
A Domain Description Language for Data Processing

Keith Golden
NASA Ames Research Center

MS 269-2
Moffett Field, CA 94035

kgolden@email.arc.nasa.gov

Abstract

We discuss an application of planning to data processing, a
planning problem which poses unique challenges for domain
description languages. We discuss these challenges and why
the current PDDL standard does not meet them. We discuss
DPADL (Data Processing Action Description Language), a
language for describing planning domains that involve data
processing. DPADL is a declarative, object-oriented lan-
guage that supports constraints and embedded Java code, ob-
ject creation and copying, explicit inputs and outputs for ac-
tions, and metadata descriptions of existing and desired data.
DPADL is supported by the IMAGEbot system, which we
are using to provide automation for an ecological forecast-
ing application. We compare DPADL to PDDL and discuss
changes that could be made to PDDL to make it more suitable
for representing planning domains that involve data process-
ing actions.

1 Introduction
Earth-observing satellites return terabytes of data per day,
providing global daily coverage across multiple spectral
bands at a variety of resolutions. These observations can
be used in countless ways: to monitor changes in Earth’s cli-
mate, assess the health of forests and farms, and track critical
short-term events, such as severe storms. However, doing all
this in a timely manner is a significant challenge, which will
require greater levels of automation. To go from raw “level
0” satellite data to high-level observations or predictions
such as “decreased vegetation growth” or “high fire risk” re-
quires many data-processing steps, from filtering out noise
to running simulations. There are often many data sources
to choose from, and many ways to process the data to pro-
duce the desired data product. These choices involve trade-
offs along many dimensions, including data quality, tempo-
ral and spatial resolution and coverage, timeliness, CPU us-
age, storage and bandwidth.

We use planning technology to automate this data pro-
cessing. We represent data-processing operations as plan-
ner actions, descriptions of desired data products as plan-
ner goals, and use a planner to generate data-flow programs
that output the requested data. We are working with Earth
scientists to provide planner-based automation to an eco-
logical forecasting system called the Terrestrial Observa-
tion and Prediction System, or TOPS (Nemaniet al. 2002)
(http://www.forestry.umt.edu/ntsg/Projects/TOPS/). We

have developed a planner-based softbot (software robot),
called IMAGEbot, to generate and execute data-flow pro-
grams (plans) in response to data requests. The data-
processing operations supported by IMAGEbot include im-
age processing, text processing, managing file archives and
running scientific models. Some aspects of the planner are
described in (Golden & Frank 2002).

In the course of developing IMAGEbot, we considered
available domain description languages, especially PDDL,
for representing data processing actions, but found them un-
suitable. We discuss the features of these domains that are
problematic for PDDL and the changes to the PDDL that
would be needed to handle them. To deal with these issues,
we developed a new language called DPADL, for Data Pro-
cessing Action Description Language. We considered bas-
ing our language on PDDL, which is attractive in that it has
become a standard for much of the planning community, but
decided instead to base the syntax on a different widely-used
language: Java. This decision was driven by practical con-
siderations, such as our desire for the language to be usable
by software developers, the appropriateness of an object-
oriented language to describe the complex data structures
that arise in data-processing domains, and the fact that Java
is the language that both TOPS and IMAGEbot are written
in, to name a few.

In the remainder of the paper, we discuss language fea-
tures relevant to representing data-processing domains, how
those features are implemented in PDADL, and what issues
there would be in including those features in PDDL:
• First-class objects (Section 2): Data files often have com-

plex data structures. The language should provide the vo-
cabulary for describing these structures.

• Constraints (Section 4): Determining the appropriate pa-
rameters for an action can be more difficult than determin-
ing which action schemas belong in the plan. Parameter
values can depend on other actions or objects in the plan.
The language should provide the ability to specify such
constraints where they are needed.

• Integration with a run-time environment (Section 4):
Sensing and acting in a complex software environment
requires “hooks” into that environment, both to obtain in-
formation and to initiate operations.

• Metadata goals (Section 5) and inputs (Section 7): The
inputs and outputs of data-processing plans are data, so

1

the language should be expressive enough to describe re-
quested and available data . Since a data file contains in-
formation about past states of the world, metadata should
be able to describe how the content of the data depends
on the past state of the world.

• Object creation and copying (Section 6.3): Many pro-
grams create new objects, such as files, sometimes by
copying or modifying other objects. The language must
provide a way of describing such operations.

• Data-flow plans (Section 8): Since the purpose of plans
is to process data, they should take the form of data-flow
programs, in which outputs of one action are fed into in-
puts of another.

At the end of each section, we present a BNF grammar
covering the language elements described in that section.
For example, the top-level production rule for a domain
description is:

DOMAIN ::= (TYPE | FUNCTION | ACTION | GOAL

| STATE | <INLINE_CODE>)+ <EOF>

where symbols inSMALL CAPS are non-terminals, symbols
in <ANGLE_BRACKETS> are terminals, and keywords are
underlined.

2 First-class objects
Data files (and other entities in a software environment)
typically have a complex, hierarchical structure, which can
be described in terms of object composition. Representing
these data structures explicitly as first-class citizens not only
makes domains simpler to encode and understand, but pro-
vides valuable information to the planner. Thus, we decided
that DPADL should be an object-oriented language. Al-
though the identification of objects and object attributes is
important, an object-oriented syntax, such as our Java-based
syntax, is less so; the same information could be expressed
in a PDDL-style relational syntax, just not as concisely.

DPADL allows the definition of new types correspond-
ing either to structures (objects) or primitive types, such
as integers or strings. The keyword for introducing a new
type declaration istype . Here and elsewhere in the paper,
DPADL text is rendered intypewriter font, and keywords
arebold . We use ellipses (. . .) to indicate that text has been
omitted for the sake of brevity. For example,

static type Filename extends String

introduces a new type,Filename, which is a subtype of
String, a predefined type. The predefined types areint,
unsigned, float, String, Object andboolean. The key-
word static means that no instance ofFilename, once
created, can ever be changed.1 A type that is not static is
fluent .

Subtypes ofObject may be used to represent Java ob-
jects. For example,

static type Tile extends Object
mapsto tops.modis.Tile

1This is a departure from the Java meaning ofstatic.

means that the typeTile corresponds to the Java class
tops.modis.Tile. As we discuss in Sections 4 and 6.4,
the agent can manipulate Java objects in the course of con-
straint reasoning or action execution by executing in-lined
Java code.

Alternatively, when there is a small number of instances
of a type, we can define it by listing all possible instances.
This is similar to enumerated types in C/C++, but without
the restriction to integral values.2 Listing values in this way
is useful for constraint reasoning, since the domain of a vari-
able corresponding to such a type can be initialized with the
set of possible values.

static type ImageFormat =
{"JPG", "GIF", "TIFF", "PNG", "XCF", . . .};

As in C/C++, enumerated values can have symbolic names
attached to them.

static type ProjectionType =
{LAZEA=11, GOODE_HOMOL=24, ROBINSON=21, . . .};

Like classes in C++ and Java, types can have attributes. For
example, file attributes include pathname and owner:

type File extends Object {
static key Path pathname;
User owner;
. . .

}

The keywordkey is used to indicate thatpathname is a
unique identifier for a file, so two files that have the same
pathname must in fact be the same file. This is not correct
if we access files on multiple machines, in which case we
should use the host machine as an additional key.

In addition to the subtype relation, designated using
extends , we can specify that one typeimplements an-
other, meaning it inherits all the attributes of the other type
but is not an instance of that type.3 This is useful in cases
where two objects share the same structure but cannot be
used interchangeably. For example, a file archive, such as a
tar file, contains records that reflect all the properties and
contents of individual files, but are not themselves files.
We say thatTarFile.Record implements File. This
is especially useful when used in conjunction withcopyof
(Section 6.3), since a record in a tar file can be a copy of a
file, or vice versa.

When referring to an attribute of an object, we use a
Java-like syntax. For example,f.filename refers to the
filename attribute of the object represented by the vari-
able f. Attributes can take arguments. For example,
pic.pixelValue(x,y) refers to the value of the pixel at
the x,y coordinates of the imagepic. Although the syntax
resembles that of Java method calls,pixelValue(x,y) is
simply a parameterized attribute, and can be used in exactly
the same contexts. For example,

2In PDDL, all types other than numbers are effectively enumer-
ated types, since all objects of each type must be explicitly de-
clared. Since the Closed-World Assumption is not at all reasonable
for data processing domains, DPADL does not impose this require-
ment.

3This is a departure from the Java meaning ofimplements.

2

pic2.pixelValue(x,y) = pic1.pixelValue(y, x+5);

describes an effect that transposes an image to the left by 5
pixels.

The object-oriented notation is convenient, but not essen-
tial. Any object description can be translated into an equiva-
lent relational form by translating each attribute description
into a relation in which the first argument is a reference to
the object, the second argument is the value of the attribute,
and the remaining arguments are the arguments of the at-
tribute. From the example above, we would define a PDDL
relation (pixelValueR ?image ?pvalue ?x, ?y). Additionally,
the action descriptions or domain axioms would need to be
modified to enforce the fact that

• Two objects are equal if and only if their key attributes are
equal and

• An attribute can have only one value, so (pixelValue
IMAGE-56, BLACK, 10, 10) is mutually exclusive with
(pixelValue IMAGE-56, ?v, 10, 10), for all ?v6= BLACK.

Alternatively, we could provide additional syntax to convey
the same information while maintaining a relational repre-
sentation, as was done in the SADL language (Golden &
Weld 1996).

Explicitly identifying objects is not just useful to the
domain developer, but also to the planner. For example,
the planner can reduce search by exploiting the fact that
attributes of static objects don’t change once the object
is created. Additionally, Section 6.3 discusses the role
attributes play when objects are copied.

TYPE ::= (static | fluent)? type
((<IDENTIFIER> = { MEMBERS })
| (TYPESPEC)) (TYPEBODY | ;)

MEMBERS ::= ((<IDENTIFIER> =)? LITERAL)
(, MEMBERS)?

TYPESPEC ::= PRIMTYPE | (<IDENTIFIER> extends
TYPENAME

(implements TYPENAME)*)
(mapsto <CLASSNAME>)?

TYPEBODY ::= { (MEMDEF | CTRSPEC | TYPE)* }
MEMDEF ::= (static | fluent)? key? TYPENAME

<IDENTIFIER>
(PARAMS)? (MEMBODY | ;)

MEMBODY ::= { (CTRSPEC)* }
PRIMTYPE ::= int | unsigned | float | String |

Object | boolean
TYPENAME ::= <IDENTIFIER> | PRIMTYPE

QUALTYPE ::= TYPENAME (. <IDENTIFIER>)*

3 Functions and relations
The object-attribute notation is just a special case of a func-
tional notation, which DPADL also supports. Functions, like
types, may be static or fluent. The value of a fluent function
changes over time, whereas the value of a static function
does not. For example,

fluent float temp(float lon, float lat);

declares a function that takes two real values, representing
longitude and latitude, and returns a real value representing
the temperature at that location. Functions, like attributes,
may have zero arguments, in which case the parentheses are
omitted. For example,

fluent Date currentDate;

specifies thatcurrentDate is a fluent function taking no
arguments.

Functions over objects have been mentioned as a possible
future extension to PDDL (Fox & Long 2003). While that
would make it easier to describe data-processing domains in
PDDL, we should note that functions in DPADL are merely
a notational convenience; they allow us to avoid explicitly
stating the mutual exclusions to specify that, for example,
a file can have only one size, but semantically they are no
different from relations in which one of the arguments is
restricted to a single value. In particular, they do not play the
same role that functions play in first-order predicate logic.
DPADL does not support domain axioms, which could be
used to generate an arbitrary number of object references
through repeated function composition.

To indicate that a function is undefined for particular
arguments, we use the keywordnull to represent invalid
values. The type ofnull is a subtype of all types, but
null will not match any value except itself.

FUNCTION ::= (static | fluent) TYPENAME

(<IDENTIFIER>
| <OPERATOR>) ((PARAMS?))?
(; | { (CTRSPEC)* })

PARAMS ::= (PARAMDEF (, PARAMS)?)
| :rest PARAMDEF

PARAMDEF ::= QUALTYPE <IDENTIFIER>

4 Constraints
In data-processing domains, we need to be able to express
thresholds, intervals over space or time, mathematical func-
tions, and more complex calculations. In DPADL, these are
all represented using constraints. PDDL supports numeric
functions, which are used to specify how quantities change
over time. PDADL constraints can serve the same role, but
are more flexible; they can perform arbitrary calculations or
sense information from the environment. However, they are
also more limited than PDDL functions, in that they cannot
represent and reason about quantities that change continu-
ously over time, such as fuel (Fox & Long 2003).

Formally speaking, a constraint is simply a relation that
holds over a set of variables, so we could view any functions,
object attributes or types as constraints. However, thus far,
we have only shown how todeclarefunctions, attributes and
types, not (with the exception of enumerated types) how to
definethem. To reason about constraints, we need defini-
tions, not just declarations. For example, consider the fol-
lowing declaration.

float foo(float x);

Given the value ofx, we know there must be some valuey =
foo(x), but we have provided no way to determine what that
value is. Viewingfoo as a constraint is valid but pointless.

3

We provide two alternative ways of specifying the defini-
tion of a constraint; it may be selected from a library of pre-
defined constraint definitions or defined in terms of arbitrary
Java code embedded in the type and function declarations.
The constraint reasoning system supports constraints over
all primitive types as well as Java objects. It can also handle
constraints involving universal quantification, as discussed
in (Golden & Frank 2002).

Constraint definitions can only be given for statics. Any
function defined as a constraint must be determined only by
that constraint; no action may affect it. This restriction pro-
vides a clear division of labor between causal reasoning and
constraint reasoning.

4.1 Type constraints

Formally, a type is a unary relation that is true for all in-
stances of the type and false for all non-instances. But in
the type declarations of Section 2, we did not define what
those relations were. It is fine to sayFilename extends
String, but given a String, how do we know if it is a valid
filename?

One possibility might be to defineFilename as an enu-
merated type; that is, we list all valid filenames. The obvious
problem with this is that there are, for all practical purposes,
infinitely many of them. A better option is to specify a reg-
ular expression that concisely specifies all valid filenames:

static type Filename extends String {
constraint Matches(true , this , "~[/]+");

}

means that filenames must contain at least one character, and
they cannot contain the character ‘/’. In Unix, this is, in
fact, the only practical limitation on filenames.Matches is
a constraint from the constraint library requiring a string to
a match a regular expression. All string constraints are ac-
tually defined in terms of operations on regular expressions,
so Matches is, in a sense, the simplest. The keywordthis
designates an instance of the type being defined, in this case
a filename.

Constraints can also be defined in terms of inlined Java
code, as discussed in the next section.

4.2 Attribute constraints

We can define attributes as constraints as well. One reason
for doing this is to supportprocedural attachment: specify-
ing program code that provides the definition of the attribute.
For example, if we have a DPADL object that corresponds
to a Java object, we must specify what methods to call on
the Java object to determine the values of the attributes as
declared in DPADL:

static type Tile extends Object
mapsto tops.modis.Tile {

key String uniqueId {
constraint {

value (this) = $this .getUID()$;
this (value) = $Tile.findTile(value)$;

}
. . .

The attributeuniqueId is declared as akey of a (mosaic)
Tile, meaning there is a one-to-one mapping between tiles
and their unique identifiers. Given a tile, we should be
able to obtain its unique identifier, and given a unique iden-
tifier, we should be able to obtain the corresponding tile.
The embedded Java code provides instructions for perform-
ing these mappings. TheuniqueId attribute of aTile can
be determined by calling thegetUID method on theTile,
and aTile object corresponding to a givenuniqueId can
be determined by calling the methodfindTile, with the
uniqueId as an argument. The text preceding the “=” is
a “signature” specifying the return value and parameters of
the following Java code. The keywordvalue refers to the
value of the attribute being defined, in this caseuniqueId.
The keywordthis refers to an object of the type being de-
fined, in this caseTile. Thus,value (this) means that
given an object of typeTile, we can obtain the value of
theuniqueId attribute by executing the following Java code
(delimited by$). Conversely,this (value) means that
given auniqueId, we can find the correspondingTile.

The above constraint will only be enforced if there is a
singleton domain for some tile or ID variable. It is also pos-
sible to define constraints that work for non-singleton do-
mains, by indicating that an argument or return value repre-
sents an interval (delimited by[]) or a finite set (delimited
by{}). For example, one attribute of aTile is that itcovers
a given longitude, latitude. Given a particular longitude and
latitude, the constraint solver can invoke a method to find a
single tile that covers it, but it can do even better. Given a
rectangular region, represented by intervals of longitude and
latitude, it can invoke a method to find a set of tiles covering
that region.

boolean covers(float lon, float lat) {
constraint {

. . .
// returns the set of tiles covering
// a given lon/lat range.
{this }([lon], [lat], d=day, y=year,

p=product, value)
= {$ if (value)

return tm.getTiles(lon.max,
lat.min,
lon.min,
lat.max,
d, y, p);

else return null ; $};
}

}

In this example, the signature is more complicated.
{this }(. . .) means that the return value of the Java code is
a set (specified by{. . .}) of Tiles (specified bythis). The
first two arguments, lon and lat, are surrounded by[. . .], in-
dicating that the variable domains should be intervals. The
next three arguments, d, y, and p are defined as being equal
to the Tile attributes day, year and product, not shown in
this example. Finally,value is the boolean value of the
covers relation, true if and only if the tile covers the speci-
fied lon/lat.

4

The Java code is also more complex. Unlike the previ-
ous example, it has a conditional and an explicit return call.
If value is true, then it returns the result of the method
getTiles. Since lon and lat are intervals, we refer to their
maximum and minimum values to specify the bounding box
of interest. Ifvalue is false, it returnsnull , meaning the
set of tiles could not be determined, since there is no method
for returning the tiles outside of a bounding box.

4.3 Function constraints
Functions, like attributes, can have constraints associated
with them, the only difference being that the constraints can-
not reference the keywordthis , because there is no object
to reference. Infix mathematical operators are also func-
tions, and they can be defined for any type, using a syn-
tax similar to that used for C++ operator overloading. For
example to specify that the “+” operator can be used to con-
catenate strings, as in Java, we can write

static String operator+ (String s1,
String s2) {

constraint Concat(value , s1, s2);
}

where Concat is a constraint from the constraint library,
specifying that the first argument is the concatenation of the
remaining arguments.

4.4 Restrictions
Minimum requirements on the inlined code used to define
constraints are:

1. The code may not do anything other than calculate the
domain of a variable and return it. That is, it may not
have any side-effects.

2. If the code is called multiple times with the same argu-
ments, it will always return the same calculated domain.
This requirement precludes using constraints to represent
values that change during the course of planning.

3. If the domains corresponding to one or more of the ar-
guments is reduced, then the calculated domain will be a
subset of the original domain.

If these requirements are not met, then the results are
undefined. With them, we can view each constraint as some
unknown relation and the procedures as sensors that provide
limited information about the extension of the relation.

CTRSPEC ::= constraint (<IDENTIFIER>
(ARGS) ;) | { (JAVACTR)+ })

JAVACTR ::= (CTRARG CTRARGS =
<INLINE_CODE> ;)
| ([CTRARG] CTRARGS =
[<INLINE_CODE> ,
<INLINE_CODE>] ;)
| ({ CTRARG } CTRARGS =
{ <INLINE_CODE> } ;)

CTRARG ::= <IDENTIFIER> | value | this
CTRARG2 ::= (CTRARG | [CTRARG] | { CTRARG })

(= ADDITIVE)?
CTRARGS ::= (CTRARG2 [, CTRARGS])

5 Goals
Goals are used primarily to describe data products that the
system should produce. Data product descriptions should
specify at least the following:

• Data semantics: the information represented by the data.
That is, what facts about the world can be inferred from
the data contents.

• Data syntax: how the information is coded in the data.
For example, what pixel values in an image are used to
represent the information.

• Time: what time the information pertains to. For exam-
ple, we need to be able to distinguish between rainfall last
week and rainfall last year.

Time is an optional argument of all fluents. The mapping
between semantics and syntax is specified using the key-
word when. For example, to request a file that contains
gridded temperature values over a particular region, using
the LAZEA projection and a particular mapping (tempEn-
coding) from temperatures to pixel values, we could write:

forall int x, int y, float lon, float lat,
float t;

when(tempEncoding(temperature(lon, lat)) == t
&& proj(LAZEA, x, y, lon, lat)
&& 0 <= x < MAXX && 0 <= y < MAXY) {

file.pixelValue(x, y) == t;
}

We will call the expression inside the parentheses following
the keywordwhen the left-hand side (LHS) of the goal, and
we will call the expression in the braces the right-hand side
(RHS).

A key aspect of DPADL is that all data descriptions are
purely causal; we describe how the data content of the file
causally depends on the (earlier) state of the world. An ad-
vantage of this representation is that standard temporal pro-
jection techniques can be used to to determine how a succes-
sion of data-processing operations affect the data content of
the final output.

A when condition describes an implication, but an impli-
cation between conditions that hold at two different times.
The LHS implicitly refers to the time the goal is posted (un-
less an earlier time is specified), and the RHS refers to the
final state (whenever the goal achieved). Because the agent
cannot change the past, the only way to achieve the goal is
to make sure the RHS is satisfied, subject to the conditions
given by the LHS.

More formally, awhen goal can be be described as fol-
lows. Let s0 be the initial state and letΣ be the set of
states indistinguishable froms0 consistent with the agent’s
knowledge in the initial state (i.e., the set of all possible
worlds). Let π be a plan consisting of a sequence of ac-
tions, and letdo(π,s) be the state reached froms by exe-
cutingπ. The goalwhen(Φ(~x)) { Ψ(~x)} is achieved byπ if
∀~x∀s∈ Σ((s |= Φ(~x))⇒ (do(π,s) |= Ψ(~x))).

The only formal difference between conditions in the LHS
and conditions in the RHS is the time that they refer to,
but this provides a sufficient foundation for describing data

5

goals, since the important characteristic of data is that it
stores information about the past. Thus, we use temporal
goals to describe how the past information of the world de-
termines the future content of the data:

• The semantics of the desired data (e.g., temperature) is
specified in terms of fluents in the LHS of the goal, be-
cause it concerns properties of the world that hold when
the goal is specified (or earlier), properties that are not
affected by the agent in pure data-processing domains.

• The data syntax (e.g., pixelValue) is specified in terms of
static predicates in the RHS, because it concerns prop-
erties of data that may not exist at the time the goal is
given, properties that must be affected by the agent to
produce the requested data. Optionally, predicates de-
scribing syntax could also appear on the LHS, to rep-
resent goals of converting file formats, etc. For ex-
ample, we might specify a goal of making all the red
pixels in an image blue:when(input.color == RED)
{output.color == BLUE;}

• Constraints (e.g.,0 <= x < MAXX) are specified in the
LHS of the goal because, being static, they must hold in
the initial state and cannot be affected by the agent. Since
variables involved in constraints can appear in the RHS,
this is not a practical limitation.

To use these conventions in PDDL, we would need to
extend PDDL to specify goals that refer to an earlier state of
the world in addition to the final state. PDDL 2.1 can refer
to time, but only the start and end times of actions. It would
also be necessary to relax the CWA, if these domains are to
be remotely interesting.

GOAL ::= goal <IDENTIFIER> (PARAMS?) {
((output | forall | exists) PARAMS

;)* OREXP }
OREXP ::= CONDEXP+ (|| CONDEXP+)*

CONDEXP ::= (when (ANDEXP) { CONDEXP* }
(else { CONDEXP* })?) | EQUAL ;

ANDEXP ::= EQUAL (&& (EQUAL))*
EQUAL ::= RELATION ((== | !=) RELATION

)*
RELATION ::= ADDITIVE ((< | > | <= | >=

) ADDITIVE)*
ADDITIVE ::= MULTIPL ((+ | -) MULTIPL)*
MULTIPL ::= UNARY ((* | / | %) UNARY)*

UNARY ::= (+ | - | !)? PRIMEXP

PRIMEXP ::= (ANDEXP) | (FUNEXP | this)
(. FUNEXP)* | LITERAL

FUNEXP ::= <IDENTIFIER> ((ARGS))?
LITERAL ::= <INTEGER_LITERAL>

| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL> | null
| true | false

ARGS ::= ADDITIVE (, ARGS)?

6 Actions
Actions can include data sources (which provide data
based on the state of the world) and filters (which provide

data based on their inputs), so preconditions and effects
describe inputs and outputs as well as the state of the world.
Additionally, actions must be executable, so the procedure
for executing an action (i.e., Java code) is part of the action
description.

ACTION ::= action <IDENTIFIER> (PARAMS) {
((input | forall) PARAMS ;)
| (output OUTPUTS ;)
| PRECOND | EFFECT | EXEC)* }

OUTPUTS ::= PARAMDEF (copyof <IDENTIFIER>)?
(, OUTPUTS)?

6.1 Inputs, outputs and parameters
As in PDDL (McDermott 2000), actions are parameterized,
and parameters are typed. In addition to ordinary parame-
ters, two kinds of variables are recognized as unique and are
treated somewhat differently; namely, inputs and outputs.

Outputs represent objects (e.g., files) generated as a result
of executing the action. An output does not exist before the
corresponding action is executed, and is always distinct from
all other objects.

Inputs represent objects that are required by the action
but are not required to exist after the action has been exe-
cuted. Inputs may come from outputs of other actions or
they may be preexisting objects. In the former case, all pre-
conditions describing attributes of a given static input must
be supported by the same action, since only one action can
have produced the output, and once it is created, no action
can change it.

Ordinary parameters are essentially like the parameters
passed to method or function calls in C or Java; they refer to
primitive values or objects that may exist before the action
is executed and may persist afterward.

In addition to parameters, inputs and outputs, actions can
refer to universally quantified variables and introduce vari-
ables corresponding to new objects with thenew keyword,
discussed in Section 6.3.

To extend PDDL to handle input and output parameters,
it would be necessary to allow for object creation (which re-
quires a dynamic universe), and to allow the values of certain
variables to be unbound at planning time, provided it can be
proven that they will be bound at execution time.

6.2 Preconditions
Preconditions describe the conditions that must be true of
the world and of the inputs in order for the action to be ex-
ecutable. Thus, action preconditions need to reference the
input variables and the prior world state, but cannot refer-
ence the output variables, which describe objects that don’t
exist in the prior state.

Low-level actions, such as filters, can be described purely
in terms of the syntactic properties of the input files. For ex-
ample, an image-processing operation doesn’t care whether
the pixels of the input image represent temperatures in Mon-
tana or a bowl of fruit. All that matters are the values of the
pixels. Thus, the preconditions for these actions should re-
fer only to properties of the data that hold in the prior state.
Similarly, simple sensors (data sources) depend only on the
immediate state of the world, so their preconditions should

6

only refer to conditions of the world that hold in the prior
state.

However, some high-level actions, such as ecological
models, expect their inputs to represent certain information
about past states of the world, such as temperature or pre-
cipitation, so it is appropriate for the preconditions of these
actions to specify the information content of their inputs, not
just the structure. The descriptions the information content
of these inputs will be in terms of states other than the prior
state. For example, an ecological model might require a
file containing temperature data from last Tuesday. In other
words, preconditions, like goals, can include metadata de-
scriptions, which are described in exactly the same way, us-
ing the keywordwhen.

The LHS of awhen precondition, like the LHS of a goal,
refers to past states. The RHS, however, rather than referring
to the final state, refers to the start of execution of the corre-
sponding action. Conventions for describing data inputs in
preconditions are the same as the conventions for describing
goals: The LHS specifies the semantics of the data file and
the RHS specifies the syntax. Any constraints must appear
in the LHS.

Preconditions are introduced with the keyword
precond , and introduce a condition, which may be
disjunctive.

PRECOND ::= precond OREXP

6.3 Effects
Effects, introduced with the keywordeffect , are used to
describe the outputs generated by an action. Outputs depend
on the state of the world (in the case of sensory actions) or
the inputs (in the case of filters), so effects need to be able
to reference both the prior state and next state and both the
input and output variables.

EFFECT ::= effect (WHENEXP)+

Conditional effects Like goals and preconditions, condi-
tional effects are introduced using the keywordwhen, but
here the LHS refers to the prior state (and input variables),
not the initial state. The RHS describes the next state and
output variables, so the combination of the two describes
how the output depends on the input (or on the state of
the world). This is no different than conditional effects in
PDDL.

As with goals, there are conventions for describing data
effects.

• data sources are described using conditional effects, in
which conditions on the LHS are either constraints or flu-
ents describing the state of the world and conditions on
the RHS are statics describing the syntax of the output
data.

• Filters are described using conditional effects, in which
conditions on the LHS are either constraints or statics de-
scribing the syntax of the input data, and conditions on the
RHS are statics describing the syntax of the output data.

In order to restrict the language to only describe data-
processing domains, we do not allow fluents to appear on the

RHS of any effect. This means that actions cannot change
the world except by creating objects (e.g., files) that satisfy
certain conditions based on the current (or past) state of the
world. This restriction could easily be lifted, allowing us to
describe arbitrary planning domains, but imposing it allows
the use of specialized planning algorithms that take advan-
tage of unique properties of pure data-processing domains.
An alternative would be to run a simple preprocessor that
checks whether a domain is a data-processing domain and
runs a specialized planner if it is.

Every atomic RHS expression involves setting the (pos-
sibly boolean) value of a function or attribute or creating a
new object. A static attribute can only be set if it is an at-
tribute of a newly created object. Since we restrict predicates
on the RHS of effects to static predicates, that means all that
actions can do is produce data; they cannot change the world
or alter preexisting data.

For example, to describe a threshold action, which sets
output pixels to either BLACK or WHITE, depending on
whether the corresponding input pixels are below or above a
given thresholdthresh, we can write:

action threshold (unsigned thresh) {
input Image in;
output Image out copyof in;
forall unsigned x, unsigned y;
effect when ((x < in.xSize)

&& (y < in.ySize) {
when (in.valueAt(x, y) <= thresh) {

out.valueAt(x, y) = BLACK;
} else {

out.valueAt(x, y) = WHITE;
}

}
}

The keywordelse has the same meaning as in C or Java.
The keywordcopyof is explained below.

WHENEXP ::= (when (ANDEXP) { (WHENEXP)* }
(else { (WHENEXP)* })?)
| CONSEQNT

CONSEQNT ::= ASSIGNMNT | NEWDECL

ASSIGNMNT ::= CFUN (. CFUN)* (=
(EQUAL | NEWEXP))? ;

CFUN ::= <IDENTIFIER> ((CARGS))?
CARGS ::= (ADDITIVE | NEWEXP)

(, CARGS)?

Object creation and copying Output variables implicitly
describe newly created objects, but it is sometimes neces-
sary to explicitly refer to object creation in action effects.
For example, an output may be a complex object, such as a
file archive or a list, with an unbounded number of complex
sub-elements. Since each of those sub-elements is (possi-
bly) newly created, we need some way of describing their
creation. We do so using the keywordnew.

Additionally, newly created objects may be copies of
other objects, possibly with minor changes. Listing all the
ways the new objects are the same as the preexisting ob-
jects can be cumbersome and error-prone, so we would like
to simply indicate that one is a copy of the other, and then

7

specify only the ways in which they differ. We do so using
thecopyof keyword.

Suppose we have an action whose input,in, is a collection
of JPEG files and whose output,out, is a new collection, in
which the files from the input are compressed with quality
of 0.75.

forall Image orig;
when(in.contains(orig)) {
out.contains

(new Image copyof orig {
quality = min(orig.quality, 0.75); });

}

When an object is copied, all attributes of the original ob-
ject are inherited by the copy, unless explicitly overridden.
For example, the new Image is identical to the original in
every way, except in quality, which is set to 0.75. Note that
this is one way in which attributes of objects are different
from other relations on objects.in.contains(orig) is an
attribute ofin, but not an attribute oforig, so afterorig
is copied,in.contains(copy) is not true but, for example,
copy.format == JPEG is true.

The copy and the original need not be the same type, as
long as they inherit from or implement a common parent
type. All attributes common to both types are copied.

Formally, we can describe new objects as Skolem func-
tions of the actions, inputs and quantified variables that they
depend on.The semantics ofcopyof can be specified in
a manner similar to Reiter’s solution to the frame problem
(Reiter 1991).Let a be an action with an effect“new T n
copyof i,” and let p represent an attribute common to the
type of i and type T. Letn = sk(a, i,v) be a Skolem function
of actiona, input i and variablesv appearing ina. We will
write p(n) to designate the value of the attributep of object
n. Let Πa be the precondition of actiona, let do(a,s) be
the state reached by executing actiona in states. Without
loss of generality, assume that for each possible valuev of
attribute p, there is a single conditional effect of the form
“when (γv

p(n)(a)) {n.p = v;}.” If a has no direct effects

concerningp(n), thenγv
p(n)(a,s) is false for allv. If a un-

conditionally setsp(n) = x, thenγx
p(n)(a,s) = true. Because

the effects ofa are assumed to be consistent,γv
p(n)(a,s) can

be true for at most one value ofv.
The successor state axiom forp(n) is:

Πa(s)⇒ p(n,do(a,s)) =
{

v if γv
p(n)(a,s)

p(i) otherwise
That is, assuminga is executable (Πa(s)), the value ofp(n)
after a is executed isv if a has an effect that sets it tov.
Otherwise, it is the value ofp(i). A similar axiom must be
given for each attribute common betweeni andn.

The advantage ofcopyof is purely syntactic, since
it could be replaced by a large number of conditional
effects, one for each attribute of the object being copied.
However, since the number of attributes can be quite large,
the reduction in the size and apparent complexity of action
descriptions can be substantial. This is exactly analogous
to the advantage of the STRIPS assumption as a solution to
the Frame Problem, in that we avoid specifying conditions
that stay the same. The only difference is that the properties

that “persist” are actually copied from one object to another.
Using conditional effects would also make it harder for a
planner to distinguish effects that result in progress toward
some goal from those that simply propagate a condition
from one file to another. Although this could be determined
using domain analysis, that would be making life harder
for both the planner and domain modeler with no apparent
advantage for either.

NEWDECL ::= new QUALTYPE <IDENTIFIER>
(copyof <IDENTIFIER>)?
(({ (ATTRIBUTES)* }) | ;)

NEWEXP ::= new QUALTYPE

(copyof <IDENTIFIER>)?
(({ ATTRIBUTES * }) | ;)

ATTRIBUTES ::= FUNEXP = (EQUAL ;
| NEWEXP)

6.4 Execution

The action descriptions include instructions for actually ex-
ecuting the action. These instructions are written in Java,
which enables us to write actions that correspond to any op-
eration that can be performed by the Java runtime environ-
ment, including invoking methods on objects or making sys-
tem calls. All parameters and inputs corresponding to Java
objects or primitives may be referenced in the Java code, and
outputs must be initialized.

We pose the requirement that the results of execution
are accurately reflected by the stated effects of the action.
There is, of course, no way to verify this requirement, but
that’s the case for execution in any planning domain.

EXEC ::= exec <INLINE_CODE> ;

7 States
A typical component of planning problems is a specification
of the “initial state,” from which the goal must be achieved.
In PDADL, a significant amount of state information is com-
municated through the execution of inlined code during con-
straint reasoning, which can be used to “query the world”
to determine the current state. However, static state infor-
mation is also useful, especially metadata descriptions for
stable data sources. The language provides the ability to
define multiple named states through thestate keyword.
States may be thought of as dumbed-down actions that have
no preconditions and can only be “executed” in the initial
state. As with goals, metadata descriptions are specified us-
ing thewhen keyword. As with goals, the LHS can refer to
the current state or earlier, but the RHS refers to the current
state, not the final state. The conventions for describing the
semantics and syntax of data are the same as they are for
goal descriptions.

The RHS of metadata state conditions can only contain
static predicates describing the data and the LHS can only
contain fluents and constraints. Recall that the LHS of goals
could contain static predicates, which allowed us to express
goals that relate the contents of one data file to the contents
of another. Metadata formulas in the initial state can only re-
late data contents to the current or past state of the world. A

8

consequence of this restriction is that the predicates appear-
ing on the LHS are completely disjoint from the predicates
appearing on the RHS.

In addition to metadata, state conditions can also include
unconditional fluent literals describing simple facts such as
the names and locations of files.

STATE ::= state <IDENTIFIER> {
(forall PARAMS ;)
| WHENEXP)+ }

8 Plans
A DPADL plan is a triple< N ,A ,C >, whereN andA are
a set of nodes and arcs in the form of a directed acyclic graph
(DAG). The nodes represent actions. The goal is represented
as a node with only incoming arcs, and the initial state is
represented as a node with only outgoing arcs. An arcA∈A
is a tuple< p,op,c, ic >, in which p ∈ N is the producer
or source node,op is an output variable ofp, c ∈ N is the
consumer or target node andic is an input variable ofc. We
refer to the arcs inA as “I/O links,” because they link the
output of the producer to the input of the consumer.C is
a constraint network, which is a triple< V,D,C >, where
V is a set of variables appearing in actionsn ∈ N , D is a
set of domains of those variables, representing their possible
values, andC is a set of constraints, each of which defines a
relation on some subset of the variables inV.

A plan is valid if

• All of the variables inV corresponding to action param-
eters are grounded (i.e., have singleton domains inD), C
is solved. See (Golden & Frank 2002) for a discussion of
how the constraint network is solved.

• All of the constraints corresponding to goals or precondi-
tions are inC.

• Each inputin of each actionn ∈ N has a corresponding
arc < p,op,n, in >, such that the constraintin =op is in
C and every precondition (excluding constraints) associ-
ated within is supported byp. A disjunctive precondition
is supported if one of the disjuncts is supported, a con-
junctive precondition is supported if all of the conjuncts
are supported, and a precondition of the form“when (Φ)
{ ψ},” where ψ is a literal andΦ is conjunctive, is sup-
ported byp if

– It is a constraint inC or
– Φ |= ψ or
– There is a corresponding effect“when (Φ′) { ψ′}” in

p, such thatψ′ |= ψ,4 subject to the constraints inC,
and eitherΦ |= Φ′ or the subgoal “when(Φ) { Φ′}” is
supportedor

– There is no effect“when (Φ′) { ψ′}” in p, such that
ψ′ |= ψ or ψ′ |= ¬ψ, but there is an effect“when (Φ′′)
{ op copyof ip},” where ip is an input ofp, and the
subgoal“when (Φ) { ψ{in/ip}∧Φ′′}” is supported.

• Each precondition not associated with any input is true in
the initial state.

4Entailment can be determined using unification.

Since we are restricting our consideration to pure data-
processing domains, we can ignore “sibling” subgoal clob-
bering. Actions only create new objects; they don’t change
the world or existing objects, so there is no opportunity for
parallel branches to interact with each other. Note also that
there is nothing preventing us from having multiple I/O links
coming in to a single input, providing redundant ways of
producing that input. At execution time, the agent will need
to choose which to use, but deferring this choice to execu-
tion time can provide flexibility and robustness, since some
data source may be unavailable, late, or of poor quality.

9 Conclusions and Related Work
We have described DPADL, an action language for data pro-
cessing domains, which is used in the IMAGEbot system.
The parser for the language, and a planner that supports the
language, are fully implemented, and the whole system is
fully integrated with the TOPS ecological forecasting sys-
tem, which is under ongoing development; IMAGEbot can
sense, plan and act in the TOPS domain.

We have compared DPADL to PDDL and discussed some
of the reasons PDDL is not suitable for data processing do-
mains. Of these, the most important are that it relies on the
CWA, provides no support for inputs, outputs and object cre-
ation, and is very limited in the kinds of constraints that can
be expressed. These problems could be addressed by less
radical changes to the PDDL language. Some features, such
as the use ofwhen expressions in goals and the initial state
and quantification over potentially infinite sets, are neces-
sary for describing data processing on a causal level. We
have found this low-level causal representation quite con-
ducive to planning, since standard planning techniques can
be used to correctly reason about the result of chaining mul-
tiple data-processing actions together. With a more abstract
representation, paradoxically, more effort would be required
of the domain designer .

DDL, the language used in the Europa planner (Jönsson
et al. 2000), the descendent of the Remote Agent planner
that flew on-board Deep Space One, supports constraints
and rich temporal action models. In fact, the constraint rea-
soning system we use was taken from Europa. DDL sup-
ports a limited ability to create new objects, but not as a
consequence of action execution. DDL domain descriptions
are quite different from those of either PDDL or DPADL.
Rather than describing actions in terms of preconditions and
effects, DDL uses explanatory frame axioms. That is, for
every condition that could be achieved, the domain designer
must specify how to achieve it, listing all actions that could
support it and other conditions that must be satisfied. DDL is
also timeline-based and makes no distinction between states
and actions. While these may be good design decisions for
spacecraft domains, they are not appropriate for data pro-
cessing domains.

DAML-S (Ankolenkar et al. 2002) and WSDL (Chris-
tensenet al. 2002) are languages for describing web ser-
vices, both based on XML. DAML-S is the more expres-
sive, allowing the specification of types using a description
logic and allowing one to specify preconditions and post-
conditions, which might be used by a planning agent. How-
ever, we don’t believe that description logics are expressive

9

enough to describe the data-processing operations that we
need to support.

The Earth Science Markup Language (ESML;
http://esml.itsc.uah.edu) is another language based on
XML, under development at the University of Alabama
in Huntsville to provide metadata descriptions for Earth
Science data. Unlike DAML-S and WSDL, ESML is well
suited to describing the complex data structures that appear
in scientific data. Unlike DPADL, it is only intended to
describe data files, not data processing operations, but it
does provide explicit support for describing the syntax
and semantics of data files and allows the specification
of constraints in the form of equations. Although it is
less expressive and more specialized than DPADL, it is a
promising metadata standard for Earth Science. In the near
future, we hope to support conversion between ESML and
DPADL metadata specifications.

Near the far end of the expressiveness spectrum, the situ-
ation calculus (McCarthy & Hayes 1969) provides plenty of
expressive power, but at a price: planning requires first-order
theorem proving. We opted instead to make our language as
simple as possible, but no more so. DPADL does not sup-
port domain axioms, nondeterministic effects or uncertainty
expressed in terms of possible worlds, and much of the ap-
parent complexity of the language is handled by a compiler,
which reduces complex expressions into primitives that a
simple planner can cope with. Despite the superficial sim-
ilarity to program synthesis (Stickelet al. 1994), DPADL
action descriptions are not expressive enough to describe ar-
bitrary program elements, and the plans themselves do not
contain loops or conditionals.

Of the many planning domain description languages that
have been devised, the closest to DPADL is ADLIM (Golden
2000), on which it is based. Advances over ADLIM include
tight integration with the run-time environment (Java) and
constraint system and a Java-like object-oriented syntax that
makes it natural to describe objects and their properties. As
discussed in Sections 2 and 6.3, this encodes valuable infor-
mation used by the planner.

Collage (Lansky & Philpot 1993) and MVP (Chienet
al. 1997) were planners that automated image manipula-
tion tasks. However, they didn’t focus as much on accurate
causal models of data processing, so their representation re-
quirements were simpler.

Acknowledgments
I am indebted to Wanlin Pang, Jeremy Frank, Ellen Sper-
tus and Petr Votava for helpful comments and discussions.
This work was funded by the NASA Computing, Informa-
tion and Communication Technologies (CICT) Intelligent
Systems program.

References
Ankolenkar, A.; Burnstein, M.; Hobbs, J. R.; Lassila, O.;
Martin, D. L.; McDermott, D.; McIlraith, S. A.; Narayana,
S.; Paolucci, M.; Payne, T. R.; and Sycara, K. 2002.
DAML-S: Web service description for the semantic web.
In Proceedings of the 1st Int’l Semantic Web Conference
(ISWC).

Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.; and Greeley,
R. 1997. Using artificial intelligence planning to automate
science data analysis for large image database. InProc.
1997 Conference on Knowledge Discovery and Data Min-
ing.
Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2002. Web Services Description Language
(WSDL) 1.1. Technical report, World Wide Web Con-
sortium. Available at http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.
Fox, M., and Long, D. 2003. Pddl 2.1: An extension of
pddl for expressing temporal planning domains.Journal of
Artificial Intelligence Research.
Golden, K., and Frank, J. 2002. Universal quantification
in a constraint-based planner. InProc. 6th Intl. Conf. AI
Planning Systems.
Golden, K., and Weld, D. 1996. Representing sensing ac-
tions: The middle ground revisited. InProc. 5th Int. Conf.
Principles of Knowledge Representation and Reasoning,
174–185.
Golden, K. 2000. Acting on information: a plan language
for manipulating data. InProceedings of the 2nd NASA Intl.
Planning and Scheduling workshop, 28–33. Published as
NASA Conference Proceedings NASA/CP-2000-209590.
Jönsson, A.; Morris, P.; Muscettola, N.; and Rajan, K.
2000. Planning in interplanetary space: Theory and prac-
tice. InProc. 5th Intl. Conf. AI Planning Systems.
Lansky, A. L., and Philpot, A. G. 1993. AI-based plan-
ning for data analysis tasks. InProceedings of the Ninth
IEEE Conference on Artificial Intelligence for Applications
(CAIA-93).
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Machine Intelligence 4. Edinburgh University Press. 463–
502.
McDermott, D. 2000. The 1998 AI Planning Systems
Competition.AI Magazine2(2):35–55.
Nemani, R.; Votava, P.; Roads, J.; White, M.; Thornton, P.;
and Coughlan, J. 2002. Terrestrial observation and pred-
ition system: Integration of satellite and surface weather
observations with ecosystem models. InProceedings of the
2002 International Geoscience and Remote Sensing Sym-
posium (IGARSS).
Reiter, R. 1991. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a completeness re-
sult for goal regression. In Lifschitz, V., ed.,Artificial Intel-
ligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy. Academic Press. 359–380.
Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger, T.; and
Underwood, I. 1994. Deductive composition of astronom-
ical software from subroutine libraries. InProceedings of
the 12th Conference on Automated Deduction.

10

