We specify a beampattern, which is much like a spatial filter that can be defined

to amplify or attenuate the signal as a function of θ and φ. The beampattern can be fully

encapsulated by a set of weights, which are applied to the modal coefficients. In essence,

beamforming involves taking a weighted sum of the modal coefficients to steer the microphone

array towards a particular direction. Further details of beamforming are abundant in the

literature and a few have been mentioned earlier in Section 1.2.
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Figure 3.12: Block diagram showing the signal processing required to resolve the modal coef-

ficients. If the coefficients for orders 0 ≤ n < N are desired, then we set N1 = (N − 1).

3.9 Summary

We have presented the main design issues that would need to be considered in spherical mi-

crophone design. However, we are yet to use them in a meaningful context, such as applying

them together in a specific design. This will be the focus of the next chapter.



Chapter 4

Simulation of a Fourth Order

Microphone Design

4.1 Introduction

Chapter 3 dealt with design issues based around spherical microphone design. In order to

verify, integrate and evaluate them as a whole, we produce a specific design and simulate it

in Mathworks MATLAB in this chapter. Before we can move forward in assessing a design’s

performance, we begin by proposing some quantitative error measures as well as a standard in

which to apply them. In terms of the design itself, we will take on an iterative process, which

means that the details of its performance will be presented along the way. Finally, further

quantitative and qualitative analysis will be presented.

4.2 Error Measures

There are a few sources of error in which we would be interested in assessing a design. These

are listed below and are explained in the indicated sections:

1. Truncation error (Section 4.2.1)

2. Error of recording (Section 4.2.2)

3. Aliasing error (Section 4.2.3)

All these errors characterise the spatial quality of the sound field as opposed to temporal

quality and therefore, do not affect the intelligibility of the sound. The first error measure, the

truncation error, differs from the other two errors because it is a general assessment of order

truncation of sound fields. The last two measures assess characteristics which are intrinsic to

the microphone design itself. Both ignore the effects of order truncation in order to assess other

sources of error. Notice that all these error measures vary with the frequency component k of

the sound field and the distance from the origin, ‖x‖. All plots of these errors will be displayed

in percentages.

Specifically, the last two measures employ the concept of a recorded sound field, S̃(x; k). The

tilde in this expression denotes that the sound field was perfectly reconstructed from recorded

modal coefficients. This means that no limitations relating to sound field reproduction are

32
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considered and so this allows us to concentrate on the issues relating to recording only.1 The

subscript in an expression of the form S0:(N−1)(x; k) denotes a sound field that is order truncated

to include modal components of orders 0 ≤ n < N of the original sound field only. This notation

is also applied to recorded sound fields to indicate the orders that were recorded.

4.2.1 Truncation Error

Truncation error is an inherent limitation in any practical design and was described earlier in

Section 3.2. The fact that a design is specified to record modal coefficients of orders 0 ≤ n < N

means that the loss of information regarding the orders n ≥ N will introduce errors. This error

was used in [19] and is intuitively defined as

εtrunc(‖x‖; k) =

∫ ∣
∣
∣S(x; k) − S0:(N−1)(x; k)

∣
∣
∣

2
dx̂

∫ ∣
∣
∣S(x; k)

∣
∣
∣

2
dx̂

, (4.1)

where S(x; k) is the original sound field and S0:(N−1)(x; k) is the original sound field order

truncated to include modal components of orders 0 ≤ n < N . Equation (4.1) can be simplified

to

εtrunc(‖x‖; k) = 1 −

N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k|x‖)

∣
∣
∣

2

∞∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k|x‖)

∣
∣
∣

2
, (4.2)

where γnm(k) are the modal coefficients of the original sound field, S(x; k). The proof of (4.2)

is shown in Appendix E.3.

4.2.2 Error of Recording

The error of recording includes two sources of error. These are the error due to the inherent

limitations of the use of a single spherical microphone array2 and the error due to the integration

approximation of the continuous spherical microphone. This is defined as

εrec(‖x‖; k) =

∫ ∣
∣
∣S0:(N−1)(x; k) − S̃0:(N−1)(x; k)

∣
∣
∣

2
dx̂

∫ ∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
dx̂

, (4.3)

where S0:(N−1)(x; k) is the original sound field order truncated to include modal components

of orders 0 ≤ n < N , and S̃0:(N−1)(x; k) is the perfectly reconstructed sound field from the

modal coefficients recorded from S0:(N−1)(x; k). Equation (4.3) can be simplified to

εrec(‖x‖; k) =

N−1∑

n=0

n∑

m=−n

∣
∣
∣

(
γnm(k) − γ̃nm(k)

)
jn(k‖x‖)

∣
∣
∣

2

N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2
, (4.4)

1As stated in Chapter 1, sound field reproduction shall not be investigated in this thesis.
2Refer to Section 3.3.
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where γnm(k) are the modal coefficients corresponding to S0:(N−1)(x; k) and γ̃nm(k) are the

recorded modal coefficients corresponding to S̃0:(N−1)(x; k). The proof of (4.4) is shown in

Appendix E.1. The order truncation of the original sound field is necessary so to avoid including

truncation errors.

4.2.3 Aliasing Error

Aliasing error is a measure of the extent of modal aliasing (Refer to Section 3.4). This error

has been described theoretically in (3.8) but is not a practical measure. Hence we define this

new error measure as

εalias(‖x‖; k) =

∫ ∣
∣
∣S̃0:(N−1)(x; k) − Ŝ0:(N−1)(x; k)

∣
∣
∣

2
dx̂

∫ ∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
dx̂

, (4.5)

where S0:(N−1)(x; k) is the original sound field order truncated to include modal components

of orders 0 ≤ n < N , S̃0:(N−1)(x; k) is the perfectly reconstructed sound field from the modal

coefficients recorded from S0:(N−1)(x; k) and Ŝ0:(N−1)(x; k) is the perfectly reconstructed sound

field from the modal coefficients recorded from the original sound field, S(x; k). Equation (4.5)

can be simplified to

εalias(‖x‖; k) =

N−1∑

n=0

n∑

m=−n

∣
∣
∣

(
γ̃nm(k) − γ̂nm(k)

)
jn(k‖x‖)

∣
∣
∣

2

N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2
, (4.6)

where γnm(k) are the modal coefficients corresponding to S0:(N−1)(x; k), γ̃nm(k) are the recorded

modal coefficients corresponding to S̃0:(N−1)(x; k) and γ̂nm(k) are the recorded modal coeffi-

cients corresponding to Ŝ0:(N−1)(x; k). The proof of (4.6) is shown in Appendix E.2.

4.3 Test Sound Field

All the error measures in Section 4.2 are dependent on the input sound field S(x; k). In order

to compare designs, these will be calculated with respect to a predefined standard input sound

field. We assign S(x; k) to be an arbitrary plane wave. A reason for this choice is so to

ensure that the temporal frequency content of the sound field is known. Since the microphone

arrangements are designed to approximate (2.23) for 0 ≤ n < N , which is an integral over a

sphere, we assume that a plane wave travelling in a particular direction would be representative

of a plane wave from any direction. We expect that this is true for the error of recording but not

for the aliasing error because higher order modal components are introduced in the calculation

of aliasing error. Therefore, the characteristics observable from the aliasing error results are

representative but the numerical values should be taken as indicative only.

The plane wave can be approximated using a point source, yq, at a large distance from the

origin, whilst the angular location of the point source can be arbitrarily chosen. Specifically,

we arbitrarily assign yq to (r, θ, φ) = (1000, π/2, π/3). The sound field is mathematically given



4.4 Initial Design 35

by (2.20).

The modal coefficients of the original plane wave sound field, γnm(k), can be obtained from

(2.22), and the recording of the modal coefficients γ̃nm(k) from this plane wave can be obtained

by performing a simulation on Mathworks MATLAB using the design under consideration. The

frequency k of the plane wave is a parameter which can be varied to assess the design’s response

to frequency.

4.4 Initial Design

We begin by outlining a specification for our design. Firstly, we would like to extend beyond

the capabilities of existing designs (refer to Section 1.1) by choosing to record the modal

components of the sound field for orders 0 ≤ n < 5. That is, we would like to design a

fourth order microphone. The portion of the sound field which we would like to restrict our

attention to is a spherical region of radius 0.5m. A rigid spherical configuration shall be used

where the continuous spherical microphone coincides with the rigid spherical scatterer (Refer

to Section 3.3). We would like to record a 10 : 1 frequency range of f = [340, 3400]Hz.

In order to approximate the continuous spherical microphone, we chose to use the trun-

cated icosahedron arrangement since this arrangement satisfies the orthonormality constraint

of (3.11) for N = 5 and possesses the ability to prevent aliasing from 5th order modal com-

ponents. Furthermore, it is the most efficient of the options described previously, requiring

only 32 microphones (refer to Section 3.5.2). We assume that there are no calibration errors

(Section 3.6) in our design. This will be analysed separately in Section 4.6.4.

To specify the level of accuracy desired, we will set two constraints. For a given microphone

radius r, these constraints limit the range of frequencies k which are recorded. The subscript

u shall denote the upper bound and the subscript l shall denote the lower bound of a quantity.

The constraints are

1. (kr)u is assigned the value given in Table 3.1 for N = 6 to minimise modal aliasing

(N = 6 was chosen because no 5th order modal components cause modal aliasing into

modal components of orders 0 ≤ n < 5).3

2. (kr)l is assigned the minimum value of kr such that εrec(‖x‖; k) ≤ εrec,max holds, to limit

the error of recording.4 For argument sake, let εrec,max =5%.

These constraints imply a level of accuracy of recording the modal coefficients for the frequency

range, [kl,ku] or equivalently, [fl,fu].5

The analysis of the first constraint directly affects the design of the radius of the microphone.

To minimise modal aliasing from orders n ≥ 6, we chose (kr)u = 3.87 (which corresponds to

3For further explanation for the requirement of this constraint, refer to Section 3.4.
4For further explanation for the requirement of this constraint, refer to Section 3.3.
5k and f are related by (2.6).
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N = 6). Therefore,

kur = 3.87 (4.7)

r =
3.87

ku

r =
3.87c

2πfu
, (4.8)

where (2.6) was used. Substituting fu = 3400Hz into (4.8) gives a radius of r = 6.2cm.6 The

application of this constraint means that an upper bound has been placed on the aliasing error

within the frequencies in [0, fu]. The actual level of modal aliasing that occurs is quantified in

Section 4.6.3.

We now address the second constraint. We no longer have the freedom to vary r since we

have already chosen a value above. Therefore, this constraint will specify a value of f l. The

error of recording given in (4.4), was calculated for this design as a function of f , and is plotted

in Figure 4.1 at various radii from the origin.7
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Figure 4.1: Error of recording at various radii, for microphone array at r = 6.2cm with coin-

cident rigid spherical scatterer. The dotted black line indicates the upper bound to error for

0 ≤ ‖x‖ ≤ 0.5m.

The peaking behaviour of the curves can be explained by the fact that as we move towards

lower frequencies, the magnitude of bn(k‖x‖) for n ≥ 2 becomes small. This means that

the error increases due to the absence of modal components at these orders. However, the

lowering of frequency means that the variation in space within a given area is slower and at

zero frequency, there would be no variation in space. This causes a reduction in error and the

peaking behaviour can be explained as the interaction between the two. However, this peaking

6We assume the speed of propagation through air is c = 342ms−1.
7The frequency variable f was used instead of k because it is more intuitive and meaningful.
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behaviour is characteristic of the truncated icosahedron arrangement and only when there are

no calibration errors, as will be shown in Section 4.6.4.

Note that in Figure 4.1, only 0 ≤ ‖x‖ ≤ 0.5m were considered. However, the obvious trend

is that when we look towards the lower frequencies and move further away from the origin, the

error of recording rises rapidly. By considering this trend and the fact that only a spherical

region of radius 0.5m is considered, this allows us to assign a frequency fl in which to ensure

that the second constraint is satisfied. By observation, we chose fl = 1100Hz.

Therefore, the microphone design satisfies the specifications and constraints outlined above

for the frequencies in the range f = [fl, fu] = [1100, 3400]Hz.

4.5 Finalisation of Design

Thus far, the design does not satisfy the intended frequency range. The approach to solving

this problem is to employ a second microphone array at a larger radius in order to capture the

lower frequencies in f = [340, 1100]Hz. This time, the only option is to use an open spherical

microphone, which encases the inner microphone array. This is an intermediate configuration

as described in Section 3.3. Again, the truncated icosahedron arrangement is chosen for its

efficiency in recording modal coefficient of orders 0 ≤ n < 5.

To determine a suitable radius, we look at the first constraint to determine a suitable value

of (k′r′)u. The value suggested in Table 3.1 corresponding to bn(k‖x‖) is no longer suitable

for this configuration. Knowing the relationship between jn(k‖x‖) and bn(k‖x‖) (refer to

Figure 3.5), we chose to be conservative by assigning the value of (k ′r′)u that corresponds to

jn(k‖x‖). However, there is a zero in the function j0(k‖x‖) at k‖x‖ = 3.14 (refer to Figure 3.2),

so instead, we must assign (k′r′)u to a smaller value of 3.14. Thus, we require

k′
ur′ = 3.14 (4.9)

r′ =
3.14

k′
u

r′ =
3.14c

2πf ′
u

. (4.10)

Substituting f ′
u = 1100Hz into (4.10) gives a radius of r ′ = 15.5cm.

The error of recording for this microphone array is shown in Figure 4.2. In a similar way

to the procedure employed in Section 4.4, a value of (k ′r′)l can be found. Based on the second

constraint and the small magnitudes displayed in Figure 4.2, it is possible to assign (k ′r′)l

to zero. Therefore, the microphone design satisfies the specifications and the two constraints

described above, for the frequencies in the range f = [340, 1100]Hz.8 Although it is possible to

include the baseband frequencies to give a total frequency range of f = [f ′
l , f

′
u] = [0, 1100]Hz,

Section 4.6.4 will show that this is not possible when there are calibration errors.

8Note that this holds only when a spherical region of radius 0.5m is considered.
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Figure 4.2: Error of recording at various radii, for microphone array at r ′ = 15.5cm with a

rigid spherical scatterer at R = 6.2cm. The dotted black line indicates the upper bound to

error for 0 ≤ ‖x‖ ≤ 0.5m.

A design of a double array microphone has been given, which satisfies the specifications and

constraints in Section 4.4. A total of 64 microphones were placed in two spherical locations.

The frequency response of the system satisfies the specified range of [340, 3400]Hz. Details of

how the two frequency bands can be combined are given in Section 3.7. In the next section,

other errors affecting the design are examined. From here onwards, we differentiate the two

microphone arrays by identifying them as either the inner (Section 4.4) or outer (this section)

microphone array.

4.6 Quantitative Analysis

4.6.1 Truncation Error

As described in Sections 3.2 and 4.2.1, truncation error is inherent in any practical design. Up

until now, the design process and error analysis described in Sections 4.4 and 4.5 has been

implicitly concerned with recording up to and including 4th order modal components of the

sound field. We now turn our attention to the truncation error, which seeks to determine the

extent of error due to the absence of the higher orders. A plot of the truncation error is shown

in Figure 4.3. From this plot it is evident that the magnitude of the truncation error is quite

significant, and there is a limited frequency band and a limited size of the spherical region in

which a certain level of spatial accuracy can be attained. Again, we stress that this affects the

spatial quality of the sound field and not the temporal quality.

The only strategy to reduce the truncation error is to design for recording of higher orders.

However, designing higher order microphone arrays is difficult, which was the underlying theme

that came through in Chapter 3. For example, the number of microphones and also the signal
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processing requirement increases in the order of N 2. Issues related to the calculation of this

error are described in Appendix G. Refer to Section 3.2 for more details.
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Figure 4.3: Truncation error at various radii for any design that records up to and including

4th order modal components.

4.6.2 Error due to Integration Approximation

The various microphone arrangements give integration approximations designed to be accurate

up to a particular order, as described in Section 3.5. If higher order modal components are

present, the higher spatial frequency content causes error in resolving the modal coefficients of

interest, which we distinctively identify as aliasing error (Refer to Section 3.4). However, when

no higher orders are present, as is the case when measuring the error of recording, the error

due to integration approximation can be observed.

Revisiting the error of recording shown in Figure 4.1, the relatively small error in the

frequency range [3000,3500]Hz would lead one to conclude that the error due to integration

approximation is negligible.9 This agrees with the high level of orthogonality of the microphone

arrangements as analysed in Section 3.5. Since, this error assesses the truncated icosahedron

arrangement by itself, it applies to both microphone array designs.

4.6.3 Robustness to Aliasing

We will now assess the effectiveness of the second constraint, described in Section 4.4. That

is, we would like to look at the aliasing error due to the higher order modal components of the

sound field. The aliasing error of (4.6) was evaluated and plotted in Figure 4.4, for the inner

microphone array discussed in Section 4.4.

9We can make this conclusion because the error of recording is made up of two errors, one of which is the
error due to integration approximation. Since the sound field is order truncated, this error must be constant
with respect to frequency k (because spatial frequencies are capped at a maximum). Therefore, the smallest
observable error in Figure 4.1 gives an upper bound to the error due to integration approximation.
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Figure 4.4: Total aliasing error at various radii, for the inner microphone array. The dotted

black line indicates the upper bound to error for 0 ≤ ‖x‖ ≤ 0.5m.
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Figure 4.5: Total aliasing error at various radii, for the outer microphone array. The dotted

black line indicates the upper bound to error for 0 ≤ ‖x‖ ≤ 0.5m.

It can be inferred from the figure that the aliasing error is bounded by 1.0% for our frequency

range of interest. Also, it can be observed that the upper bound of the aliasing error rises rapidly

with frequency, which justifies the need to limit the value of (kr)u. The calculation details of

the aliasing error is explained in more detail in Appendix F.

Similarly, for the outer microphone array discussed in Section 4.5, the aliasing error was
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evaluated and plotted in Figure 4.5. This shows that the aliasing error is bounded by 0.4% for

our frequency range of interest. Again, it can be observed that the aliasing error rises rapidly

with frequency. The process of calculating this error is described in Appendix F. However, in

both cases, the numerical values should be interpreted with some caution since they correspond

specifically to the test sound field that was used, as highlighted in Section 4.3.

4.6.4 Effect of Calibration Error

In our design in Sections 4.4 and 4.5, we specified no calibration error. In this section, we use

the model presented in Section 3.6 to assess the implications of this simplification. Specifically,

we re-analyse both microphone arrays by using the truncated icosahedron arrangement with

calibration error specified at Lmax = 0.002π.10 The truncation error is by default, independent

of the calibration error whilst the aliasing error was observed to be independent of the calibra-

tion error for this particular situation. The error of recording, however, changed dramatically,

as shown for the inner and outer microphone arrays in Figures 4.6 and 4.7, respectively.
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Figure 4.6: Error of recording at various radii ‖x‖, for the inner microphone array with cali-

bration error specified at Lmax = 0.002π. The dotted black line indicates the upper bound to

error for 0 ≤ ‖x‖ ≤ 0.5m.

10Refer to Appendix H for a copy of the “randomised” points used. These same points were used for both
microphone array simulations in this section.
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Figure 4.7: Error of recording at various radii ‖x‖, for the outer microphone array with cali-

bration error specified at Lmax = 0.002π. The dotted black line indicates the upper bound to

error for 0 ≤ ‖x‖ ≤ 0.5m.

From these, we can see that the peaking behaviour has disappeared and instead, there is a

rapid rise in error at the lower frequencies. Generally, the error has increased throughout the

frequencies displayed for both cases. Therefore, during the design process, the parameter f l

of the second constraint will generally be larger if calibration error is modelled. Thus, we will

be left with a smaller frequency range for accurate recording. As a comparison, fl would be

changed from 1100Hz to 1170Hz for the inner microphone array, whilst fl would be changed

from 0Hz to 340Hz. Although these values are specific to the “randomised” points that were

used, what can be gained from Figures 4.6 and 4.7 is the change in the characteristics of the

error of recording as a result of calibration error.

4.7 Qualitative Analysis

In this section, we provide visualisations to demonstrate the recordings obtained from the

design specified in Sections 4.4 and 4.5. It is not possible to present a three-dimensional sound

field on paper, so instead, we produce two-dimensional plots of a sound field on the plane,

z = 0m, for the region, |x| ≤ 0.5m and |y| ≤ 0.5m. Nor can we effectively show the sound field

over time so each plot we present can be thought of as a snapshot taken at an instant in time.

Furthermore, complex valued sound fields were used throughout this thesis for mathematical

convenience, but in reality they are real valued. Therefore, it is sufficient to observe the real

part of the sound field (so long as sensible snapshots are taken so that they are representative

of its characteristics). To assess the performance of a design, snapshots are given at various

frequencies. In each of the snapshots, the following sound fields are shown:

(a). Plane wave test sound field, as described in Section 4.3.
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(b). Sound field in (a), which has been order truncated to include modal components of orders

0 ≤ n < 5.

(c). Sound field in (b), which accounts for the presence of the rigid spherical scatterer.

(d). Perfectly reconstructed11 sound field using the modal coefficients recorded from (c).

A colour bar is included to indicate the value of the sound field. The values are meaningful if

one keeps in mind that the test sound field described in Section 4.3 is used in all the snapshots.

Note that the values inside the rigid spherical scatterer are invalid.

4.7.1 Recordings From the Inner Microphone Array

The snapshots in this section were obtained via simulation of the design specified in Section 4.4.

In each of the snapshots, the spherical microphone array is coincident with the rigid spherical

scatterer and is outlined in cyan.
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Figure 4.8: Inner microphone array recording of a plane wave of 0.25kHz.
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Figure 4.9: Inner microphone array recording of a plane wave of 0.5kHz.

11Refer to Section 4.2 for details of this concept.
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Figure 4.10: Inner microphone array recording of a plane wave of 1kHz.
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Figure 4.11: Inner microphone array recording of a plane wave of 2kHz.
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Figure 4.12: Inner microphone array recording of a plane wave of 3kHz.

Firstly, consider parts (a) and (b) of the Figures 4.8 to 4.12. Qualitatively, we can see from

these snapshots that as frequency is increased, the resemblance of (b) to (a) reduces rapidly.

Furthermore, the further away from the origin we consider, the lower the accuracy. These

demonstrate the effects of order truncation error as described in Section 4.6.1.

Now, consider the sound field with a rigid spherical scatterer from which recordings are

taken, shown in (c). Note that we can only just begin to make out the scattering effects on the

sound field at 3kHz. With respect to the radius of the rigid spherical scatterer, the diffractional

effects are dominant for frequencies below 3kHz. Refer to Section 3.3 for more details.

To assess the accuracy of recording using the inner microphone array, qualitatively, we
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compare the resemblance of (d) to (b). We can see that the level of resemblance possesses

the characteristic peaking behaviour, where qualitatively, we have the largest discrepancy at

0.5kHz. This corresponds to the error of recording described in Section 4.4 and shown in

Figure 4.1. If calibration errors were factored into the design, the discrepancy would be much

greater at 0.25kHz and 0.5kHz. Overall, we can qualitatively observe that there is a high

level of accuracy at least for frequencies in the range 1kHz to 3kHz, as we had expected when

designing this inner microphone array in Section 4.4.

4.7.2 Recordings From the Outer Microphone Array

The results in this section were obtained via simulation of the design specified in Section 4.5. In

each of the snapshots, the location of the microphone array is indicated by the blue dot-dashed

circle. The rigid spherical scatterer is outlined in green.
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Figure 4.13: Outer microphone array recording of a plane wave of 0.25kHz.
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Figure 4.14: Outer microphone array recording of a plane wave of 0.5kHz.
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Figure 4.15: Outer microphone array recording of a plane wave of 1kHz.

As with the inner microphone array in Section 4.7.1, we can observe the effects of truncation

error.

Qualitatively, the most striking observation is the relatively higher accuracy of recording

with the outer microphone array compared to the inner microphone array at 0.25kHz (Fig-

ure 4.13 compared to Figure 4.8) and 0.5kHz (Figure 4.14 compared to Figure 4.9). Observe

the higher level of resemblance of (d) to (b) for the outer microphone recordings. This cor-

responds to the small magnitudes shown in the error of recording in Figure 4.2. Again, were

calibration errors factored into the design, the increased error of recording would affect the

lower frequencies, such as at 0.25kHz.

Therefore, from what has been presented in both Section 4.7.1 and this section, we can

chose to obtain the higher frequency content of the sound field from the inner microphone

array and the lower frequency content of the sound field from the outer microphone array via

temporal filtering, as described in Section 3.7. From this qualitative treatment, we can see

that we are able to record the modal coefficients of orders 0 ≤ n < 5 of a sound field in the

frequency band [340,3400]Hz, as desired.

4.8 Summary

We have integrated and applied the design issues presented in Chapter 3 to produce a fourth

order spherical microphone design. The design has achieved less than 5% error of recording

and aliasing error in the frequency range [340, 3400]Hz. Furthermore, during the analysis of

calibration error, we found an increase in the error of recording for all frequencies observed.

Generally, calibration error was found to reduce the allowable frequency range.



Chapter 5

Conclusions and Future Research

In summary, the work presented in this thesis has made the following important contributions

to sound field recording:

• Consolidated theory between the theoretical continuous spherical microphone with and

without the use of a rigid sphere, which allowed the use of intermediate configurations

between the two. This theory paves the way towards the design of multi microphone

array systems.

• Application and evaluation of the Gaussian and trigonometric quadrature integration

methods to approximate the continuous spherical microphone using a microphone array.

These arrangements can be used in a practical spherical microphone design. They was

found to be relatively efficient and is scalable.

• A model for analysing the error due to inexact positioning of microphones in an array (or

calibration error) was presented. Analysing calibration error is essential when a physical

microphone is implemented.

• A set of error measures was proposed for error analysis of spherical microphones. Specif-

ically, the most important ones were error of recording and aliasing error. These would

serve as a basis for future work in microphone design.

• Design and analysis of a fourth order spherical microphone. This is a novel design,

which extends those presented in the literature by its ability to record one order higher.

This gives increased directional accuracy and more precise localisation of sound sources,

compared to existing third order designs, whilst maintaining the same frequency band.

However, as with existing designs, there are some limitations in our design. Firstly, it is

only accurate at recording the band of frequencies required for speech, which is around 0.2kHz

to 3.4kHz [18]. This is promising for applications such as teleconferencing, but there is still a

fair way to go before we can capture high fidelity music recordings, where we are looking at

a range of frequencies up to, say 15kHz. The second concern is the level of spatial accuracy

achieved in our design. Although improved over existing designs, our fourth order microphone

provides limited spatial resolution, where the lack of accuracy of localisation is very much

noticeable as we move further away from the origin. Overall, we expect that our design is

especially useful at capturing reverberant and ambient sound, which is instantly applicable to
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existing surround sound systems like Dolby Surround. Beamforming is another area in which

our design is directly applicable.

From the treatment presented in this thesis, the challenge for future design improvements

includes increasing the spatial accuracy and extent while at the same time, enlarging the

frequency range in which the sound field can be captured. The following items have been

identified as areas in which future work could be done:

• The design could incorporate theory suggested in [17] to remove the restriction of placing

microphones on a sphere. This is expected to increase the range of frequencies which we

can record.

• The rigid spherical scatterer assumes perfectly rigid material. This is not achievable in

practice since all materials have some degree of elasticity. Modelling this could be the

focus of future work.

• The microphones were idealised as omni-directional point sensors. This is not the case

in practice and the implications could be investigated. We anticipate that large area

microphones could be designed so as to reduce the effects of modal aliasing.

• Analysis of cubature and sphere packing arrangements for use in higher order microphone

design.

• The error analysis presented in this thesis used a single plane wave as the test sound

field. Further analysis by evaluating the error measures with different test sound fields

could be performed. Possible sound fields could include one with a linear combination of

plane waves, or a realistic sound field, which has the characteristics expected in practical

acoustic events.

• A prototype of the system could be built so to test out the theory and design issues

we have outlined in this thesis. The other important benefit of a prototype is to assess

qualitatively from a listener’s perspective.



Appendix A

Gaussian and Trigonometric

Quadratures

A.1 Gaussian Quadratures

Gaussian quadratures are methods which allow the exact evaluation of definite integrals, where

the integrand is a polynomial. The Gaussian-Legendre quadrature is a specific Gaussian

quadrature method and it is the most appropriate if there is a need to minimise the total

number of points. For further details, the reader is referred to [31] and [32]. Specifically, this

quadrature is concerned with evaluating definite integrals on [−1, 1], where the polynomial

integrand is restricted to a maximum degree of, say, 2N − 1. Then, the Gaussian-Legendre

quadrature specifies the location of the N sample points required, {xk}N
k=1, and their corre-

sponding weights, {wk}N
k=1, such that

∫ 1

−1
f(x)dx =

N∑

k=1

wkf(xk). (A.1)

The function, f(x) can be written in the form of what is known as a Lagrange interpolating

polynomial [30]. For example, the equation of a line can be written as

f(x) =
x − x2

x1 − x2
f(x1) +

x − x1

x2 − x1
f(x2). (A.2)

If we take the integral of f(x) in the form of (A.2), we obtain

∫ 1

−1
f(x)dx =

∫ 1

−1

( x − x2

x1 − x2

)

dx × f(x1) +

∫ 1

−1

( x − x1

x2 − x1

)

dx × f(x2)

= w1f(x1) + w2f(x2), (A.3)

where (A.3) is in the form of (A.1). This procedure can be extended to polynomials of any

degree.

Now, consider a polynomial f(x) of degree at most 2N − 1 in the variable x. We can show

that we require N points for the exact quadrature of the definite integral of f(x) between

x = −1 and x = 1. Firstly, we obtain a polynomial by taking f(x) and dividing it by the

Legendre polynomial, PN (x). Then, the resulting polynomial must be of degree N − 1, so it
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can be written in quotient-remainder form as

f(x)

PN (x)
= PN−1(x) +

rN−1(x)

PN (x)

∴ f(x) = PN (x)PN−1(x) + rN−1(x), (A.4)

where rN−1(x) represents a polynomial of degree at most N − 1. The integral of f(x) is

∫ 1

−1
f(x)dx =

∫ 1

−1
PN (x)PN−1(x)dx +

∫ 1

−1
rN−1(x)dx (A.5)

=

∫ 1

−1
rN−1(x)dx (A.6)

where the orthogonality property of Legendre polynomials1 has been used. Since rN−1(x) is of

degree at most N − 1, the quadrature can be evaluated exactly with N sample points by using

a Lagrange interpolating polynomial. However, in terms of the quadrature of A.1, we cannot

blindly assume that we can use this property. Instead, we generally need 2N sample points to

evaluate the quadrature as

∫ 1

−1
f(x)dx =

2N∑

k=1

wkPN (xk)PN−1(xk) +

2N∑

k=1

wkrN−1(xk). (A.7)

We need 2N sample points as a result of the degree of the integrand of the first term on the

right-hand side of (A.5). We can, however, assume the orthogonality property of Legendre

polynomials if we choose {xk}N
k=1 to be the N zeros of PN (x) in [−1, 1] [32]. This is because

the first term on the right-hand side of (A.7) vanishes as a result. Thus, we are left with a

total of N sample points.

Software exists which calculates the points and weights for a given degree of the integrand.2

Table A.1 lists the sample points and corresponding weights for some values of N . Table A.2

lists the sample points when the two end points, x = −1 and x = 1 are specifically to be used.

1
∫

1

−1
Pn(x)Pm(x)dx = 0, where n 6= m. Refer to [?] for more details.

2
sgausq is a program which calculates sample points and corresponding weights for a given value of N .

It also allows the user to specify whether one or both end points should be used. This can be found at
http://www.netlib.org/go/. Refer to Appendix H.
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N Sample Points, xk Weights, wk

2 -0.5773502692 1.0000000000

0.5773502692 1.0000000000

3 -0.7745966692 0.5555555556

0.7745966692 0.5555555556

0.0000000000 0.8888888888

4 ±0.8611363116 0.3478548451

±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268851

±0.5384693101 0.4786286705

0.0000000000 0.5688888888

6 ±0.9324695142 0.1713244924

±0.6612093865 0.3607615730

±0.2386191861 0.4679139346

Table A.1: Gaussian-Legendre quadrature sample points and corresponding weights for some

values of N .

A.2 Trigonometric Quadratures

Trigonometric quadratures are covered in the literature under the subject of the discrete Fourier

transform (DFT). This is used to approximate definite integrals with trigonometric expressions

in the integrand. The approximation is done via a discrete sum using the trapezoidal rule.

Specifically, K equispaced samples are evaluated between 0 and 2π [30]. The quadrature is

given by

Im =

∫ 2π

0
h(φ)eimφdφ ≈ (

2π

K
)

K−1∑

n=0

h(φn)eimφn (A.8)

for all −N < m < N and where φn = 2πn
K−1 . Note that we must use at least K = 2(N − 1) + 1

samples because this is the number of independent values of Im which we wish to resolve. To

ensure that aliasing does not occur, we must ensure that h(φ) is of the form

h(φ) =
∑

|m|<N

ameimφ,

where am are real coefficients. This is due to the fact that only K samples of h(φ) are taken

in the approximation. Note that in (A.8), the weights are all equal to 2π/K since the sample

points are equally spaced.
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N Sample Points, xk Weights, wk

2 -0.9999999400 0.3333333430

0.0000000035 1.3333333700

0.9999998810 0.3333334920

3 -0.9999999400 0.1666658070

-0.4472136200 0.8333334330

0.4472136500 0.8333354590

1.0000000000 0.1666662100

4 -1.0000000000 0.0999998376

-0.6546537280 0.5444444420

0.0000000007 0.7111114260

0.6546540860 0.5450564030

0.9999995830 0.0993885547

5 -1.0000000000 0.0666665956

-0.7650553580 0.3784751590

-0.2852315900 0.5548588630

0.2852315900 0.5548909900

0.7650979160 0.3826575580

0.9999575020 0.0624518767

6 -1.0000000000 0.0476189330

-0.8302239180 0.2768260540

-0.4688487650 0.4317453210

0.0000000800 0.4876189830

0.4688486750 0.4318937660

0.8303149940 0.2818730180

0.9999089240 0.0424235985

Table A.2: Gaussian-Legendre quadrature sample points and corresponding weights for some

values of N , when the two end points are specifically to be used. Note that N + 1 points are

required.



Appendix B

Proof of PDF for Lq

In Section 3.6, we were interested in the PDF of the distance random variable Lq from the qth

microphone position, xq. We began with the random variable, Z ∼ N (0, σ), with mean zero

and standard deviation σ, which has a PDF of

fZ(z) =
1

σ
√

2π
e−z2/2σ2

. (B.1)

Then, we defined

Lq = g(Z) = |Z|, (B.2)

which is a function of Z. This means that we can determine the PDF of Lq if for all lq, the

equation g(z) = lq has a countable number of solutions zi and for all these solutions, g
′

(xi)

exists and is non-zero. Then we can use the following relationship, as given in [36],

fLq
(lq) =

∑

i

fZ(zi)

|g′

(zi)|
. (B.3)

For lq ≥ 0, we have two solutions to the equation, g(z) = lq, ie. z1, z2 = ±lq. Hence,

fLq
(lq) =

fZ(z1)

|sgn(z1)|
+

fZ(z2)

|sgn(z2)|
fLq

(lq) = fZ(lq) + fZ(−lq)

fLq
(lq) = 2fZ(lq), (B.4)

due to symmetry and the fact that sgn(·) is the signum function, which has the property [37]

sgn(x) =
d|x|
dx

. (B.5)

Now, for lq < 0, there are no solutions to g(z) = lq and therefore, fLq
(lq) = 0. By writing in a

more compact fashion, we obtain (3.20), as required.
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Appendix C

Random Positioning of Microphones

In order to calculate calibration errors as set out in Section 3.6, we consider a point xq = (θq, φq).

We first solve the problem of shifting this point a distance lq along the surface of the unit sphere,

from its origin position. The problem can be generalised as finding the points on a circle of

radius lq along the surface of the unit sphere, centred at xq. We define a local coordinate

system, shown in Figure C.1, where the S2 axis is along the surface of the unit sphere in the

direction of decreasing elevation angle, and the S1 axis points in the direction of increasing

azimuth angle (Refer to Figure 2.1). The radial direction is out of the page at the point xq.

We will discuss the effect at the poles below.

PSfrag replacements

∆s2(aq)

∆s1(aq)xq = (θq, φq)
S1

S2

lq

aq

Figure C.1: Surface coordinate system, where the origin corresponds to a point xq on the

unit sphere. A circle of radius lq is drawn on the surface centred at this point. The angular

parameter is represented by aq. The radial direction is out of the page at xq.

We used the term, local earlier, meaning that it is only valid in a small region, say lq ≤
0.1π, since the curvature of the unit sphere means that this coordinate system is only an

approximation to describing a circle of radius lq along the surface of the sphere, centred about
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xq. Fortunately, we are only concerned with such points and so this approximation is sufficient

for our purposes. We will refer to S1 and S2 as the surface coordinates.

Before we can continue, we need to find the a relationship between the change in the

spherical coordinates and the change in the surface coordinates.

∆S1 ↔ ∆θ (C.1)

∆S2 ↔ ∆φ. (C.2)

We are interested in the change in these coordinates because, as will be shown below, we will

deal with relative rather than absolute quantities.

C.1 Mapping Between Spherical Coordinates and Surface Co-

ordinates

Let ∆s2 be a length along the S2 coordinate and ∆s1 be a length along the S1 coordinate.

Assume that the angle ∆θ subtends an arc of length ∆s2 on the unit sphere in the S2 coordinate.

By the relationship, s = rθ, which relates the angle θ with the arc length s, we have

∆s2 = ∆θ. (C.3)

However, when we consider the S1 coordinate, the relationship between ∆s1 and ∆φ is not

the same. This is because an angle ∆φ subtends an arc of length ∆s1 on the unit sphere in

the S1 coordinate, which is dependent on elevation θ - an angle ∆φ subtends an arc of length

∆s1, which is smaller at any other elevation compared to at the equator, θ = π/2. To quantify

this, we take a slice parallel to the x-y plane at elevation θ = [0, π), θ 6= π/2, and we observe

that the radius of the resulting circle on this plane has been multiplied by a factor of sin θ,

compared to the case where θ = π/2 (from basic geometry). Therefore, the circumference of

the circle on this plane is reduced by the same factor. Thus, we have

∆s1 = ∆φ sin θ, (C.4)

which is dependent on elevation θ.

C.2 Equation of a Circle on the Surface of Unit Sphere

Having determined the relationship between the surface and spherical coordinates, it is possible

to determine the equation of a circle on the surface of the sphere. We will use the parameter aq

to define the circle as parametric equations, ∆s1(aq) and ∆s2(aq), corresponding to coordinates,

S1 and S2, respectively. Therefore, we have

∆s1(aq) = lq cos aq (C.5)

∆s2(aq) = lq sin aq. (C.6)
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By using the relationships of (C.3) and (C.4), we obtain the corresponding parametric equations

in terms of angular values,

∆θ(aq) = lq sin aq (C.7)

∆φ(aq) =
lq cos aq

sin(θ0 + ∆θ(aq))
. (C.8)

Therefore, the parametric equations of the circle in spherical coordinates are

θ(aq) = θq + ∆θ(aq) (C.9)

φ(aq) = φq + ∆φ(aq). (C.10)

These become invalid whenever the point xq is too close to, or at the poles, because θ takes

on values outside its domain, [0, π]. (C.9) and (C.10) will draw figure-of-eight like contours.

Perhaps a more sophisticated coordinate system would alleviate this problem, but this will be

satisfactory for our purposes since it it largely affects only the Gaussian arrangement with the

two poles, described in Section 3.5.1. Instead, we solve this problem by assigning ∆θ(aq) = lq

and ∆φ(aq) = aq for the two points at the poles.

Figure C.2 shows the circles centred about each microphone position at various values of

lq = l, where l is constant, for two microphone arrangements.

(a) Gaussian and trigonometric quadratures

with N = 5 and K = 10, two poles.

(b) Truncated icosahedron arrangement.

Figure C.2: Two arrangements with plots of circles at various values of l centred about points.

C.3 Randomising the Positions

To implement the random variables Lq and Aq, q = 1, . . . , Q in Mathworks MATLAB according

to Section 3.6, we can use the functions, randn and rand, respectively. The former is a random

variable Z1, with a standard Gaussian distribution, while the latter is a random variable Z2,

which is uniformly distributed in [0, 1]. Therefore, we set
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Z1 = randn (1); % Standard Gaussian RV, 1 by 1 matrix output.

Z2 = rand (1); % Uniform RV, 1 by 1 matrix output.

sigma = Lmax / 3; % s.d. for 99.7% corresponding to Lmax.

Lq = abs (Z1) * sigma;

Aq = Z2 * 2*pi;

where the relationship Lq = µ + Z1σ was used, and µ is the mean (zero in our case) and σ is

the standard deviation [38]. By assigning lq = Lq and aq = Aq and substituting into (C.9) and

(C.10), we obtain the randomised microphone positions in spherical coordinates.



Appendix D

Distribution of Calibration Error

Calibration error was shown in Section 3.6 using ∆Cmax of (3.15) as the measure. The means

and standard deviations were obtained from sets of 40 samples and the normal probability

plots1 were plotted using the S-Plus 6.1 statistical software package2, for each Lmax and each

arrangement analysed. The plots with Lmax of 0.002π and 0.006π are displayed in Figures D.1

and D.2 for the Gaussian and trigonometric quadrature arrangements (both with N = 5

and K = 10) without poles and with two poles, respectively. Figure D.3 corresponds to

the truncated icosahedron arrangement.
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(b) Lmax = 0.006π

Figure D.1: Normal probability plot of 40 samples of ∆Cmax for the Gaussian and trigonometric

arrangement with N = 5 and K = 10 with no poles.

1Refer to [39] for further details.
2Refer to [40] for further details.
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Figure D.2: Normal probability plot of 40 samples of ∆Cmax for the Gaussian and trigonometric

arrangement with N = 5 and K = 10 with two poles.
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Figure D.3: Normal probability plot of 40 samples of ∆Cmax for the truncated icosahedron

arrangement.

From all of these, we can see that the distributions deviate slightly away from linear

behaviour in a concave-up fashion. This indicates a slight skewed-right deviation from the

Gaussian distribution [39]. This skewed-right behaviour is typical of data that are always

non-negative, as is in this case, which suggests that the gamma distribution would be a suit-

able model [38]. The gamma distribution parameters α and β are related to the mean µ and

standard deviation σ by µ = αβ and σ2 = αβ2 [38].



Appendix E

Proof of Error Equations

The proof of each of the alternative forms of error measures in Section 4.2 shall be shown in

this appendix. Each makes extensive use of the property of complex numbers, |z|2 = zz∗.

E.1 Proof of Error of Recording

The error of recording is given by (4.3). To begin with, the original sound field order truncated

to 0 ≤ n < N , can be expanded as

S0:(N−1)(x; k) =

N−1∑

n=0

n∑

m=−n

γnm(k)jn(k‖x‖)Ynm(x̂), (E.1)

based on (2.21). Similarly, a sound field, which has been perfectly reconstructed from modal

coefficients recorded from S0:(N−1)(x; k), can be expanded as

S̃0:(N−1)(x; k) =
N−1∑

n=0

n∑

m=−n

γ̃nm(k)jn(k‖x‖)Ynm(x̂), (E.2)

where γ̃nm(k) are the recorded modal coefficients from the sound field, S̃0:(N−1)(x; k). The

integrand in the denominator of the error of recording, (4.3), can be simplified to

∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
= S0:(N−1)(x; k)S∗

0:(N−1)(x; k)

∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
=

N−1∑

n=0

n∑

m=−n

γnm(k)jn(k‖x‖)Ynm(x̂)

×
N−1∑

n′=0

n′

∑

m′=−n′

γ∗
n′m′(k)jn′(k‖x‖)Y ∗

n′m′(x̂)

∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
=

N−1∑

n=0

n∑

m=−n

N−1∑

n′=0

n′

∑

m′=−n′

γnm(k)γ∗
n′m′(k)jn(k‖x‖)jn′ (k‖x‖)

×Ynm(x̂)Y ∗
n′m′(x̂), (E.3)
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when (E.1) is substituted and noting that jn(k‖x‖) is a real valued function. Now, integrating

(E.3) over the unit sphere gives

∫ ∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
dx̂ =

N−1∑

n=0

n∑

m=−n

N−1∑

n′=0

n′

∑

m′=−n′

γnm(k)γ∗
n′m′(k)jn(k‖x‖)jn′ (k‖x‖)

×
∫

Ynm(x̂)Y ∗
n′m′(x̂)dx̂

∫ ∣
∣
∣S0:(N−1)(x; k)

∣
∣
∣

2
dx̂ =

N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2
, (E.4)

where the orthonormality property of (2.16) was used. We now consider the numerator of (4.3).

In much the same way, we can write

∫ ∣
∣
∣S0:(N−1)(x; k) − S̃0:(N−1)(x; k)

∣
∣
∣

2
dx̂ =

N−1∑

n=0

n∑

m=−n

∣
∣
∣

(

γnm(k) − γ̃nm(k)
)

jn(k‖x‖)
∣
∣
∣

2
, (E.5)

where the orthonormality property of (2.16) was used. Substituting both (E.4) and (E.5) into

(4.3) yields (4.4) as required.

E.2 Proof of Aliasing Error

Aliasing error is given by (4.5). This proof largely follows from the concepts used in Ap-

pendix E.1. Based on (2.21), we can write

Ŝ0:(N−1)(x; k) =
N−1∑

n=0

n∑

m=−n

γ̂nm(k)jn(k‖x‖)Ynm(x̂), (E.6)

where γ̃nm(k) are the recorded modal coefficients from the original sound field S(x; k). Making

use of (E.2) and (E.6) we obtain

∫ ∣
∣
∣S̃0:(N−1)(x; k) − Ŝ0:(N−1)(x; k)

∣
∣
∣

2
dx̂ =

N−1∑

n=0

n∑

m=−n

∣
∣
∣

(

γ̃nm(k) − γ̂nm(k)
)

jn(k‖x‖)
∣
∣
∣

2
, (E.7)

where the orthonormality property of (2.16) was used. Substituting (E.4) and (E.7) into (4.5)

yields (4.6) as required.

E.3 Proof of Truncation Error

Truncation error, given by (4.1), was originally proposed by Abhayapala and Ward in [19].

This proof largely follows from the concepts used in Appendix E.1. By making use of (2.21)

and (E.1), we can write

∫ ∣
∣
∣S(x; k) − S0:(N−1)(x; k)

∣
∣
∣

2
dx̂ =

∞∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2

−
N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2
(E.8)
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and
∫ ∣

∣
∣S(x; k)

∣
∣
∣

2
dx̂ =

∞∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k‖x‖)

∣
∣
∣

2
. (E.9)

where the orthonormality property of (2.16) was used. Substituting (E.8) and (E.9) into (4.1)

yields (4.2).



Appendix F

Calculation of Aliasing Error

This section describes the calculation of aliasing error specifically for the inner microphone

design described in Section 4.4. The same concepts are used in the calculation of aliasing error

for the outer microphone array specified in Section 4.5, and so they will not be repeated here.

In relation to calculating the aliasing error, we are interested in recording a range of base-

band frequencies. Therefore, due to the characteristics of jn(k‖x‖) and bn(k‖x‖), the most sig-

nificant modal components responsible for modal aliasing are the lower orders in n = [N,∞].

Figures F.1 though to F.4 show that the aliasing caused by each increasing order decreases

approximately by an order of magnitude, with the exception of the 5th order. This exception is

due to the fact that the microphone arrangement used satisfies the orthonormality constraint

of (3.11). Therefore, it is possible to approximate the total aliasing error by considering only

the aliasing from modal component of orders 6 and 7, for example. The total aliasing error

for the inner microphone array was given in Figure 4.4. The total aliasing error for the outer

microphone array was given in Figure 4.5.
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Figure F.1: Alias error from 5th order modal components.
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Figure F.2: Alias error from 6th order modal components.
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Figure F.3: Alias error from 7th order modal components.
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Figure F.4: Alias error from 8th order modal components.



Appendix G

Calculation of Truncation Error

We need to make an approximation to (4.2) since the infinite sum in the denominator makes

it unsuitable for direct numerical calculations. Firstly, we write it as

εtrunc(‖x‖; k) = 1 −

N−1∑

n=0

n∑

m=−n

∣
∣
∣γnm(k)jn(k|x‖)

∣
∣
∣

2

∫ ∣
∣
∣S(x; k)

∣
∣
∣

2
dx̂

, (G.1)

where γnm(k) are the modal coefficients of the original sound field, S(x; k). The test sound

field used in calculating errors, as described in Section 4.3, can be written as

S(x; k) =
eik‖ys−x‖

‖ys − x‖ , (G.2)

where ys is the location of the point source (Refer to Section 2.3 for details). Now,

∣
∣S(x; k)

∣
∣2 = S(x; k)S∗(x; k)

∴
∣
∣S(x; k)

∣
∣2 =

1

‖ys − x‖2
. (G.3)

If for all x under consideration, ys � x (that is, the point source is far away from the region

we would like to record), then we can make the approximation of ‖ys − x‖ ≈ ‖ys‖. Using this

approximation we obtain
∣
∣S(x; k)

∣
∣2 ≈ 1

‖ys‖2
, (G.4)

which is a constant with respect to x̂. It is now possible to approximate the integral in the

denominator of (G.1) as

∫
∣
∣S(x; k)

∣
∣2dx̂ ≈ 1

‖ys‖2

∫

dx̂

∫
∣
∣S(x; k)

∣
∣2dx̂ ≈ 4π

‖ys‖2
. (G.5)
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Appendix H

Index to Files on CD-ROM for

Items in Thesis

Table H.1 references each item presented in this thesis with the corresponding files that pro-

duced the item. These can be located via the file location indicated on the CD-ROM. Note

that the MATLAB scripts that have long file names may pose a problem when attempting to

execute them on a Windows version of MATLAB.

Table H.1: Index to files on CD-ROM.

Item(s) Description File location on CD-ROM

1 Figure 3.1 Truncation error as a function
of N

simulation/misc/
order based truncation error.m

2 Figure 3.2 Plot of jn(k‖x‖) simulation/misc/
plot spherical bessel.m

3 Figure 3.3 Plot of bn(k‖x‖) simulation/misc/plot scatter.m

4 Figure 3.4 Comparison between
jn(k‖x‖) and bn(k‖x‖)

simulation/misc/
compare sphere.m

5 Figure 3.5 b0(k‖x‖) as R is varied simulation/misc/compare radii.m

6 Table 3.1 Maximum argument values
for reducing modal aliasing

simulation/misc/
scatter order argument.m

7 Figure 3.6(a) Gaussian quadrature points
on the unit sphere

simulation/array/
plot gaussian array.m

8 Figure 3.6(b) Gaussian quadrature points
on the unit sphere with two
poles

simulation/array/
plot gaussian ends array.m

9 Figure 3.7(a) Plot of Cnm,n′m′ for the Gaus-
sian quadrature arrangement

simulation/array/
check gaussian orthogonality.m

10 Figure 3.7(b) Plot of Cnm,n′m′ for the im-
proved Gaussian quadrature
arrangement

Refer to Item 9

11 Figure 3.8 Icosahedron points on the unit
sphere

simulation/array/
plot icosahedron array.m
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68 Index to Files on CD-ROM for Items in Thesis

Item Description File location on CD-ROM

12 Figure 3.10 Plot of Cnm,n′m′ for the icosa-

hedron arrangement

simulation/array/check

icosahedron orthogonality.m

13 Figure 3.11 Calibration error (ac-

tual samples used,

in simulation/array/

misplacement.xls)

simulation/array/plot misplace.m

and Items 9 and 12

14 Figure 4.1 Error of recording for inner ar-

ray

simulation/record/icosahedron

recording aliasing error.m

15 Figure 4.2 Error of recording for outer

array

Refer to Item 14

16 Figure 4.3 Truncation error for N = 5

design

simulation/record/

truncation error.m

17 Figure 4.4 Total aliasing error for the in-

ner array

Refer to Item 14

18 Figure 4.5 Total aliasing error for the

outer array

Refer to Item 14

19 Random

points on

truncated

icosahedron

Generated by Item 12 with

the parameter Lmax set to

0.002π

simulation/record/random

icosahedron Lmax0.002pi.mat

20 Figures 4.6

and 4.7

Error of recording with cali-

bration error

Refer to Items 14 and 19

21 Figures 4.9

to 4.12

Inner array sound field record-

ings

simulation/

record/icosahedron recording.m

22 Figures 4.13

to 4.15

Outer array sound field

recordings

Refer to Item 21

23 Table A.1

and A.2

Calculation of Gaussian

quadrature points (wrapper

program to sgausq.f)

simulation/array/nodes/nodes.f

24 Figure C.2 Circles on surface of sphere

centred about truncated

icosahedron points

simulation/array/

plot icosahedron circles.m

25 Figures D.1

to D.3

Normal probability plots qqnorm and qqline functions in

S-Plus 6.1

26 Figures F.1

to F.4

Aliasing error Refer to Item 14
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