
Model-Based Planning for Object-Rearrangement Problems�

Max Garagnani and Yucheng Ding
Department of Computing

The Open University
Walton Hall, Milton Keynes - MK7 6AA
�M.Garagnani,Y.Ding�@open.ac.uk

Abstract

We describe a model-based planning representation, aimed
at capturing more efficiently the basic topological and struc-
tural properties of a domain. We specify the syntax of a
domain-modelling language based on the proposed repre-
sentation. We report the experimental results obtained with
a prototype system (called PMP, Pattern-Matching Planner)
able to represent and solve planning problems expressed in
this language. The performances of PMP on a set of five do-
mains are compared with those of a second planner, adopt-
ing the same search algorithm but using a classical STRIPS
propositional language. Preliminary results show a superior
performance of PMP on all of the chosen domains.

Introduction
During the past few years, the planning community has put
a significant effort into developing systems able to exploit
domain-specific knowledge to carry out a more ‘informed’
search (e.g., knowledge about the generic type and struc-
ture of a domain (Fox & Long 2001; 2002), control knowl-
edge and structure of desirable solutions (Bacchus & Ka-
banza 2000)(Nau et al. 1999), heuristics (Hoffmann &
Nebel 2001)(Haslum & Geffner 2000), problem constraints
and domain invariants (Kautz & Selman 1999)(Gerevini &
Schubert 1998)). In spite of the leap in the scale and com-
plexity of the problems solved that this effort has produced,
current applications are still limited to narrow, well-defined
domains, and do not exhibit the flexibility and adaptability
that characterise human planners (Wilkins 1997)(Wilkins &
desJardins 2001). To a large extent, the cause of this limita-
tion is the fact that, in addition to domain-specific knowl-
edge, planning in the real world requires using common-
sense knowledge and reasoning (including reasoning by
analogy, abstraction, learning, and dealing with uncertainty
and incomplete knowledge), a type of inference which has
proven particularly hard to automate in all areas of AI.

This work is guided by the hypothesis that one of the main
factors preventing modern planning systems from carrying
out fast and effective common-sense reasoning (and, hence,
from scaling well to realistic domains) lies in their adoption
of inefficient problem representations. In particular, most

�This work was partially supported by the UK Engineering and
Physical Sciences Research Council, grant no. GR/R53432/01

current planners rely on ‘propositional’ domain descriptions
languages (e.g., STRIPS, ADL, PDDL and descendants).
Such formalisms are not always appropriate for modelling
real-world problems, particularly when these require a sub-
stantial amount of common-sense reasoning about spatial
and topological relations between objects. Indeed, even the
most recent versions of PDDL (Fox & Long 2003) require
the basic physical properties and constraints of the world
(e.g., the fact that an object cannot be simultaneously in two
different places) to be declared and/or dealt with explicitly.
The adequate encoding and exploitation of such constraints
turns out to be crucial for achieving good performances in
large and realistically complex problems (e.g., see (Kautz &
Selman 1998)).

An alternative to adopting propositional (or ‘sentential’)
formalisms consists of using model-based (or ‘analogical’)
domain descriptions. In a model-based representation, the
world state is encoded as a data structure which is iso-
morphic to (i.e., a model of) the semantics of the prob-
lem domain. For example, in their seminal work, Halpern
and Vardi proposed the adoption of a Kripke structure to
model the ‘possible-worlds’ knowledge of a group of in-
teracting agents (Halpern & Vardi 1991). Because of their
isomorphism with the world state, a key feature of model-
based representations is their ability to implicitly embody
constraints that other representations must make explicit,
and, hence, to improve the efficiency of the reasoning pro-
cess (Myers & Konolige 1992). On the other hand, model-
based formalisms tend to be less expressive and more limited
in scope than propositional languages.

In this paper, we propose a model-based planning rep-
resentation, able to capture implicitly, more efficiently and
naturally the basic, common-sense structural and topolog-
ical constraints (expressing spatial and ‘containment’ rela-
tionships, respectively) of a domain. Although model-based,
the representation is sufficiently expressive to allow the en-
coding of a significant set of domains, in which the planning
performances are notably improved.

The rest of the paper is organised as follows: first of all,
we delimit the class of domains included within the scope
of this investigation and describe the general features of the
new representation. Secondly, we specify the syntax of a
description language, which allows encoding domains using
a simplified version of the general representation proposed.

1

Thirdly, we discuss preliminary results obtained with a pro-
totype planner on a set of five domains, and conclude by
pointing out advantages, limitations and possible extensions
of the proposed approach.

A Model-Based Representation
The planning representation that we describe here has been
developed to allow the efficient and natural encoding of
object-rearrangement (or, simply, move) domains. These
can be defined as problems that require planning the changes
of position (location) of a finite set of objects on the basis
of their spatial and topological relations, subject to a set of
constraints. The Tower of Hanoi (ToH) represents a pro-
totypical example of this class, in which the positions of a
set of objects (disks) have to be changed according to a set
of rules (constraining the movement of the disks). Other
examples of this class are the Briefcase domain, Gripper,
Blocksworld (BW), Grid, Logistics and Eight-puzzle. No-
tice, however, that although not explicitly of a ‘move’ na-
ture, some domains are isomorphic to (and can be treated
as) object-relocation problems. For example, if activities are
represented as objects, and locations denote time points or
intervals, then the problem of scheduling a number of tasks
over a given time period can be seen as that of re-assigning
to each ‘object’ (activity) an appropriate ‘location’ (start/end
time point), subject to various constraints. More in general,
any state change of an object can be modelled as a change of
position, given an appropriate reformulation of the domain.

The basic entities of our representation are ‘nodes’,
‘places’ and ‘edges’. ‘Nodes’ represent instances of the
types of (mobile) objects present in the domain (e.g., phys-
ical objects, agents, resources, etc.). ‘Places’ denote differ-
ent locations of the domain, and can be thought of as quali-
tatively distinct areas of space containing sets of objects. A
place can contain nodes, other ‘sub-places’, or both. ‘Edges’
are pairs of places and nodes, and express spatial and topo-
logical relationships between them. An edge may ‘connect’
two places, two nodes, or a place and a node. Nodes, places
and edges can be associated to unique labels.

The sub-places of a place are places themselves, and can
be used to define the internal structure of a place. A place
may be defined so that it is subject to specific restrictions,
limiting, for example, the type and number of nodes that it
can contain. The sub-places of a place may also be con-
nected by edges. A place containing no connected sub-
places will be called ‘unstructured’.� Nodes, places and
edges are defined using three separate type hierarchies, in
which the properties of a type are inherited by all of its in-
stances and sub-types.

Figure 1.(a) shows an example of node and place hierar-
chies for the well-known Briefcase domain. The types “OB-
JECT” and “PLACE” lie at the roots of the two hierarchies.
The place hierarchy specifies that a “Location” place will be
allowed to contain any number of nodes of type “OBJECT”
(i.e., instances of “Portable” or “Mobile”). A place of type
“Briefcase” can only contain “Portable” nodes.

�In general, one can see nodes as places required to be always
empty, or places as nodes which contain other nodes.

Location
{OBJECT}

Briefcase
{Portable}

OBJECT

Portable

PLACE

Office

P

Home

B D

Briefcase1

(a)

(b)

Mobile

Figure 1: Briefcase world: (a) type hierarchies, and (b) ini-
tial state for the “Get-paid” problem

Figure 1.(b) contains a graphical representation of a pos-
sible encoding of a state in terms of places, nodes and
edges. Nodes are represented as (labelled) filled circles,
places are denoted by dashed ellipses, and edges are de-
picted as bold arcs (in this example, the edge hierarchy can
be assumed to contain only the root class “EDGE”). The
state represented in Figure 1.(b) corresponds to the set of
propositions �at(Home,B), at(Home,D), in(P),
at(Home,P)�, the initial state for the “Get-paid” problem.
Nodes ‘P’ and ‘D’ are “Portable” objects (the types of the
various instances are not shown in the figure), whereas ‘B’
(the briefcase) is an instance of “Mobile”. Notice also the
presence of different types of places: ‘Home’ and ‘Office’
are instances of “Location”, while ‘Briefcase1’ is a place
of type “Briefcase”. The state contains a single edge, con-
necting node ‘B’ with place ‘Briefcase1’ and encoding the
association between the briefcase node and its contents.

As a second example, Figure 2 models the Blocksworld
domain. Part (a) of the figure describes node and place hi-
erarchies, according to which a “Cell” place is allowed to
contain up to one (‘[1]’) node of type “OBJECT”, while a
“Stack” place can contain any number of “Cells” as sub-
places. Part (b) shows a graphical representation of a three-
block problem. This example demonstrates the use of struc-
tured places and edges as place-to-place connectors. In par-
ticular, each of the three “Stacks” S�-S� contains four con-
nected “Cells”, some of which contain a node. Although
in this example they are not connected, these three places
could, in turn, be linked by (possibly labelled) edges. The
nodes labelled ‘A’, ‘B’ and ‘C’ are instances of the type
“Block”, while the three nodes labelled ‘T’ are of type “Ta-
ble”. Notice that such ‘T’ nodes refer to distinct objects
of the current state which do not need to be discriminated
at this level of the representation, and that have been as-
signed the same label. We will refer to this kind of objects
as generic instances of a type, in that they cannot be dis-
tinguished from each other, but can still be discerned from
other entities (even of the same type) having a unique name.
In this example, none of the internal sub-places or edges
have been associated to a unique label.

2

S3S2S1

Cell
{[1]OBJECT}

OBJECT

Table Block

A

B

T

C

(a)

(b)

Stack
{Cell}

T T

PLACE

Figure 2: Blocksworld: (a) type hierarchies; (b) graphical
representation of the state �On(A,Table), On(B,C),
On(C,Table), Clear(A), Clear(B)�

Representing Change
Having described the basic elements of the state represen-
tation, let us move on to the definition of the formalism for
specifying the set of possible action schemata, necessary for
identifying the legal transformations of the state. In this rep-
resentation, the world state is a collection of places, nodes
and edges. In general, any of these elements will be al-
lowed to be moved from their current position, or even to
be added to or removed from the state. However, nodes are
often the only mobile objects of the domain, while places
and connecting edges cannot be affected during plan execu-
tion and can be regarded as forming an underlying stationary
structure. For example, in Blocksworld, the internal cells of
the three stacks can be regarded as ‘fixed’ places, while the
blocks and the ‘table’ nodes can be moved from one place
to another (subject to appropriate constraints).

In this analysis, we assumed that the possible transfor-
mations of the state are limited to the movement of nodes
and places, while the edges connecting such entities remains
unchanged.� When a node (or a place) moves, all edges
connecting it to other entities remain ‘attached’ to it, and all
contents of a place move with it. In addition, the movement
of places and nodes is restricted by the general constraints
of the domain (e.g., number and types of nodes allowed in a
place) specified by the type hierarchies.

Consider, for example, the action schema ‘Put-in’ for
the Briefcase domain, illustrated graphically in Figure 3.(a).

�This implies that the initial number of entities – nodes, places
and edges – remains constant throughout plan execution.

The left-hand side (preconditions) of the schema specifies
the situation holding in the two relevant (‘loosely’ con-
nected) places before the execution of the action. (Notice
that the absence of nodes in one of the places should not be
interpreted here as requiring such place to be empty – this
is clarified below). The right-hand side (effects) depicts the
same set of places and nodes after the action has produced a
new node arrangement.�

x

y

x y

(a) Put-in

x

(b) Move-B

x

Figure 3: Briefcase domain: action schemata

In general, the preconditions of an action may contain a
conjunction of ‘groups’ of connected places and nodes. An
action schema can be applied in a state � when each and ev-
ery one of the elements – places, nodes and edges – present
in its preconditions ‘matches’ (can be bound to) a distinct �

element of �, so that each precondition group is bound to a
(distinct) group in � having the same topological structure
(‘pattern’ of places and edges) and node arrangement. The
definition of ‘match’ is as follows: two types match iff one
is sub-type of the other; two instances match iff they are the
same instance (i.e., they have the same name); an instance
� and a type � match iff � is an instance of � , or � is an
instance of any of � ’s sub-types. A precondition group con-
sisting of a place containing � nodes matches any place (of
the appropriate type) containing at least � nodes (of the ap-
propriate type). For two edges to match, they must connect
matching entities. In summary, for an action to be applica-
ble, each of its precondition groups must ‘overlap’ with a
distinct part of the current state. In the previous example,
the preconditions of the Put-in operator contain only one
group, which is easily mapped to corresponding elements
of the state shown in Figure 1.(b).

Figure 3.(b) contains the graphical representation of the
more interesting action schema ‘Move-B’, which allows the
movement of the briefcase from a location to another. The
preconditions of this action contain two groups, which must
be bound to distinct places of the state. For the action
schema to be applied correctly, node ‘x’ must be bound to

�The Take-out action schema can be obtained simply by reading
the Put-in operator ‘backwards’.

�Notice that generic instances of a type still represent distinct
elements of the state.

3

an instance of “Mobile”, and the two places to (distinct) in-
stances of “Location”. If these constraints on the type of the
nodes and places were not enforced, these elements could be
bound to incorrect instances and lead to illegal moves (such
as moving a “Portable” node like ‘D’ directly across loca-
tions, or a “Mobile” (briefcase) node inside a “Briefcase”
place). Notice that the Put-in operator (and its mirror-image
Take-out) will also be subject to appropriate type require-
ments, although in this case the topological structure of the
preconditions and effects is sufficient to guarantee that the
application of the schema (in both directions) to a semanti-
cally correct state will always produce a correct state, even
when multiple briefcases are present.

x y y

x

Figure 4: Blocksworld: ‘Put-On’ action schema

Finally, consider the BW Put-on action schema, repre-
sented graphically in Figure 4. Let us assume the types
of the nodes ‘x’ and ‘y’ to be, respectively, “Block” and
“OBJECT”, and all places to be of type “Cell”. Notice
the use of empty-set symbols in the preconditions, requir-
ing the two top cells to be empty. With reference to the
state depicted in Figure 2.(b), the first group of the precon-
ditions would match the cell containing ‘A’ (and the empty
cell immediately above), or, alternatively, the cell contain-
ing ‘B’ (and the one just above). Similarly, the second group
would match the same cells, and, in addition, the two cells
at the bottom of ‘S�’ (‘y’ is of type “OBJECT”). Hence,
this schema could be applied in the current state to move
‘A’ onto ‘B’ or vice versa, or either of the two blocks on
the table. Notice that for this action schema to be used in a
‘backward’ search, it would be necessary to require an extra
empty cell on top of the second group, in order to guarantee
that node ‘x’ (being removed from the top of ‘y’) is ‘clear’.

In general, the nodes, places and edges present in the ini-
tial state of a problem are not necessarily preserved through-
out the plan execution: new objects can be dynamically ‘pro-
duced’, existing objects can change their state or be ‘con-
sumed’, and relations between places might change as a re-
sult of some of the actions. For example, in a ‘house con-
struction’ domain in which places represent the locations
that the workers can currently reach, the addition of a new
floor or of a new scaffolding will change the set of places
and the connections between them. Although such ‘non-
conservative’ state transformations have not been considered
here, the model could be easily extended to include a set
of primitive actions which allow the addition and removal
of nodes, places or edges (subject to appropriate precondi-
tions), enabling the representation of this type of dynamics.

A Prototype Language
In order to assess the effectiveness of the representation,
a prototype planner has been implemented. The domain-

description language developed for the planner consists of
a restricted, ‘diagrammatic’ version of the formalism de-
scribed in the previous section. In particular, in the imple-
mentation, the internal structure of places is confined to be
a one- or two-dimensional grid of sub-places. Hence, places
can either be unstructured, or have their internal structure
equivalent to that of a matrix (or vector), in which cells are
considered as a collection of adjacent locations and are al-
lowed to contain up to one object (node).� Since nodes have
been represented simply as labels, a place is a (structured or
unstructured) collection of strings.

A further simplification of the language implemented con-
sists of not allowing the use of connecting edges, which en-
code topological and spatial relationships. This restriction
is compensated in part by the possibility of places to have a
predefined, fixed internal structure (which can be augmented
with a set of dedicated spatial relationship – this is discussed
below in more details), and in part by the possible use of
identical names across hierarchies, which allows, for exam-
ple, a node and a place to be assigned the same label (i.e.,
to be somewhat connected). As mentioned before, dynamic
changes of the underlying topological structure of the do-
main have not been allowed.

In spite of the limited expressiveness, this language still
contains most of the fundamental characteristics of the gen-
eral model, and allows a preliminary assessment of the va-
lidity of its basic assumptions. The language developed is
sufficiently flexible to be able to model naturally and effi-
ciently a small subset of the benchmark domains (including
BW, Briefcase, Miconic, Gripper and Eight-puzzle), which
we used to carry out a set of experiments. The results of such
experiments are reported in the final part of this section. In
what follows, we illustrate briefly the syntax of the language
and its semantics, exemplifying the description with decla-
rations taken from the BW domain.

Type Hierarchies
The type hierarchies are declared using a syntax similar to
that of PDDL. To describe the syntax, we adopt the extended
BNF (EBNF) formalism, used in the original PDDL defini-
tion (McDermott et al. 1998):

�types-def� ::= (:ObjectTypes �typed-list (name)�)
�types-def� ::= (:PlaceTypes �place-type��)
�typed-list (�)� ::= �� � ��� �type� �typed-list (�)�
�place-type� ::= �name� ��type�[::�dimension�]�
�type� ::= �name� � (either �type��)
�dimension� ::= 1 � 2

The pipe character (‘�’) indicates disjunction (e.g.,
�dimension� can be either ‘1’ or ‘2’). The category
�name� can be any string of characters, not necessarily be-
ginning with a letter. The ‘typed list’ is a parameterised pro-
duction that generates a (possibly empty) list of object-type
names and ‘IS-A’ relations, using the minus sign (“�”) as in
PDDL to indicate a ‘parent’ type. ‘object’ and ‘place’
are both predefined types, and ‘object’ is used as default

�Notice that, for simplicity, the notion of ‘adjacency’ in two-
dimensions is restricted to vertical and horizontal pairs of cells.

4

terminator of any typed list. The optional parameter in the
place type declaration (surrounded by square brackets) al-
lows the specification of the internal structure of a type of
place (array of one or two dimensions)�. In absence of such
parameter, the place type is assumed by default to be un-
structured. As in PDDL, the ‘either’ construct allows an ob-
ject type to be defined as the union of several types. Below
is an example of type declaration for the BW domain:

(define (domain blocksworld)
� � �
(:ObjectTypes block table)
(:PlaceTypes stack �object::1�)
� � �

)

Types ‘block’ and ‘table’ are declared (by default) as
sub-types of ‘object’. Places of type ‘stack’ will be
one-dimensional arrays (“::1”) of ‘object’s. Notice that
this syntax does not allow the specification of an upper limit
on the number of elements contained in an unstructured
place, or on the number of ‘cells’ composing a structured
place. That is, a ‘stack’ place (vector) could, at this point,
contain any number of cells, each one containing up to one
‘object’. The upper limit on the number of elements (or
cells) contained in a place will be determined at ‘run time’,
by the specific problem instance.

Action Schemata
The following EBNF productions specify the syntax for the
declaration of an action schema:

�action-def� ::= (:action �name�
:parameters (�typed-list (variable)�)
�body-def�)

�body-def� ::= :pre (�place��)
:post (�place��)

�place� ::= �name� � [�relation�] �object���
�object� ::= �variable� � �emptySpace�
�variable� ::= �name�
�relation� ::= � � / � � � �
�emptySpace�::=

The action declaration consists of a unique name, a list of pa-
rameters, and lists of ‘pre’- and ‘post’-conditions (effects).
The parameters are names of variables, coupled with the re-
spective types. The pre- and post-conditions consist of lists
of place types, each containing as argument a list of parame-
ters and, possibly, ‘empty spaces’. The empty-space symbol
(‘ ’) is used in the preconditions to require the presence of
empty cells in structured places, or to require the availability
of ‘space’ for an object in non-structured ones.

For an action to be applicable, all the elements present in
the preconditions must be bound to appropriate elements of
the current state, as explained earlier on. Notice that all the
places listed in the preconditions must be in a 1-1 mapping
with those listed in the postconditions, following the order
in which they are listed. In addition, the number of objects

�Notice that unlike square brackets, which are meta-symbols,
curly brackets are terminal symbols of the language being defined.

present in each place must remain constant�. Below is an
example of ‘Put-on’ action schema in Blocksworld:

(:action Put-on
:parameters (x y - block)
:pre (stack �x � stack �y �)
:post (stack � � stack �y x �)

)

This declaration can be easily mapped to the graphical repre-
sentation of Figure 4. By default, the elements listed inside
a structured place are interpreted as being required to be ad-
jacent (i.e., to occupy adjacent cells). Thus, blocks ‘x’ and
‘y’ are guaranteed to be ‘clear’ by the presence of an empty
cell adjacent to them.	 The two ‘stack’ places listed in
the preconditions are mapped to the two places listed in the
effects, in the order specified. The content of each cell of a
structured place listed in the preconditions (identified by a
parameter or an empty space) is replaced with the object oc-
cupying the same position in the postconditions, following
the order in which the objects are listed. For example, the
cell containing the object that gets bound to parameter ‘x’
will end up containing an empty-space (‘ ’), and the (cur-
rently empty) cell adjacent to ‘y’ will contain ‘x’. Elements
specified in a non-structured place cannot be required to be-
long in any specific spatial relationship.

In order to require more complex spatial relationship
to hold between elements contained in a structured place,
the language has been endowed with a set of (optional)
�relation� symbols, representing a limited version of the
more general feature of labelled edge. These symbols can
be used inside structured places to require that a certain spa-
tial relationship, different from that of adjacency, hold be-
tween the specified elements. For example, ‘�’ indicates that
the elements that follow can be (with respect to each other)
“anywhere within the place”; ‘�’ means “anywhere on the
same row”, ‘�’ means “anywhere in the same column”, and
‘/’ requires that the two following elements be located in
adjacent cells of the same column (the last two relationships
are only needed for two-dimensional arrays). The chosen set
of relationships is by no means complete, and can be easily
extended with other, more complex, ones. An example of
usage of these relationships is demonstrated by the Miconic
(elevator) domain description, reported in Appendix A.

Initial State and Goal

We use an actual initial state and goal declarations for a spe-
cific BW problem (the ‘Sussman anomaly’) to illustrate in-
formally the syntax adopted for describing initial state and
goal. The correct formalisation can be easily inferred from
this example and the EBNF rules used earlier for the types
and actions declarations:

�An ‘empty space’ is treated as a special type of object.
�This assumes that all the ‘block’ objects will be arranged in

the ‘stack’s so as to have always at most one empty cell adjacent
to them, which represents the space on ‘top’ of them – e.g., see
Figure 2.(b).

5

(define (problem Sussman)
(:domain blocksworld)
� � �
(:Objects A B C - block T - table)
(:Places s1 s2 s3 - stack)
(:init

s1 [T A C]
s2 [T B]
s3 [T])

(:goal
stack �C B A�)

)

Notice the similarity between the declaration of the initial
state and the graphical representation shown in Figure 2.(b).
In the declaration of the initial state, the contents of a struc-
tured place are delimited by square brackets, indicating the
actual ‘start’ and ‘end’ of the array. Hence, the declaration
implicitly specifies the maximum number of required cells,
and the exact position of all the objects and empty spaces
(‘ ’) within them. For unstructured places, the contents will
be delimited by curly brackets (as for normal sets), and the
declaration will specify the contents and the maximum num-
ber of objects that a place is able to contain.

A goal is syntactically equivalent to a precondition list.
It consists of a ‘conjunction’ of places required to contain
specific sets of objects (nodes), possibly subject to specific
spatial relationships. The conditions for achieving a goal are
analogous to those required for the application of an action
schema: a goal 	 is achieved in a state � when all groups
specified in 	 can be bound to distinct groups of �, such that,
for each place of 	, all the elements contained in it match dis-
tinct elements in the corresponding place of � (which satisfy
the same spatial relationships, if appropriate).

In goals – like in action preconditions – the objects listed
inside a structured place are required to occupy consecu-
tive cells of the place, in the same order specified. How-
ever, the ‘pattern’ of objects specified can be placed any-
where within the place. More formally, if
 is a type of
structured place, and ��� ��� � � � � �� are objects, the goal

����� � � � ��� requires an instance of a place of type

to contain the listed objects in any � consecutive cells, such
that (��� ��), (��� ��), (��� ��), � � �, (����� ��) are all pairs
of adjacent elements. Thus, for example, for a state � to
achieve the goal of the ‘Sussman’ problem presented ear-
lier, it must be the case that � contains a place of type
‘stack’ in which (‘C’,‘B’), and (‘B’,‘A’) are pairs of ad-
jacent elements. Two examples of stacks of four cells that
satisfy such requirements are ‘[T C B A]’ and ‘[C B A]’.

Experimental results
Ideally, the evaluation of the efficiency gain (or loss) re-
sulting from the adoption of a new domain representation
– let us call it ‘�’ – with respect to another (propositional)
representation, ‘’, could involve the following four steps:
(1) measuring the performance of a state-of-the art plan-
ning system adopting a on a select set of problems; (2)
‘switching’ the domain representation to �; (3) measuring
the performance of the system on the same set of prob-

lems; (4) comparing the results. However, this method of
assessment presents several drawbacks. The first one con-
cerns the fairness of the evaluation in itself. After more
than three decades of research based almost exclusively on
propositional domain-modelling languages, planning algo-
rithms have become more and more sophisticated and geared
towards purely sentential descriptions. In fact, one could say
that their efficiency results mainly from their ability to ex-
ploit some of the inherent properties of such representations.
Taking a state-of-the-art planning system, designed specifi-
cally for propositional descriptions, and simply ‘switching’
its representation into a completely different one (assuming
that this is possible) would not produce a system ‘compara-
ble’ with the original one. Indeed, the new formalism might
be incapable of replicating some of the particular techniques
upon which the propositional planner might rely for achiev-
ing good performances. At the same time, new, different
reasoning modes may become available in the new repre-
sentation, which could lead to gains in performance. How-
ever, modifying the algorithm to take advantage specifically
of such features would lead to the implementation of an en-
tirely different system, not comparable with the original one.

The second methodological issue concerns the actual
value and feasibility of the assessment. Even assuming that
a specific system can be identified such that all of its sophis-
ticated search mechanisms can be correctly ‘translated’ in
the new representation, what would be the significance of
an evaluation carried out on such a specific case? The re-
sults would not apply to all planning algorithms, not even to
those adopting the same propositional language. In addition,
replicating correctly all of the various features of the plan-
ner in the new representation would require a considerable
effort, and would still leave a margin of uncertainty on the
soundness of the outcome.

The above considerations suggest that a fair evaluation
should be based on a very simple, ‘primitive’ planning al-
gorithm, in which the few mechanisms at the basis of the
search can be encoded in a straightforward manner in both
representations. One possible candidate that immediately
springs to mind is the original STRIPS planner. However,
although old and inefficient, STRIPS is quite a complex sys-
tem; obtaining, understanding and modifying the original
software, written more than thirty years ago, did not seem
a very practical approach.

Therefore, in order to assess the value of the new repre-
sentation, we decided to build two simple prototype plan-
ners, adopting exactly the same search engine (a traditional,
uninformed, breadth-first forward state-space search), but
differing in the way they represent domains and prob-
lems. The first, propositional planner (which we called
‘PP’) adopts a classical (typed) STRIPS representation. The
second planner (which we called ‘PMP’, Pattern-Matching
Planner) adopts the ‘diagrammatic’, simplified version of
the general model-based representation described in the pre-
vious section. The two planners were developed using the
same programming environment and language (Java), and
were run on the same machine. We tested the planners on the
same problems for the five chosen domains (BW, Gripper,
Miconic, Eight-puzzle and Briefcase). In carrying out these

6

Table 1: Time taken (in sec.) by PP and PMP for solving
Blocksworld problems with four, five and six blocks.

BW-�-problem instance (� = no. of blocks)
Planner BW-4-0 BW-4-1 BW-5-0 BW-6-0
PP 0.52 1.50 7.43 144.42
PMP 0.08 0.44 0.34 1.60
PMP��� 0.19 0.54 2.13 36.23

experiments we hoped to demonstrate that: (1) PMP actu-
ally produced correct solutions; (2) its performances were
at least ‘comparable’ with those of PP. The very first results
that we obtained were encouraging: in the four BW prob-
lem instances used, PMP was not only producing correct
solutions, but also performing much better than PP, with a
speed-up factor varying from more than three to as much as
ninety times faster (see the first two rows of Table 1).

We reasoned that such difference in performance had to
do with the fact that the specific representation of BW in
PMP is implicitly constrained. For example, in PP the space
available on the table is not limited; hence, at any point of
the search, any block on top of another can be put on the
table. By contrast, in PMP the problem representation is
limited to three stacks.
 Hence, many of the moves which
are possible in the standard propositional representation are
no longer available in PMP, which can avoid exploring them.
This significantly prunes the number of possible paths in the
search space. In order to evaluate the performance of PMP
without this ‘inherent’ advantage, we added to the descrip-
tion of the problems a number of redundant empty stacks,
so that the total number of stacks equalled the total number
of blocks. This ‘evened up’ the number of possible paths
in the two representations, as the space available on the ta-
ble in PMP was now sufficient to allow the same number of
moves as in the propositional representation. We repeated
the same experiments, adding five extra problems to the set
of tests (all taken from the benchmark problems used in the
AIPS’00 International Planning Competition). The new re-
sults for PMP on the original four experiments are reported
in the last row of Table 1 (labelled ‘PMP(b)’), while the re-
sults for the complete set of instances are plotted in Figure 5.

As expected, the presence of the redundant stacks caused
a loss in performance, evident from the comparisons of the
PMP and PMP(b) data. However, PMP still took signifi-
cantly less than PP to find the same (shortest) plan in all of
the problems. Figure 5 shows that the increasing difficulty
of the problems produces (exponentially) bigger differences
in performance in favour of PMP. One possible explanation
for this speed-up may be that the problem representation in
PMP is still more constrained than the propositional one. In
other words, many of the search paths that are considered in
PP may be redundant or non-feasible, and are completely ig-
nored in PMP. For example, the ground action-schemata in
PP may contain duplicate or unadmissable instances (e.g.,

	The problems had been chosen so that three stacks were suffi-
cient for finding the same optimal solution found by PP.

move a block on top of itself) that are implicitly avoided by
PMP’s object-based representation.

Problem
 instance

100

102

103

104

105

101

 5 blocks

10-1

= PPTime (s.)

 4 blocks 6 blocks

= PMP

Figure 5: Blocksworld: results for PP and PMP planners.

In order to further investigate the effectiveness of the rep-
resentation, we carried out experiments on four other do-
mains – namely, Gripper, Miconic, Briefcase and Eight-
puzzle. The results are plotted in Figures 6, 7, 8 and 9,
respectively. In Figures 6 and 8 the problems have been or-
dered by increasing PP-time; notice that the sum of the two
numbers identifying each problem increases monotonically.

Problem
 instance

10-1

101

102

103

104

100

Time (s.)

 1-0

= PP = PMP

10-2

105

 2-0 2-1 3-0 2-2 3-1 4-0 4-1

Figure 6: Gripper domain. Problem instance ‘�-�’ consists
of two rooms, containing respectively � and � balls.

a

100

102

103

104

101

= PPTime (s.)

 2 persons 3 persons

= PMP

10-1

Figure 7: Results for the Miconic domain. All problems
contain four floors (except for problem (a), which has three).

7

100

102

103

104

101

Time (sec.)

Problem
 instance3-2

= PP = PMP

10-1

 2-4 3-4 3-4 3-4 4-3 4-3 3-5

Figure 8: Briefcase domain. Problem instance ‘�-�’ con-
tains one briefcase, � locations and � portable objects.

Problem
 instance

100

102

103

104

101

 5
10-1

= PPTime (s.)

 1 9

= PMP

Figure 9: Eight-puzzle domain.

Being confined to a small set of domains not randomly
chosen from the entire population, these results cannot be
assumed to form a representative sample from which general
conclusions can be drawn. However, albeit preliminary, they
demonstrate the effectiveness of the proposed approach, and
give a clear indication of the performance improvements that
the new representation can yield (with respect to a standard
propositional representation) in the context of move prob-
lems.

Related work
One of the few recent works adopting a model-based view
to planning is that of Giunchiglia and Traverso (Giunchiglia
& Traverso 1999), who treat planning as a model-checking
problem. Their approach is more abstract and general than
the one proposed here: the representation is not based on a
model structurally isomorphic to the world, but on a graph
(FSM) representing the possible states in which the world
can be and the possible transitions between them. Although
more general, this representation fails to implicitly capture
the spatial and topological constraints of the domain.

In the work of Cesta and Oddi (Cesta & Oddi 1996), plan-
ning is seen as the problem of deciding the behavior of a
dynamic domain described as a set of state variables subject
to constraints. This view can be seen as complementary to
the approach taken in this work, as it is based on the idea
of representing a domain as a set of possible state changes,
instead of possible object moves. However, once again, the

representation is not capable to implicitly embody the topo-
logical and structural constraints of the problem.

The object-centred domain-description language (OCL)
developed by Liu and McCluskey (Liu & McCluskey 2000)
allows modelling a domain as a set of objects subject to var-
ious constraints. The idea of an object-based representation
is, in many respects, analogous to that of a model-based ap-
proach. However, OCL does not allow the specification of
the spatial features of the domain; hence, some of the con-
straints which are implicit in the proposed model still have to
be explicitly declared in OCL (e.g., the fact that if an agent
holds an object, the location of the object must coincide with
that of the agent).

The work of Long and Fox (Long & Fox 2000) on the
abstract structure of domains and generic types is also rele-
vant in this context. Long and Fox have developed domain
analysis techniques which allow the automatic detection and
exploitation of generic types of objects (such as mobiles and
portables) in a domain, given its propositional description.
In essence, the move problems considered here can be seen
as generalizing and combining two of the abstract classes
identified by Long and Fox (namely, those of ‘transporta-
tion’ and ‘construction’ domains).

An earlier example of work integrating model-based and
propositional representations is the hybrid problem-solving
system of Myers and Konolige (Myers & Konolige 1992).
Myers and Konolige proposed a formal framework for com-
bining analogical and deductive reasoning. The system they
implemented could reason about ‘diagrammatic’ structures
isomorphic to the current world state. However, the system
did not allow the model to undergo any change during the
reasoning process, and, hence, could not be used to solve
planning problems. In addition, the efficiency of the repre-
sentation was not evaluated against that of a propositional
language through a comparative study, as it has been done
here. The latter approach and other related ones fall within
the area of ‘diagrammatic reasoning’ (Glasgow, Narayanan,
& Chandrasekaran 1995), and are particularly relevant to
the simplified, diagrammatic version of the representation
which was used in the experiments.

Discussion
In this paper we have introduced and assessed a new plan-
ning representation, able to capture more efficiently the ba-
sic topological (containment relationships between places
and objects, or objects and objects) and structural (spatial
relationships between places, or internal structure of a place)
properties of a domain. In addition, we have described the
syntax of a specific domain-description language, represent-
ing a simplified version of the general model proposed. The
performance of a prototype system (PMP) on a subset of
five domains has been compared with that of an equivalent
propositional planner (PP), adopting an identical planning
algorithm but using a STRIPS domain-description language.
The results show that PMP is superior to PP on all of the
chosen instances of problems. We believe that the speed-
up of the PMP planner is the result of the ability of the new
representation to (1) capture naturally and implicitly some of
the basic, common-sense physical constraints of the domain,

8

and to (2) organize in appropriate structures the relevant en-
tities of the domain, allowing more efficient reasoning about
the object-rearrangement aspects of the problem.

The adoption of a simpler, model-based, spatially-
structured representation that allows effective common-
sense reasoning also enables new reasoning modes, which
can support easier and more efficient learning, heuristic-
extraction and abstraction techniques. For example, it is
easy to see that the graphical description of the action
schemata shown in Figures 3 and 4 could be inferred au-
tomatically using machine-learning and image-processing
techniques. In addition, the use of edges as node-to-place
connections can easily support abstraction: a group of ob-
jects contained in the same place (or attached to the same
object) can be represented as a single entity, allowing the
system to abstract away from the details of the parts and en-
abling abstraction to take place at different levels.

The use of a model which replicates the spatial and topo-
logical aspects of the real world also provides the planner
with an implicit guidance on the ordering of subgoals. Con-
sider, for example, the ‘Sussman anomaly’ problem in BW,
presented earlier. A propositional description of the prob-
lem does not provide a priori information on the order in
which the two subgoals �(On A B),(On B C)� must be
achieved. By contrast, in the proposed representation, the
goal-pattern � = stack�C B A� allows regressing a new
goal �� in which ‘A’ has been picked up from the top of ‘B’
(by reversing step Put-on(A,B)), but does not permit the re-
gression of a situation in which ‘B’ has been removed from
the top of ‘C’ (via step Put-on(B,C)). In fact, consider the ac-
tion schema Put-on(�,�): its effects include leaving block �
‘clear’. While goal � makes no requirements on the content
of the cell to the immediate right (read ‘top’) of ‘A’ (which
may thus be assumed empty), the cell to the right of ‘B’ is
currently occupied by ‘A’. This prevents � from being bound
to ‘B’. Hence, a backchaining planner would be (correctly)
forced to begin with addressing subgoal (On A B) – i.e.,
to execute Put-on(A,B) as final step.

Finally, a domain-modelling language (such as the one de-
scribed earlier) based on the proposed representation has a
straightforward graphical interpretation, and, hence, should
result more intuitive and easier to use for the non-experts;
this, together with better performances, is expected to fa-
cilitate the take-up of AI planning technology and its wider
application to the real world.

The proposed representation, however, is also limited in
several ways. Perhaps its most obvious weakness is the
fact that it does not offer any means for describing the non
spatial or topological aspects of a domain (such as time or
metric quantities), which, on the other hand, could be mod-
elled using a propositional language. However, the approach
described here should be seen as representing the extreme
of a continuum of possible domain-modelling languages, in
which propositional and analogical aspects of a domain can
be present in different degrees. One of the future directions
of this work consists of extending the representation to allow
the use of propositional expressions. A more expressive ver-
sion, for example, could allow nodes to consist of complex
objects, having an internal (static or dynamic) structure and

properties. In such an extended model, the action precon-
ditions could require the attributes of the specified objects
(such as size, color, shape, etc.) to satisfy specific (qualita-
tive or quantitative) constraints.

In conclusion, the results of this investigation demonstrate
the potential benefits of the proposed representation, and
motivate further work on model-based planning formalisms
and on their use in conjunction with current propositional
paradigms. This paper lays the foundations for future devel-
opments in this direction.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Cesta, A., and Oddi, A. 1996. DDL.1: A formal descrip-
tion of a constraint representation language for physical
domains. In Ghallab, M., and Milani, A., eds., New Direc-
tions in AI Planning. IOS Press (Amsterdam). 341–352.
(Proceedings of the 3rd European Workshop on Planning
(EWSP95), Assisi, Italy, September 1995).
Fox, M., and Long, D. P. 2001. STAN4: A Hybrid Planning
Strategy Based on Sub-problem Abstraction. AI Magazine
22(4).
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetry analysis in planning. In Proceedings of the 5th
International Conference on AI Planning and Scheduling.
Toulouse, France: AAAI press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research – Special issue on the
3rd International Planning Competition. (forthcoming).
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of the 15th National Conference on Artificial Intelligence,
905–912. Madison, WI: AAAI Press.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Biundo, S., and Fox, M., eds., Proc. of the 5th
European Conference on Planning (ECP-99), 1–20.
Glasgow, J.; Narayanan, N.; and Chandrasekaran, B., eds.
1995. Diagrammatic Reasoning. Cambridge, MA: MIT
Press.
Halpern, J. Y., and Vardi, M. Y. 1991. Model Checking
vs. Theorem Proving: A Manifesto. In Allen, J. A.; Fikes,
R.; and Sandewall, E., eds., Principles of Knoweldge rep-
resentation and Reasoning: Proceedings of the 2nd Inter-
national Conference (KR91), 325–332.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the 5th Interna-
tional Conference of AI Planning Systems (AIPS 2000),
140–149. Breckenridge, Colorado: AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-

9

work. In Proceedings of the 1998 International Conference
on AI Planning Systems (AIPS-98), 181–189. Pittsburgh,
PA: AAAI Press, Menlo Park, CA.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based planning. In Proceedings of the 16th Inter-
national Joint Conference on AI (IJCAI-99). Stockholm,
Sweden: Morgan Kaufmann.

Liu, D., and McCluskey, T. 2000. The OCL Language
Manual, Version 1.2. Technical report, Department of
Computing and Mathematical Sciences, University of Hud-
dersfield (UK).

Long, D., and Fox, M. 2000. Automatic synthesis and
use of generic types in planning. In Proceedings of the 5th
International Conference on AI Planning and Scheduling
Systems (AIPS’00), 196–205. Breckenridge, CO: AAAI
Press.

McDermott, D.; Knoblock, C.; Veloso, M.; Weld, D.; and
Wilkins, D. 1998. PDDL – the planning domain defini-
tion language. Version 1.7. Technical report, Department
of Computer Science, Yale University (CT). (available at
www.cs.yale.edu/homes/dvm/).

Myers, K., and Konolige, K. 1992. Reasoning with analog-
ical representations. In Nebel, B.; Rich, C.; and Swartout,
W., eds., Principles of Knowledge Representation and Rea-
soning: Proceedings of the Third International Conference
(KR92), 189–200. Morgan Kaufmann Publishers Inc., San
Mateo, CA.

Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the 16th International Joint Conference on AI (IJCAI-
99), 968–973. Stockholm, Sweden: Morgan Kaufmann.

Wilkins, D., and desJardins, M. 2001. A call for
knowledge-based planning. AI Magazine 22(1):99–115.

Wilkins, D. 1997. That’s something I could not allow
to happen: HAL and Planning. In Stork, D., ed., HAL’s
Legacy: 2001’s computers as dream and reality. Cam-
bridge, MA: MIT Press. chapter 14, 305–331.

Appendix A

A.1 – Miconic domain description

(define (domain miconic)
(:ObjectTypes person lift)
(:PlaceTypes building �object::2�

lift �person�)

(:action board
:parameters (P - person L - lift)
:pre (building�� L P� lift� �)
:post (building� L � lift� P �)

)

(:action depart
:parameters (P - person L - lift)
:pre (building�� L � lift� P �)
:post (building� L P � lift� �)

)

(:action move-up
:parameters (L - lift)
:pre (building�/ L �)
:post (building�/ L�)

)

(:action move-down
:parameters (L - lift)
:pre (building�/ L �)
:post (building�/ L �)

)
)

A.2 – Miconic problem instance

(define (problem mic-01)
(:domain miconic)

(:Objects A B C D E - person
lf - lift)

(:Places bd - building lf - lift)
(:init bd [[A B]

[lf D]
[C]]

lf � �
)
(:goal bd [[lf A]

[D C]
[B]]

)
)

10

