
Heuristics for Numeric Planning via Subgoaling

Enrico Scala1 Patrik Haslum1,2 Sylvie Thiébaux1,2
1Research School of Computer Science, The Australian National University

2NICTA
Canberra, ACT, Australia

firstname.lastname@anu.edu.au

Abstract
The paper presents a new relaxation for hybrid planning with
continuous numeric and propositional state variables based
on subgoaling, generalising the subgoaling principle under-
lying the hmax and hadd heuristics to such problems. Our
relaxation improves on existing interval-based relaxations by
taking into account some negative interactions between ef-
fects when achieving a subgoal, resulting in better estimates.
We show conditions on the planning model ensuring that this
new relaxation leads to tractable, and, for the hmax version,
admissible, heuristics. The new relaxation can be combined
with the interval-based relaxation, to derive heuristics appli-
cable to general numeric planning, while still providing more
informed estimates for the subgoals that meet these condi-
tions. Experiments show the effectiveness of its inadmissi-
ble and admissible version on satisficing and optimal numeric
planning, respectively. As far as we know, this is the first ad-
missible heuristic enabling cost-optimal numeric planning.

Introduction
A lesson from classical planning is that one source of com-
plexity is the requirement to satisfy conditions simultane-
ously. Relaxing this requirement, that is, assuming that sub-
goals can be (recursively) considered in isolation, is the
basic idea of both the inadmissible hadd and the admissi-
ble hmax heuristics (Bonet and Geffner 2001; Haslum and
Geffner 2000). The objective of this paper is to bring this
perspective to the design of new domain-independent heuris-
tics for hybrid planning with propositional and continuous
numeric state variables.

Planning with integrated continuous and discrete repre-
sentations is crucial to applying planning to many real world
problems, where interactions between qualitative and quan-
titative constraints cannot be ignored (Dornhege et al. 2009).
The numeric extension to classical planning made in PDDL
2.1 (Fox and Long 2003) provides a unified action model,
where qualitative conditions are modelled with propositional
variables and quantitative conditions are modelled with ex-
pressions over numeric state variables.

Heuristic search, using domain-independent heuristics au-
tomatically obtained from relaxations of the planning model,
is a widely used and often effective approach to plan-
ning. Most heuristics for numeric planning are based on
extending the delete-free relaxation to the numeric case,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

yielding the so called interval-based relaxation (Hoffmann
2003; Gerevini, Saetti, and Serina 2008; Coles et al. 2010;
Aldinger, Mattmüller, and Göbelbecker 2015). While this
yields general and tractable heuristics, it fails to provide ef-
fective guidance for some simple yet important cases. Pre-
vious work on improving this heuristic has targeted a dif-
ferent weakness, but still reasoning about reachable values,
for the restricted class of numeric variables modelling re-
sources (Coles et al. 2013). Eyerich et al. (2009) extended
the context-enhanced additive heuristic to numeric planning;
however, they consider the numeric part only qualitatively.
To the best of our knowledge, no previous work has looked
at numeric planning relaxations from the subgoaling decom-
position viewpoint.

Our main contribution is a generalisation of the subgoal-
ing principle to hybrid propositional and numeric planning
problems. This enables using different relaxations for dif-
ferent types of subgoals/conditions: we distinguish between
propositional, simple numeric and hard numeric conditions.
For simple numeric conditions our heuristics are tractable,
and we are also able to formulate a version that is admissi-
ble. Combining this with the interval-based relaxation, we
obtain a (inadmissible) heuristic that applies to general nu-
meric planning, but benefits from more accurate estimates
of the cost of achieving simple subgoals. The only remain-
ing restriction, inherited from the interval-based relaxation,
is that the dependency relation over numeric action effects is
acyclic (Aldinger, Mattmüller, and Göbelbecker 2015). As a
spin-off of this characterisation, we also show how to gener-
ate redundant constraints to mitigate the harmful effects of
considering subgoals separately. Experiments evaluate two
inadmissible and one admissible heuristic, on a variety of
numeric domains.

Motivating Example
To illustrate the limits of interval relaxation-based heuristics,
let us take as an example the following sailing domain.

There is a sailing boat whose task is to rescue people in
an unbounded area of the ocean. The positions of the boat
and people to be rescued are described by their coordinates
(x, y) ∈ Q2. To save a person, the boat must reach an area
described by one or more linear inequalities. A (sequential)
numeric planning formulation of the problem encodes each
of the 7 possible movements of the boat (see Figure 1; the
boat cannot sail straight into the wind) as a translation in



Figure 1: Points of sail (https://en.wikipedia.org); red dot de-
picts the goal, from action a to g the 7 possible movements.

the geometrical space defined by Q2. Speed is implicit: each
action changes each of the two variables by a given amount.

In Figure 1, the rescue requires satisfying the inequality
x+ y > 10 starting from position 〈x = 0, y = 0〉. In the in-
terval based relaxation, all actions that contribute positively
to at least to one of the variables are considered useful for
satisfying this condition. This includes the two actions a and
b, but also the misleading actions c and g. The latter two ac-
tions increase either x or y but decrease the other, and thus
fail to bring the state any closer to satisfying x+y > 10. Ig-
noring this internal negative effect inevitably leads to search-
ing large parts of the space that are not relevant (i.e, neither
c or g are useful to reach the goal).

This problem is representative of a variety of domains
featuring multi-variable numeric conditions. Our approach
contrasts with the value reachability view, by performing a
relevance analysis for the subgoal at hand. Analogously to
the propositional case, this analysis focuses on determining
why certain actions are required, but also additionally here
in the numeric case, how many of them are necessary.

Notation and Background Material
This paper focuses on sequential numeric planning with
grounded actions; see PDDL 2.1 level 2 (Fox and Long
2003) for a deeper understanding of the semantics.

A state of the system is defined as a total assignment of
propositional Xp and continuous numeric variables Xn. A
propositional condition is a positive literal, while a numeric
condition is a tuple 〈ξ,D, 0〉 where ξ is an arithmetical ex-
pression and D ∈ {>,≥,=} a relational operator. We write
[x]s and [ξ]s for the value of variable x and expression ξ in
s. With slight abuse of notation we write x ∈ ξ to mean that
variable x appears in expression ξ.

Let C be a set of (propositional and numeric) conditions.
s |= C denotes that state s satisfies all conditions in C.

Definition 1 (Numeric Action). An action is a pair
〈pre(a), eff(a)〉, where pre(a) is a set of propositional and
numeric conditions and eff(a) is a set of assignments. A
classic assignment is p = > or p = ⊥; a numeric assign-
ment is x = ξ, where ξ is an arithmetical expression over
variables in Xn. We require that eff(a) does not contain
multiple assignments to the same variable.

We use subscripts to distinguish the propositional and nu-
meric parts (e.g., effnum(a) is the set of numeric effects of a).

Moreover, let e be an effect of a, then lhs(e) and rhs(e) de-
note the left- and right-hand sides of the assignment. lhs(e)
is the variable affected by e, while rhs(e) is, in the numeric
case, an expression, or, in the classical case, either > or ⊥.

An action a is applicable in s iff s |= pre(a), and its
execution results in the state s′ = s[a] such that ∀x ∈ X:
– [x]s

′
= [rhs(e)]s if ∃e ∈ eff(a) : lhs(e) = x

– [x]s
′

= [x]s otherwise (Frame Axiom)
Increase/decrease effects can be formulated as assignments
of the form x = x±e, where e is an arithmetical expression.

Definition 2 (Numeric Planning Problem). A numeric plan-
ning problem is the tuple Π = 〈s0, A,G,X, γ〉, where
X = Xp ∪ Xn is the set of variables, s0 is a state over
X, A is a set of actions, and G is a set of propositional and
numeric conditions. γ : A→ Q≥0 is a function assigning a
non-negative, rational cost to each action.

Definition 3 (Plan). A plan π for Π = 〈s0, A,G,X, γ〉is
a finite sequence of actions a0, ..., an−1 from A such that
every action in π is applicable in the state resulting from
the application of its predecessors: s0 |= pre(a0), s0[a0] |=
pre(a1), etc, and s|π| = s0[a0, .., an−1] |= G. The cost of
plan π is cost(π) =

∑
a∈π γ(a).

As usual, the minimum cost of a plan achieving condition c
from state s is denoted h?(s, c).

Numeric Planning via Interval-Based Relaxation
Pioneered by Hoffman (2003), the interval-based relaxation
(Aldinger, Mattmüller, and Göbelbecker 2015; Gregory et
al. 2012) is the principle most used to do numeric rea-
soning in planning. In different flavors (e.g., building met-
ric extension of the relaxed planning graph), the majority
of numeric planning systems exploit this theoretical frame-
work to devise heuristics (Koehler 1998; Hoffmann 2003;
Gerevini, Saetti, and Serina 2008; Coles et al. 2012; 2013).

The interval-based relaxation approximates each numeric
state variable using an interval that contains its possible val-
ues. The interval of an expression is calculated by Interval
Analysis (Moore, Kearfott, and Cloud 2009), and a numeric
condition is satisfied if at least one value in the expres-
sion’s interval satisfies it; applicable action effects mono-
tonically widen the bounds of the intervals, so a relaxed
solution is computed by extending intervals until the goal
is reached. Aldinger et al. (2015) defined a numeric de-
pendency relation over actions and showed that termination
and safe pruning can be ensured when the planning task
is acyclic w.r.t. this dependency relation. For acyclic tasks,
the set of reachable states (denoted by the larger intervals
for each variable) can be computed by executing applica-
ble actions as many times as necessary, in the order defined
by the dependency relation. Given Π = 〈s0, A,G,X, γ〉,
Π+ = 〈s+0 , A+, G,X〉 denotes the interval-based relaxation
of Π (Aldinger, Mattmüller, and Göbelbecker 2015).

Subgoaling Relaxation in the Propositional Case
The idea underlying the classical hmax heuristic (Bonet and
Geffner 2001; Haslum and Geffner 2000) is to estimate the



state–goal distance of atomic subgoals independently. hmax
is defined as the point-wise maximal fixpoint of the equation

hmax(s, C) =
0 if s |= C

min
a∈ach(C)

(hmax(s,pre(a))+ γ(a)) |C| = 1

max
C′⊂C:|C′|=1

hmax(s, c′) |C| > 1

where ach(C) denotes the set of achievers for C. The max-
imal fixpoint is unique (Haslum 2009). hmax is admissi-
ble; an inadmissible, but usually more informative, heuristic
hadd is obtained by summing, instead of maxing, over the
estimated costs of subgoals in a non-singleton set.

Numeric Regression
Regression can be extended to numeric planning by build-
ing the so called weakest precondition (Scala 2013). As in
Hoare’s (1969) calculus, the weakest precondition is com-
puted by substitution (’[]’) of the affected variables:

Definition 4 (Effect Regressor). Given a numeric condition
c : 〈ξ,D, 0〉 and an action a, the effect regressor cr(a) trans-
forms c into 〈ξ[x1/τ(a, x1), . . . , xk/τ(a, xk)],D, 0〉 where

τ(a, xi)=

{
rhs(e) if ∃e ∈ effnum(a) : lhs(e) = xi
xi Otherwise

and x1, . . . , xk are the numeric variables assigned by a.

cr(a) is the necessary and sufficient condition for c to hold
after applying the effects of a. Numeric regression is defined
by additionally incorporating the action precondition:

Proposition 1 (Numeric Regression). Let a be an action
and c a numeric condition. s[a] |= c iff s |= {cr(a)}∪pre(a).
{cr(a)} ∪ pre(a) denotes the regression of c through a.

Regression and Action Repetition
Unlike in the propositional case, numeric actions are not
idempotent operations, since the repeated action application
in a state does not generally retain its initial effect – the
one obtained after its first application. Dually, also the nu-
meric regression operation, and in particular the effect re-
gressor is not idempotent: s 2 cr(a) ; s 2 cr(a)

r(a)

... ;

s 2 c

m times︷ ︸︸ ︷
r(a)...

r(a)

. While there could be idempotent numeric
actions (e.g., assigning a specific value for a variable), this
does not apply in general. Several real world problems fea-
ture the accumulation of resources or translation in geomet-
rical spaces (e.g., the sailing problem). While a state of the
system might not be consistent with a condition arising from
a single step of regression, it is possible that it will eventu-
ally satisfy the condition if a given number of action repeti-
tions is allowed to be executed just before; or dually, if the
repeated regression is satisfied.

Some restrictions on the form of action effects allows us
to formulate repeated regression in closed form.

Definition 5 (Self-interfering effects). An action a is said to
have self-interfering effects whenever ∃ e, e′ ∈ effnum(a) :
e 6= e′ and lhs(e) occurs in rhs(e).

Definition 6 (Linear effects action). An action has lin-
ear effects if ∀e ∈ effnum(a), e can be written as x =∑
y∈Xn wy,a,xy + kx,a, with wy,a,x, kx,a ∈ Q, where x is

the variable modified by e.

An action is said to be LSF (Linear and Self-interference
Free) if it complies with Def. 6 and does not have self-
interfering effects. The closed form is as follows:

Theorem 2 (m-times effect regressor). Given a linear nu-
meric condition c ≡

∑
x∈Xn wx,cx + kc D 0, where

wx,c, kc ∈ Q, an LSF action a, and a state s, it follows:

s |= c

m times︷ ︸︸ ︷
r(a)...

r(a)

⇔ s |= cr(a,m)

where cr(a,m) =
(∑

x∈Xn wx,c(fx,a(m)) + kc
)
D 0

fx,a(m) =

m−1∑
i=0

wix,a,x

 ∑
y 6=x,y∈Xn

wy,a,xy + kx,a

+wmx,a,xx

Proof sketch. By induction on m.

fx,a(m) is the value of x after applying action a m times in
the current state (which is implicitly an argument). Note that
m appears in the exponent of the last term; thus, the function
is non-linear if wx,a,e is not 0 or 1.

Proposition 3 (Sufficient and Necessary Condition). A nu-
meric condition c is reachable using an LSF action a from
state s only if there exists an m ∈ N+ such that s |= cr(a,m)

and s |= pre(a) (necessary part). The condition is also suf-
ficient if the action does not assign any variable occurring
in its precondition.
Proof sketch. Direct consequence of Theorem 2, and
Proposition 1. s |= cr(a,m) effectively captures m steps of
regression, so the condition can be effectively reached using
action a, repeating it m times.

Definition 7 (Possible Achiever). An LSF action a is said
to be a (possible) achiever of a numeric condition c from s
whenever there exists an m ∈ N+ such that s |= cr(a,m).

From Theorem 2 follows that a is a possible achiever of c ≡∑
x∈Xn wx,cx+ kc D 0 iff there exists m such that∑

x∈Xn
wx,cfx,a(m) + kc D 0 (1)

In the following, we use ach(c) to denote the set of possible
achievers for c.

Subgoaling in the Numeric Case
Extending the subgoaling relaxation to both propositional
(PCs) and numeric conditions (NCs) is easy from a declar-
ative perspective, since different regression mechanisms can
be recursively interleaved depending on the condition’s type
(PC or NC):



h
max
hbd (s, C) =

0 if s |= C

min
a∈ach(C)

(hmaxhbd (s, pre(a)) + γ(a)) C ∈ PCs

min
a∈ach(C)

(hmaxhbd (s, pre(a) ∪ {cr(a)}) + γ(a)) C ∈ NCs

max
C′⊂C:|C′|=1

hmaxhbd (s, C′) |C| > 1

The hbd subscript indicates the new HyBriD formulation. By
substituting sum for max, we obtain an inadmissible variant
haddhbd . As in the propositional case, hmaxhbd and haddhbd are de-
fined as any point-wise maximal fixpoint of these equations.
Here, however, we do not have a proof that this fixpoint is
unique. On the other hand, uniqueness is not essential: all
properties of the heuristics that we establish in the following
hold for any maximal fixpoint.

Two practical problems arise with this formulation: First,
deciding if an action is a possible achiever (a ∈ ach(c))
is not easy because (i) it is state dependent, and (ii) it may
require solving of a non-linear optimization problem, even
if we limit ourselves to LSF actions (Eq. 1 depends on m,
which occurs in the exponent in fx,a(m)). Second, regres-
sion can generate an unbounded number of different numeric
subgoals. For instance, in the motivating example, regress-
ing the goal of crossing a line generates an infinite set of ar-
eas from which that goal can be reached. This is not surpris-
ing since, in general, even a single numeric condition plan-
ning problem can be semi-decidable (Helmert 2002). Thus,
the regression tree is infinite, and the minimization done in
the heuristic is not guaranteed to terminate. The next sec-
tion studies sufficient conditions that make variations of this
formulation tractable.

The Simple Numeric Condition Case
We define simple numeric conditions as those only affected
by actions having constant increase and decrease effects:
Definition 8 (Simple Numeric Condition). Let c: 〈ξ,B, 0〉.
c is said to be a simple numeric condition (SC) if: (i) ∀e ∈
{e′|e′ ∈ effnum(a), a ∈ A, ξ ∩ lhs(e) 6= ∅}, e is of the form
x = x + kx,a with kx,a a constant in Q; (ii) B ∈ {>,≥},
i.e., c is not an equality condition1; and (iii) ξ is linear.
Proposition 4. If all the numeric conditions in Π =
〈s0, A,G,X, γ〉 are SCs:

a. reachability of numeric conditions can be computed in
closed form using the m-times effect regressor (Th. 2);

b. the m-times effect regressor is commutative, that is
cr(a,n)

r(b,m) ≡ cr(b,m)r(a,n)

for any SC c, actions a, b and
n,m ∈ N;

c. the effect of each action on each condition is state-
independent.

Proof sketch. (a) is a consequence of Theorem 2. For SCs,
fx,a(m) simplifies to mkx,a +x. Hence (c), the change in x
caused by a is an additive constant. This implies (b).

An immediate consequence of Prop. 4 is that the number of
relevant numeric conditions that can be generated by hmaxhbd

1An equality 〈ξ,=, 0〉 can however be expressed as the conjuc-
tion of {〈ξ,≥, 0〉, 〈ξ,≤, 0〉}.

(haddhbd) is finite. Relevant numeric conditions are those gen-
erated by regressing through possible achievers only, and the
simple closed form fx,a = mkx,a + x enables us to find the
possible achievers efficiently.

Theorem 5 (Termination with SCs ). If numeric conditions
are regressed only through possible achievers, then compu-
tation of hmaxhbd and haddhbd with only SCs terminates in a finite
number of steps.

Explicit Regression for haddhbd

Although finite, a naive implementation of hhbd is not
tractable. Fortunately, the SC properties allow us to min-
imize cost over just the numbers of action repetitions rather
than regressing through all relevant action sequences.

Theorem 6 (Explicit Regression for haddhbd ).
haddhbd(s, c)= min

m1,..,mn=|A|∈N

s|=cr(a1,m1)..
r(an,mn)

∑
j=1..n

mj [h
add
hbd(pre(aj))+γ(aj)]

where c is a single simple numeric condition.
Proof sketch. Like hmaxhbd , haddhbd is defined by recursively
minimizing over the regression tree, but adding instead of
maxing haddhbd(s,pre(a)) and haddhbd(s, cr(a)). Thus the precon-
dition cost haddhbd(s,pre(a)) is counted for every repetition of
a. Because of this, choosing mi as the number of times ac-
tion ai is repeated in the path that minimizes haddhbd(s, c) gives
the same cost.

Because solving the above integer optimization problem is
intractable, we replace it with its continuous relaxation2.
Moreover, to reduce over-estimation we count the precondi-
tion cost for each action used in the solution only once, i.e,
replace

∑
j=1..nmj [h

add
hbd(pre(aj)) +γ(aj)] with the more

optimistic estimate
∑

j=1..n
s.t.mj>0

[haddhbd(pre(aj)) + mjγ(aj)].

We denote the resulting heuristic ĥaddhbd .

An Admissible Estimate: ĥmax
hbd

To get a practical and admissible version of hmaxhbd , we will go
through three main steps. First, observe that a lower bound
on the cost of achieving condition c is given by the optimal
solution to the following Mixed Integer Problem:

minimize
∑
a∈A

[γ(a)ma]

subject to
∑
x∈X

wx,c[
∑
a∈A

makx,a + x] + wn,c B 0

ma ∈ N ∀a ∈ A
This problem accounts only for the cost of the actions
needed, ignoring their precondition costs. Second, we take
the continuous relaxation of the above problem, which is
not only tractable but whose optimal solution is also a lower
bound on the cost of the optimal solution of the integer ver-
sion. We can show there always exists an optimal solution to

2The continuous relaxation of an integer problem is obtained by
allowing integer variables to take rational values. This makes it an
LP that can be solved in polynomial time.



the continuous relaxation where just one action is used (i.e.,
ma > 0 for just one a ∈ A). This allows us to solve this
problem by evaluating each action independently. Third, we
can improve this estimate by considering only reachable ac-
tions (A+ ⊆ A) and their precondition costs. However, to
maintain admissibility we can only add the smallest precon-
dition cost among the possible achievers of the condition.
Combining these steps and letting s and c be a state and a
single numeric condition, we obtain the following estimate:

ĥmaxhbd (s, c) = min
a∈A+,m̂∈Q≥0

s|=cr(a,m̂)

(m̂ · γ(a)) + min
a∈A,

s|=cr(a,m̂)

ĥmaxhbd (s,pre(a))

where A+ is the set of actions with ĥmaxhbd (s,pre(a)) 6=∞.

Theorem 7 (Admissibility). Let c be a SC: ĥmaxhbd (s, c) ≤
h?(s, c).
Theorems 6 and 7 provide tractable ways of computing best
achievers, without generating new numeric conditions that
do not appear in the problem (either as preconditions or
goals). As in the case of propositional hmax, this enables
us to use a label correcting algorithm (such as the Bellman-
Ford algorithm (Bellman 1958)) to compute these heuristics
in polynomial time.

Theorem 8 (Tractability). ĥmaxhbd and ĥaddhbd can be computed
in time polynomial in the size of the problem.
Limitations. Dealing with a larger fragment of numeric
planning (e.g., involving only LSF actions and linear nu-
meric condition) is possible in principle; however, when ac-
tion effects depend on some other actions, ignoring indi-
rect effects makes the heuristic inadmissible and even not
safe to use for pruning. Take as an example a domain with
actions a : 〈∅, x = y〉 and b : 〈∅, y = y + 5〉, and a
condition c : 〈x,≥, 10〉. Assume that the current state is
s0 : 〈x = 0, y = 0〉. c can be achieved only by the ordered
sequence of actions b, b, a.

Integration with the Interval Based Relaxation
To handle more general numeric conditions, including indi-
rect effects of actions, the following formulation integrates
ĥaddhbd with the interval-based relaxation, where numeric con-
ditions are categorized in SCs and HCs (Hard Numeric Con-
ditions):

ĥ
add
hbd+(s, C) =



0 if s |= C

min
a∈ach(C)

(ĥaddhbd+(s, pre(a)) + γ(a)) C ∈ PCs

min
a∈A,

s|=cr(a,m̂)

∀m̂∈Q≥0

(m̂γ(a) + ĥaddhbd+(s, pre(a))) C ∈ SCs

∑
a∈π′

π′∈sol(<s+,A+,G,X>)

(ĥaddhbd+(s, pre(a)) + γ(a)) C ∈ HCs

∑
c′⊂C:|c′|=1

ĥaddhbd+(s, c′) |C| > 1

HCs denotes the set of the numeric conditions that are not
simple (Def. 8). The subscript hbd+ denotes the support
for HCs. Each case (PCs, SCs, HCs) is treated with a spe-
cialized reasoning, but just for that particular subgoal. The
implementation of the interval-based relaxation is similar to

Metric-FF in the spirit, but does not require transforming the
task into Linear Normal Form (Hoffmann 2003). Instead it
follows a fixpoint analysis using actions reachable for ĥaddhbd+

(A+) where termination and safe pruning are guaranteed by
the transitive closure of the action effects dependency rela-
tion. Fixpoint analysis returns the actions sufficient to reach
each complex condition, then their preconditions are recur-
sively evaluated using ĥaddhbd+; if those actions have any sim-
ple numeric precondition, its evaluation is done with the
more accurate estimate. Thus, the heuristic interleaves both
relaxations. There is no extraction of a relaxed plan so the
heuristic can be less accurate than Metric-FF-like heuristics
(Hoffmann 2003; Coles et al. 2012). An admissible formu-
lation (ĥmaxhbd+) can be obtained by using any admissible ap-
proximation of the interval-based relaxation for HCs – the
simplest such being to just assign them an estimate of zero
– while using the lower bound ĥmaxhbd for SCs and maxing
over subgoals. All the above heuristic variants provide safe
pruning, giving infinite values only for unsolvable problems.

More Information via Redundant Constraints
The subgoaling relaxation fails to capture negative interac-
tions arising between actions used to achieve parts of a con-
junctive condition simultaneously. To alleviate this, we use
redundant constraints to tighten the relaxation. This is pos-
sible because even simple numeric conditions can express
some interaction between variables, which is considered in
our heuristic, leading to better accuracy.

We automatically add, to each numeric precondition and
goal set, redundant constraints that are implied by the simul-
taneous satisfaction of each pair of conditions in that set. Let
c1 : 〈ξ,≥, 0〉 and c2 : 〈ξ′,≥, 0〉 be two SCs: the implied re-
dundant constraint is c3 : 〈ξ + ξ′,≥, 0〉.

Redundant constraints capture conflicting effects and are
known to be a useful technique to prune the search space of
invalid partial solutions in areas such as scheduling (Getoor
et al. 1997). As an example of their usefulness in planning,
consider the goal {c1, c2} where c1 : 〈x − y,≥, 0〉 and
c2 : 〈z,≥, 0〉, an action a : 〈∅, {x = x + 1, z = z − 1}〉
and s0 : 〈x = 0, y = 1, z = 0〉. c1 is achieved by applying
action a1 once; c2 is already true. The problem is however
unsolvable since action a1 falsifies c2, and there is no way
to recover it. The redundant constraint obtained from c1 and
c2 is c3 : x − y + z ≥ 0. Using the condition of Eq. 1,
we can show that action a1 is not an achiever of c3. Thus,
even though c1 and c2 can be achieved, c3 cannot, making
the problem unsolvable also in the relaxed version. Situa-
tions like this one may be quite frequent in planning prob-
lems. Redundant constraints preserve admissibility and safe
pruning, but if used in the inadmissible setting, they may
exacerbate the overestimation of the actual distance to goal.

Implementation and Experimental Analysis
We evaluate three planners: two satisficing planners, using
the inadmissible additive heuristic ĥaddhbd+ and its extension
with redundant constraints ĥraddhbd+, and one optimal plan-
ner using the admissible heuristic with redundant constraints



Coverage Average Time Plan length Exp. Nodes

I IBR ĥaddhbd+ ĥraddhbd+ IBR ĥaddhbd+ ĥraddhbd+ IBR ĥaddhbd+ ĥraddhbd+ IBR ĥaddhbd+ ĥraddhbd+

COUNT 55(10) 17 23 25 0.1 3.3 2 20.7 13.7 13 21.7 1811.1 974.2

GARD 51(16) 0 16 26 NA 21.2 4.3 NA 176.7 123.7 NA 49393 5757.7

SAIL 40(33) 0 40 33 NA 1.9 2.7 NA 459.8 476.3 NA 745.8 648.4

FARM 50(50) 0 50 50 NA 0.9 1.8 NA 400.2 416 NA 405.6 419.2

ZENO 23(6) 6 21 19 0.0 0.3 0.5 14.7 13.3 13.3 15.7 15.7 15.7

ROVER 20(2) 2 7 7 166.3 0.4 0.5 14 9 9 350 11 11

SATEL 20(6) 1 6 6 NA 9.1 5.2 NA 20.6 20.6 NA 123.6 123.6

DEPOT 20(3) 1 3 3 NA 1.5 1.1 NA 17.3 17.3 NA 19 19

TPP 40(3) 6 3 1 0.1 0.5 NA 8 9.7 NA 9 14.3 NA

(a) Results of experiments with satisficing planners. Entries are calculated on in-
stances solved by all systems (if appropriate). The size of this set is given in brack-
ets next to the number of instances. Times are given in seconds. The timeout for
all planners was 1, 800 seconds.

Coverage Exp. Nodes

I P Blind A? Blind A?

GARD 63 18.6 27 50 ≈105 ≈103

FARM 30 439 0 20 NA ≈103

SAIL 25 17 1 9 NA ≈104

(b) Results of experiments with optimal planners using
Blind Search (Blind) and A∗ with ĥrmax

hbd+ . Time distri-
bution in GARDENING(left); average expanded nodes
(where significant) and coverage for both domains
(right). P is the average plan length. Timeout was 1, 800
seconds.

Figure 2: Experimental Results

ĥrmaxhbd . The latter is used within A?, while all other heuris-
tics are used in a Greedy Best First Search (GBFS). For com-
parison, we also run GBFS with the interval-based relax-
ation (IBR) heuristic, obtained from Metric-FF (Hoffmann
2003) by disabling Enforced Hill Climbing. The optimal
planner is compared with blind search.

Benchmarks include IPC domains (http://www.icaps-
conference.org/), numeric reformulation of the COUN-
TERS and GARDENING domains by Francés and Geffner
(2015), our motivating example (SAILING) and a new do-
main called FARMLAND. SAILING instances are scaled by
the numbers of boats and people to be rescued. The FARM-
LAND domain models allocating manpower to farms, with a
hard constraint on a metric measuring benefit. The contribu-
tion of each farm to the benefit is a function of the number
of workers assigned. Each farm requires at least one worker.
The number of workers ranges from 100 to 1, 000, and the
number of farms from 2 to 10. The experimental setting has
been conceived to stress numeric reasoning. Most of the do-
mains feature only SCs, except TPP and DEPOT which
also have HCs. We expect our heuristics to perform well on
domains featuring mostly SCs.

Evaluation Figure 2a reports the performance of the sat-
isficing planners. Both variants of the hybrid heuristic out-
perform the IBR heuristic in every domain but TPP. IBR is
very weak for domains where numeric conditions involve
several variables. This is prominent in SAILING and FARM-
LAND. The hhbd+ heuristics also performs well in classical
IPC domains where the propositional part of the problem is
important, showing synergy between the numeric and propo-
sitional relaxations. ĥraddhbd+ is well-informed for problems
with many interacting goals, e.g., COUNTERS and GAR-
DENING, producing plans of higher quality. However, the
redundant constraints are also misleading in some domains,
so they must be added with care.

Figure 2b shows results for the optimal planner. Exper-
iments were run on a smaller set of instances of three do-
mains: GARDENING, with up to 3 plants and 10x10 grids,
FARMLAND, with 4 farms, and SAILING, with smaller met-

ric distance to the goals. As expected, the number of goals
is crucial for the effectiveness of the heuristic. In GARDEN-
ING, the optimal planner solves all instances with 1 plant,
90.5% with 2 plants and about 50% with 3 plants. Blind
search solves 19 instances out of 21 with 1 plant, 8 with
2 plants and none with 3 plants. In FARMLAND, the optimal
planner solves 20 out of 30 instances, blind search none at
all. In SAILING, performance is poorer because of the large
number of subgoals, which leads to more decompositions
and lower heuristic accuracy. Average runtime is around 5
seconds in FARMLAND, around 68 seconds in GARDENING,
though the largest instances took over 1, 000 seconds, and on
average 38 seconds in SAILING.

Conclusion

In the classical setting, considering subgoals in isolation im-
plies a delete-free relaxation; this is not the case in numeric
planning, where the analogue of delete relaxation, known as
the interval-based relaxation, ignores negative interactions
also between numeric variables in a single numeric condi-
tion. Our generalisation of the principle underlying the hmax
and hadd heuristics to hybrid planning takes such interac-
tions into account, making it more accurate. For the class
of simple numeric conditions, tractable heuristics based on
this relaxation can be devised. General numeric conditions
can be handled by interleaving it with the interval-based re-
laxation. For problems with only simple numeric conditions,
we formulated an admissible heuristic. As far as we know, it
is the first of its kind.

Future work includes lifting the remaining restriction – to
acyclic numeric dependencies – posed by the interval-based
relaxation, and integrating ĥaddhbd+ with state-of-the-art search
strategies by identifying preferred operators.



Acknowledgements This work is supported by ARC
project DP140104219, “Robust AI Planning for Hybrid Sys-
tems”. NICTA is funded by the Australian Government
through the Department of Communications and the Aus-
tralian Research Council through the ICT Centre of Excel-
lence Program.

References
Aldinger, J.; Mattmüller, R.; and Göbelbecker, M. 2015.
Complexity of interval relaxed numeric planning. In Proc.
of KI 2015: Advances in Artificial Intelligence, 19–31.
Bellman, R. 1958. On a Routing Problem. Quarterly of
Applied Mathematics 16:87–90.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proc. of Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2010).
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A hy-
brid LP-RPG heuristic for modelling numeric resource flows
in planning. Journal of Artifificial Intelligence Research
(JAIR) 46:343–412.
Dornhege, C.; Eyerich, P.; Keller, T.; Trúg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Proc. of International
Conference on Automated Planning and Scheduling (ICAPS
2009).
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2009).
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of Arti-
ficial Intelligence Research 20:61–124.
Francès, G., and Geffner, H. 2015. Modeling and computa-
tion in planning: Better heuristics from more expressive lan-
guages. In Proc. of the Conference on Automated Planning
and Scheduling, (ICAPS 2015), 70–78.
Gerevini, A.; Saetti, I.; and Serina, A. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. Artificial Intelligence 172(8-9):899–944.
Getoor, L.; Ottosson, G.; Fromherz, M. P. J.; and Carlson, B.
1997. Effective redundant constraints for online scheduling.
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applications of
Artificial Intelligence Conference, AAAI 97, IAAI 97, July
27-31, 1997, Providence, Rhode Island., 302–307.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (ICAPS 2012).

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS 2000), 140–149.

Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Proc.
of the International Conference on Automated Planning and
Scheduling, (ICAPS 2009).
Helmert, M. 2002. Decidability and undecidability results
for planning with numerical state variables. In Proc,. of In-
ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS 2002), 44–53.
Hoare, C. A. R. 1969. An axiomatic basis for computer
programming. Commun. ACM 12(10):576–580.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing ”ignoring delete lists” to numeric state variables. Journal
of Artificial Intelligence Research (JAIR) 20:291–341.
Koehler, J. 1998. Planning under resource constraints. In
Proc. 13th European Conference on Artificial Intelligence
(ECAI 1998), 489–493.
Moore, R. E.; Kearfott, R. B.; and Cloud, M. J. 2009. Intro-
duction to Interval Analysis. SIAM.
Scala, E. 2013. Numeric kernel for reasoning about plans
involving numeric fluents. In et al., M. B., ed., AI*IA 2013,
LNAI 8249, Springer International Publishing Switzerland.


