
Heuristic Search in Dual Space for Constrained Stochastic Shortest Path Problems

Felipe Trevizan and Sylvie Thiébaux Pedro Santana and Brian Williams
Machine Learning and Optimisation Groups, NICTA MERS Group

Research School of Computer Science, ANU Computer Science and AI Laboratory, MIT
first.last@anu.edu.au {psantana,williams}@mit.edu

Abstract

We consider the problem of generating optimal stochastic
policies for Constrained Stochastic Shortest Path problems,
which are a natural model for planning under uncertainty
for resource-bounded agents with multiple competing objec-
tives. While unconstrained SSPs enjoy a multitude of effi-
cient heuristic search solution methods with the ability to fo-
cus on promising areas reachable from the initial state, the
state of the art for constrained SSPs revolves around linear
and dynamic programming algorithms which explore the en-
tire state space. In this paper, we present i-dual, which, to the
best of our knowledge, is the first heuristic search algorithm
for constrained SSPs. To concisely represent constraints and
efficiently decide their violation, i-dual operates in the space
of dual variables describing the policy occupation measures.
It does so while retaining the ability to use standard value
function heuristics computed by well-known methods. Our
experiments on a suite of PPDDL problems augmented with
constraints show that these features enable i-dual to achieve
up to two orders of magnitude improvement in run-time and
memory over linear programming algorithms.

1 Introduction
Stochastic Shortest Paths problems (SSPs) are widely used
models for planning under uncertainty. Given an initial state,
a set of goal states, actions with probabilistic outcomes,
and an action cost function, the objective is to find an ac-
tion policy minimising the expected cost of reaching the
goal from the initial state. A nice feature of SSPs is that
optimal policies are deterministic mappings from states to
actions. Such policies can be efficiently computed using
heuristic search algorithms, e.g. LAO* (Hansen and Zilber-
stein 2001), (L)RTDP (Bonet and Geffner 2003), and many
other variants. These algorithms are capable of focusing the
search on promising regions reachable from the initial state.
To achieve this, they use guidance in the form of an admis-
sible heuristic function, which estimates the expected cost
to goal from newly encountered states. This focused search
sets these algorithms apart from linear programming formu-
lations and dynamic programming algorithms, such as Value
and Policy Iteration, which explore the entire state space.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In many application domains, SSPs have limited value,
as multiple competing performance criteria need to be con-
sidered and are difficult to encapsulate in a single scalar
cost function (Undurti and How 2010). For example, in a
UAV search and rescue mission, as many targets as possi-
ble need to be found as fast as possible, whilst minimis-
ing battery usage and the probability of reaching danger-
ous areas. A natural approach to deal with such situations
is to optimise a primary cost function, and constrain the oth-
ers (Altman 1999, Feinberg and Shwarz 1995, Dolgov and
Durfee 2005). This leads to constrained SSPs which aug-
ment SSPs with upper bounds on the expected value of the
secondary costs. In the above example, we may minimise
the number of targets missed, keeping the expected mission
time, the expected battery usage and the probability of visit-
ing dangerous areas within acceptable limits. As for uncon-
strained SSPs, the worst-case complexity of finding the op-
timal solution for constrained SSPs is polynomial; however,
constrained SSPs are harder solve in practice because of the
potential conflicts between minimising the primary cost and
satisfying all the constraints. Moreover, there is no guarantee
that the optimal policy for constrained SSPs is deterministic.

In this paper, we present the first algorithm for constrained
SSPs that exploits the advantages of heuristic search. Our al-
gorithm, i-dual, generates optimal stochastic policies. Simi-
larly to unconstrained planning algorithms, such as LAO*,
i-dual incrementally builds the search space reachable from
the initial state (search envelope) by repeatedly expanding
the fringe states reachable under the current best policy, and
updating that policy using linear programming. The use of
an LP naturally enables the formulation of the secondary
cost constraints, ensures that the resulting policy satisfies
them, and facilitates the generation of stochastic policies.

Importantly, in order to represent and update the search
envelope, i-dual uses the dual LP formulation (D’Epenoux
1963). In this formulation, the variables being optimised
are the policy occupation measures and they represent the
expected number of times a given action is executed in a
given state. This contrasts with the more common primal LP
formulation where the variables being optimised represent
the expected cost to reach the goal. The main advantage
of the dual LP representation is that it allows solving con-
straint SSPs in polynomial time while the primal LP rep-
resentation results in a non-convex problem; therefore, no

polynomial algorithm is known for constrained SSPs us-
ing the primal LP representation (Kallenberg 1983, Dol-
gov and Durfee 2005). A disadvantage of the dual space
is that it is difficult to obtain lower bounds for occupa-
tion measures, thus early pruning of infeasible solutions
based on them is also difficult. To address this issue,
i-dual uses heuristics (lower bounds) for the value func-
tions, which can be easily computed by domain-independent
methods (Teichteil-Königsbuch, Vidal, and Infantes 2011,
Mausam and Kolobov 2012). This makes i-dual the first
heuristic search algorithm for constrained SSPs.

We have implemented a domain-independent planner
based on i-dual, which solves constrained SSPs described
in an extension of the Probabilistic Planning Domain Defi-
nition Language (PPDDL) (Younes et al. 2005). We use this
planner to evaluate the performance of i-dual on a number of
benchmark problems and compare it with the dual LP with-
out heuristic search. We find that i-dual successfully lever-
ages the heuristics over the primary and secondary cost func-
tions to prune suboptimal and infeasible solutions, and is
able to solve problems up to two orders of magnitude larger
than the regular dual LP approach. Moreover, we show how
non-admissible heuristics can be used by i-dual to trade-
off optimality with scalability and quickly compute policies
that still respect the constraints, an option not offered by the
dual LP approach.

The paper is organised as follows: Section 2 presents the
background on SSPs and constrained SSPs; i-dual, our novel
algorithm, is introduced in Section 3; the empirical evalua-
tion of i-dual is presented in Section 4; and we conclude with
a discussion of related and future work in Section 5.

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path problem (SSP) (Bertsekas and
Tsitsiklis 1991) is a tuple S = 〈S, s0,G, A, P, C〉 in which:
S is the finite set of states; s0 ∈ S is the initial state; G ⊆ S is
the non-empty set of goal (or terminal) states; A is the finite
set of actions; P (s′|s, a) represents the probability that s′ ∈
S is reached after applying action a ∈ A in state s ∈ S; and
C(s, a) ∈ R∗+ is the immediate cost of applying action a in
state s. For simplicity, we assume s0 6∈ G and we represent
by A(s) the actions applicable in state s.

A solution to an SSP is a policy π, i.e., a mapping from
states to actions, and we denote by Sπ the domain of π. A
policy π is complete if Sπ = S. If all states s′ reachable
from s0 when following π are contained in Sπ , then π is
a closed policy (i.e., no replanning is needed when execut-
ing π), otherwise π is a partial policy. A policy can also be
classified as deterministic or stochastic. A deterministic pol-
icy π maps each state s ∈ Sπ to one action a ∈ A(s); alter-
natively, a stochastic policy π maps each state s ∈ Sπ to a
probability distribution over A(s) and we denote by π(s, a)
the probability of executing a in s.

The optimal solution for an SSP is a closed policy π∗

that minimises the total expected cost of reaching the goal
from s0. For SSPs, π∗ might not be unique and there always
exists at least one optimal policy that is deterministic. The

optimal solution of an SSP can be uniquely described by the
optimal value function V ∗, i.e., a function from S to R+ rep-
resenting the minimum total expected cost to reach the goal
from each state s (Bertsekas and Tsitsiklis 1996). The op-
timal value function V ∗ is defined by the set of fixed-point
equations known as Bellman equations:

V ∗(s) = min
a∈A(s)

C(s, a) +
∑
s′∈S

P (s′|s, a)V ∗(s′)

for s 6∈ G and V ∗(s) = 0 for s ∈ G. Any optimal
policy π∗ can be extracted from V ∗ by replacing min by
argmin in the definition of the Bellman equations. V ∗ can be
computed iteratively (e.g., Value Iteration (Howard 1960)),
using linear programming (Puterman 1994), and through
heuristic search (e.g., LAO* (Hansen and Zilberstein 2001),
(L)RTDP (Bonet and Geffner 2003)). We refer to these al-
gorithms that explicitly compute V ∗ as primal-space algo-
rithms. An admissible heuristic H for primal-space algo-
rithms is any lower bound on V ∗.

Alternatives to primal-space algorithms are policy space
algorithms (e.g., Policy Iteration (Howard 1960)) and linear
programming over the dual space (D’Epenoux 1963). The
latter is presented in (LP 1) and the optimisation variables
xs,a, known as occupation measure, represent the expected
number of times action a ∈ A(s) is executed in s.

min
x

∑
s∈S,a∈A(s)

xs,aC(s, a) s.t. (C1) – (C6) (LP 1)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C1)

in(s) =
∑

s′∈S,a∈A(s′)

xs′,aP (s|s′, a) ∀s ∈ S (C2)

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C3)
out(s0)− in(s0) = 1 (C4)

out(s) =
∑
a∈A(s)

xs,a ∀s ∈ S \ G (C5)

∑
sg∈G

in(sg) = 1 (C6)

This dual formulation can be interpreted as a flow prob-
lem, where: (C2) and (C5) define expected flow entering and
leaving the state s, respectively; (C3) is the flow conserva-
tion principle, i.e., all flows reaching s must leave s (for
all states s that are neither the source nor a sink); and
(C4) and (C6) define, respectively, the source (initial state
s0) and the sinks (goal states). The objective function of
(LP 1) captures the minimisation of the total expected cost
to reach the goal (sink) from the initial state (source).
Once we have the solution x∗ of (LP 1), the optimal policy
is π∗(s, a) = xs,a/out(s) and is guaranteed to be determin-
istic, i.e., xs,a > 0 for exactly one action a ∈ A(s) for all
s ∈ S such that out(s) > 0.

In this work, we consider SSPs with dead ends, that is,
we do not assume that, for all s ∈ S, the probability for
reaching the goal is 1. We use the fixed-cost approach for
dead ends (Mausam and Kolobov 2012), i.e., if s is a dead
end, then V ∗(s) is defined as d, where d is a large positive

penalty for not reaching the goal.1 As a side effect, every
state s such that V ∗(s) ≥ d is treated as a dead end, even if
its probability of reaching the goal is greater than 0.

LP 2 presents the dual-space linear program for SSPs with
dead ends. For each state s, a new occupation measure xDs is
added to represent the flow escaping from s if s is proved to
be a dead end. xDs is necessary in order to enforce the flow
conservation constraints since flows can only be absorbed
by sinks. A new sink constraint (C9) is also required and it
enforces that the flows not reaching the goal must be directed
to the dead-end sink, i.e., the flow trapped in a dead-end state
s is forced to leave s using xDs by (C3) and (C8). Since one
unit of flow is injected into the system (C4) and all flows
using xDs are directed to a sink,

∑
s∈S x

D
s is equivalent to

the probability of reaching a dead end from the initial state.
The objective function of LP 2 is obtained by adding the
total expected penalty for reaching dead ends (

∑
s∈S x

D
s d)

to the objective function of LP 1.

min
x

∑
s∈S,a∈A(s)

xs,aC(s, a) +
∑
s∈S

xDs d

s.t. (C1) – (C4), (C7) – (C9) (LP 2)

xDs ≥ 0 ∀s ∈ S (C7)

out(s) =
∑
a∈A(s)

xs,a + xDs ∀s ∈ S \ G (C8)

∑
sg∈G

in(sg) +
∑
s∈S

xDs = 1 (C9)

2.2 Constrained SSPs
A constrained SSP (C-SSP) is an SSP with k + 1 cost func-
tions in which one cost function is optimised while the re-
maining k costs are constrained by an upper bound. We re-
fer to the former as primary cost and all other cost func-
tions as secondary costs. Formally, a C-SSP C is the tu-
ple 〈S, s0,G,A, P, ~C, ~̂c〉 where S, s0,G,A, and P are de-
fined as in the SSP case and ~C = [C0, C1, C2, . . . , Ck] is
the vector of cost functions (Cj : (S,A)→ R∗+ for all j) and
~̂c = [ĉ1, . . . , ĉk] is the cost upper bound vector (ĉj > 0 for
all j). Since each Cj can differ in scale (e.g., cost in dollars,
energy in joules, time in minutes), the dead-end penalty is
also represented by a vector ~d and dj is the penalty incurred
in Cj when a dead end is reached.

The constraints on costs Cj , for j ∈ {1, . . . , k}, are on
expectation, i.e., given a policy π, the expected value of Cj
over all executions of π from s0 to the goal must be less or
equal to ĉj . Thus, for a particular execution of π, the ob-
served cost Cj may be larger than ĉj . Even though an upper
bound on the maximum incurred cost (as opposed to its ex-
pectation) might be desired, such bounds make most SSPs
infeasible because they require that none of the possible ex-
ecutions of π violate the constraints. In the general case, this
can only be guaranteed when the execution of π is loop-free
because, if the execution π can revisit any state, then there

1I-dual can be easily adapted to work with other approaches for
handling dead-ends; see Section 5.

is a non-zero probability of π being executed for at least n
steps before reaching the goal for all n ∈ N. Moreover, since
the constraints are over the expected execution of π, they re-
strict the policy space instead of the state space. For instance,
a given state could be reached by two actions that consume
different amounts of resources and only one of them violate
the constraints.

The optimal solution to a C-SSP is defined similarly to
the optimal solution of an SSP where the primary cost func-
tion C0 is being minimised and the expected value of the
secondary cost functions Cj , for j ∈ {1, . . . , k}, is upper
bounded by ĉj . Thus, the dual LP for solving C-SSPs is the
LP 2 subject to the additional constraint C10:∑
s∈S,a∈A(s)

xs,aCj(s, a) +
∑
s∈S

xDs dj ≤ ĉj ∀j ∈ {1, . . . , k}

(C10)

In contrast to SSPs, there is no guarantee that the optimal
policy for C-SSPs is deterministic (Altman 1999). Never-
theless, the complexity of finding the (potentially stochas-
tic) optimal policy for C-SSPs is polynomial (Dolgov and
Durfee 2005) as in the case of SSPs.

The occupation measure space is particularly interesting
for C-SSPs because only one set of fixed-point equations
needs to be solved to obtain x, regardless of the number
of secondary cost functions. Given x, the total expected
j-th cost of following x from s0 to a goal can be easily
computed by

∑
s,a xs,aCj(s, a) +

∑
s x

D
s dj . In contrast,

primal-space algorithms have to represent and compute the
fixed-point solution for each value function Vj associated
withCj (j ∈ {0, . . . , k}). Furthermore, the set of costs com-
puted need to be those for a single policy, and imposing this
constraint in the primal-space is non-trivial. Specifically, it
requires an extra set of continuous variables to represent the
current stochastic policy π(s, a) and they multiply the right-
hand side of the Bellman equation, resulting in the following
bilinear constraints:

Vj(s) ≤
∑
a∈A(s)

π(s, a)
[
Cj(s, a) +

∑
s′∈S

P (s′|s, a)Vj(s′)
]
.

More importantly, these bilinear constraints are non-convex,
replacing the LP with a non-convex problem, whose solution
is intractable for all but the smallest problems.

Although the dual approach (LP 2) is tractable, a signif-
icant computational cost is that it requires all the reachable
states from s0 to be encoded, and thus explored, even if Sπ

∗

is only a fraction of the reachable space. Furthermore, de-
riving a non-zero lower bound (admissible heuristic) for the
occupation measure x is not trivial because xs,a > 0 if and
only if a ∈ π∗(s) for at least one optimal policy π∗. In fact,
the authors are not aware of any existing work that derives
domain-independent lower bounds for xs,a.

3 i-dual
In this section, we explain how to perform heuristic search
in the occupation measure space using heuristics for the
primal space. That is, instead of using a lower bound
on occupation measures xs,a, we use a heuristic vector

over costs ~H = [H0, . . . ,Hk], where Hj : S → R+ for
all i ∈ {0, . . . , k} is a heuristic for the expected value of Cj .
A heuristic Hj is admissible for Cj if it is a lower bound for
the j-th total expected cost.

In contrast to a heuristic for xs,a,Hj can be easily derived
by relaxing the C-SSP into an unconstrained SSP as a range
of heuristics exist for SSPs (Mausam and Kolobov 2012)
which generalise classical planning heuristics (Teichteil-
Königsbuch, Vidal, and Infantes 2011). Formally, given a
C-SSP 〈S, s0,G,A, P, ~C, ~̂c〉 and j ∈ {0, . . . , k}, let Sj be
the SSP 〈S, s0,G,A, P, Cj〉, then the optimal value function
V ∗ for Sj is an admissible heuristic for Cj . Therefore, any
admissible heuristic H for Sj is also admissible for Cj .

Our novel approach consists in defining incrementally
larger partial problems starting from s0, using artificial
goals to represent non-explored areas of the occupation
measure space. Artificial goals are prioritised using their
heuristic values, incurred as a one-time terminal cost
when the artificial goal state is first reached. Each par-
tial problem is thus represented as a C-SSP with terminal
costs2 〈Ŝ, s0, Ĝ, Â, P, ~C, ~̂c, ~H〉, where: 〈Ŝ, s0, Ĝ, Â, P, ~C, ~̂c〉
is a regular C-SSP, Ŝ ⊆ S, G ∩ Ŝ ⊆ Ĝ, Â ⊆ A, and ~H is the
heuristic vector. The dual linear program for C-SSPs with
such terminal costs is presented in LP 3.

min
x

∑
s∈Ŝ,a∈Â(s)

xs,aC0(s, a) +
∑
s∈Ŝ

xDs d0 +
∑
sg∈Ĝ

in(sg)H0(sg)

s.t. (C1) – (C4),(C7) – (C9), (C11) (LP 3)∑
s∈Ŝ,a∈Â(s)

xs,aCj(s, a) +
∑
s∈Ŝ

xDs dj +
∑
sg∈Ĝ

in(sg)Hk(sg) ≤ ĉk

∀j ∈ {1, . . . , k} (C11)

Our new algorithm, i-dual, is depicted in Algorithm 1.
The key elements that vary from one iteration of the algo-
rithm to the next are: the set Ŝ of states considered so far;
the set F ⊆ Ŝ of fringe states (i.e., the unexpanded states in
Ŝ); the fringe states FR ⊆ F reachable from s0 by following
the policy encoded by x; and the set Ĝ of artificial goals for
the current partial problem. At each iteration, i-dual com-
putes the set N of all the new states reachable from FR by
applying one action (line 7), and updates the set of states,
the fringe, and the artificial goals accordingly (lines 8-10).
A new C-SSP with heuristic terminal costs is set up for this
set of states and artificial goals, and an optimal policy for it
is produced by solving LP 3. This process is repeated until
the set FR of reachable fringe states is empty (line 6). When
this occurs, a closed policy has been found, that is, all of the
flow injected into the system is absorbed only by goals and
dead ends specified in the original problem. At this point,
the search stops and this policy is returned (lines 14-15).

I-dual handles both avoidable and unavoidable dead ends
and, since it always enforces the cost constraints (C11), the
returned policy π (if any) is always feasible regardless of

2A C-SSP with terminal cost can be trivially encoded as a reg-
ular C-SSP by adding extra actions. The use of terminal costs sim-
plifies our notations.

1 I-DUAL(C-SSP 〈S, s0,G,A, P, ~C, ~̂c〉, dead-end penalties ~d,
and vector of heuristics ~H)

2 begin
3 Ŝ← {s0}
4 F← {s0}
5 FR ← {s0}
6 while FR 6= ∅ do
7 N← {s′ 6∈ Ŝ|∃s ∈ FR, a ∈ A(s), P (s′|s, a) > 0}
8 Ŝ← Ŝ ∪ N
9 F← (F \ FR) ∪ (N \ G)

10 Ĝ← F ∪ (G ∩ Ŝ)

11 Â← {a | ∃s ∈ Ŝ \ F, a ∈ A(s)}
12 x ← SOLVE(LP 3 for 〈Ŝ, s0, Ĝ, Â, P, ~C, ~̂c, ~H〉, ~d)
13 FR ← {s ∈ F | in(s) > 0}
14 for (s, a) s.t. xs,a > 0 do
15 π(s, a)← xs,a/out(s)

16 return π

Algorithm 1: i-dual algorithm for solving C-SSPs using
incrementally larger linear programs over the occupation
measure (dual) space and heuristic search over the value
function (primal) space. The functions in(s) and out(s)
are defined by (C2) and (C5), respectively.

the heuristic vector used and its admissibility. Moreover, if
all the heuristics in ~H are admissible, then π is optimal:

Theorem 1. Given a C-SSP C = 〈S, s0,G,A, P, ~C, ~̂c〉 and
a vector of admissible heuristics ~H , the policy π returned by
i-dual is an optimal policy for C.

Proof Sketch. Let Ĉ = 〈Ŝ, s0, Ĝ, Â, P, ~C, ~̂c, ~H〉 be the
last C-SSP with terminal costs solved by line 12 (Algo-
rithm 1). By definition, π is an optimal policy for Ĉ. More-
over, since FR is empty when i-dual terminates, then, by
line 13,

∑
s∈F in(s) = 0. Thus, by line 10,

∑
s∈Ĝ in(s) =∑

sg∈G in(sg), i.e., all goal states reached by following π

from s0 in Ĉ are goals of the original problem C; therefore
π is a closed policy for C. Since the terminal costs of Ĉ
are a lower bound (admissible heuristic) for all expected
costs Cj (j ∈ {0, . . . , k}), then any other policy for C has
expected cost greater or equal than π.

Similarly to primal-space heuristic search algorithms for
SSPs, such as LAO* and LRTDP, i-dual is complete but sub-
optimal when the heuristics H1, . . . ,Hk for the secondary
costs are admissible but the heuristic H0 for the primary
cost is not. When any secondary heuristic is not admissible,
i-dual is incomplete: it might not find a solution even if one
exists because the non-admissible heuristic can incorrectly
indicate that a feasible solution violates the constraints and
i-dual would prune this solution from the search space.

I-dual can be viewed through two different prisms: as
a heuristic search algorithm and as a delayed column and
row generation algorithm. In the former, an Artificial Intelli-
gence point of view, i-dual is analogous to A* where the cost

g(n) to reach an artificial goal (fringe) n from s0 is com-
puted using LP 3. The LP handles the search in the cyclic
space of occupation measures to find a solution that min-
imises the expected value of g(n) + H0(s). As in A*, the
selected fringe states (FR in Algorithm 1) are expanded and
the search continues until a solution is found.

Alternatively, from an Operations Research point of view,
i-dual is a column and row generation algorithm. That is,
at each iteration, new variables xs,a are added (columns)
as well as new flow conservation constraints (rows) for the
newly expanded states, and their corresponding occupation
measures. The heuristics ~H prioritise the candidate columns
and the solution of LP 3 indicates what columns should be
added, namely, xs,a for all s ∈ FR and a ∈ A(s). Columns
are added in batch because, if a is applied in s, then all
states s′ s.t. P (s′|s, a) > 0 need to be considered in order to
obtain a closed policy.

The column and row generation point of view is not only
theoretically relevant, it also increases the performance of
i-dual. The overhead of building the LPs in line 12 (Algo-
rithm 1) is minimised by keeping only one LP in memory
and adding columns and rows to it. More importantly, this
approach can take advantage of “warm starts”, i.e., to solve
the new LP by reusing the solution of the previous one.

4 Empirical Evaluation
In this section we empirically evaluate i-dual and the dual LP
approach which directly solves LP 2 with the additional cost
constraint C10. We use as metric the number of problems
solved and the average time to solve them. Our hypothesis
is that the i-dual approach, namely, incremental generation
of the occupation measure space guided by value function
heuristics, is able to scale up to larger problems than the
dual LP approach.

For these experiments, we use Gurobi as linear solver and
enforce a 30-minutes cpu-time and 4-Gb memory cutoff on
all planners. Our implementation of i-dual follows the col-
umn and row generation approach described in Section 3
and we denote the different parametrisations of i-dual as
“i-dual(X ,Y)”, where X is the heuristic used for the pri-
mary cost C0 and Y is the heuristic used for each of the
secondary costs Cj ; therefore, the heuristic vector ~H used
by i-dual(X ,Y) is [X,Y, Y, . . . , Y]. We consider the follow-
ing domain-independent heuristics: always zero (h0), max-
imal (hmax), additive (hadd), and lm-cut (hlmc) (Helmert and
Domshlak 2009) – see (Teichteil-Königsbuch, Vidal, and In-
fantes 2011) for a description of domain-independent heuris-
tics in the context of SSPs. The heuristics for Cj are ob-
tained by applying them in the all-outcomes determinisation
of the SSP (Jimenez, Coles, and Smith 2006) in which the
cost function is Cj (Section 3).

4.1 Problems
The following three domains were considered in our em-
pirical evaluation. For all problems in these domains,
the dead-end penalty dj equals 1000 for all cost func-
tions Cj , j ∈ {0, . . . , k}.

Search and Rescue. This is an n× n grid vehicle naviga-
tion problem where the goal is to find one survivor, board her
on the vehicle and bring her to a safe location. The primary
objective is to do this as fast as possible, and the constraint
is to keep the expected fuel consumption under a certain
threshold (the vehicle fuel autonomy). The time for moving
from a location to an adjacent one depends on the load of the
vehicle and is therefore higher if a survivor has boarded, and
changes with the speed of the vehicle which can be slow,
normal, or fast. The fuel consumption increases with load
and speed, and some of the more demanding moves (e.g.,
moving fast with survivor boarded) can fail with a small
probability. The location of one survivor at Hamming dis-
tance d ∈ {1, . . . , 4} is known a priori; whereas the pres-
ence or absence of a survivor at each other location can
be known or unknown, and in the latter case, has an initial
probability in the range low (5%), medium (10%) and high
(20%). The presence or absence of a survivor is revealed
by a coin flip when visiting the location, and remains known
thereafter. We used random problem instances with a density
r ∈ {25%, 50%, 75%} of locations with initially unknown
survivor presence.

Elevators. This domain represents a n-storey building
with e elevators in which w persons are known to be wait-
ing for an elevator and h persons are expected to arrive
and request an elevator. The arrival of each “hidden” per-
son follows a geometric distribution with probability of suc-
cess p = 0.75. The origin and destination of all persons are
known a priori, and the maximum expected waiting time and
travel time of each person are constrained; therefore, each
instance of this domain has 2(w + h) cost constraints. The
expected waiting time and travel time for each passenger is
constrained to be less or equal to 1.5n, except for a randomly
chosen hidden person, which is considered a VIP passen-
ger and her expected waiting time and travel time are upper
bounded by 0.75n and n+1, respectively. The primary cost
function is the total number of elevators movements. For all
the elevators problems, we fix the number of floors n to 20.

Exploding Blocks World. This domain is an adaptation of
the exploding blocks world domain of the 2008 International
Probabilistic Planning Competition (IPPC) (Bryce and Buf-
fet 2008). The exploding blocks world is a probabilistic ex-
tension of the deterministic blocks world in which blocks
can explode and destroy other blocks or the table. Once a
block or the table is destroyed, nothing can be placed on
them, and destroyed blocks cannot be moved. Therefore, the
original IPPC domain has unavoidable dead-ends. We mod-
ified the exploding blocks world domain by adding a new
action to fix a destroyed table, allowing blocks to be placed
on it again, with cost 100; the other actions have cost 1.3
Due do the fix-table action, dead-ends are avoidable in our
extension. In the C-SSP version, the primary objective is to
minimise the action costs and the constraint is to keep the ex-
pected number of exploded blocks under a given threshold.

3Additionally, we removed the flaw from the original domain
that allowed a block to be placed on top of itself.

r planner d = 1 d = 2 d = 3 d = 4

n
=

4

0.
25

dual-lp 30 (1.6 ± 0.0) 30 (2.3 ± 0.1) 30 (2.5 ± 0.2) 30 (2.6 ± 0.2)
i-dual(hlmc,hmax) 30 (0.0 ± 0.0) 30 (0.1 ± 0.0) 30 (0.7 ± 0.1) 30 (2.8 ± 0.5)
i-dual(hadd,hadd) 30 (0.0 ± 0.0) 30 (0.1 ± 0.0) 30 (0.4 ± 0.1) 30 (2.1 ± 0.4)

0.
50

dual-lp 30 (598.4 ± 67.7) 30 (540.6 ± 66.3) 30 (546.5 ± 65.4) 30 (622.6 ± 87.8)
i-dual(hlmc,hmax) 30 (0.1 ± 0.0) 30 (0.2 ± 0.0) 30 (8.1 ± 3.6) 30 (220.2 ± 85.5)
i-dual(hadd,hadd) 30 (0.0 ± 0.0) 30 (0.1 ± 0.0) 30 (4.4 ± 1.9) 30 (142.4 ± 51.2)

0.
75

dual-lp 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 30 (0.1 ± 0.0) 30 (0.6 ± 0.1) 30 (126.9 ± 60.8) 7 (2291.6 ± 829.1)
i-dual(hadd,hadd) 30 (0.0 ± 0.0) 30 (0.3 ± 0.0) 30 (78.1 ± 39.0) 7 (1217.7 ± 530.5)

n
=

5

0.
25

dual-lp 30 (131.0 ± 12.4) 30 (109.2 ± 10.1) 30 (121.2 ± 11.0) 30 (128.4 ± 9.2)
i-dual(hlmc,hmax) 30 (0.1 ± 0.0) 30 (0.3 ± 0.0) 30 (1.4 ± 0.4) 30 (30.6 ± 16.9)
i-dual(hadd,hadd) 30 (0.1 ± 0.0) 30 (0.1 ± 0.0) 30 (0.6 ± 0.2) 30 (15.6 ± 7.5)

0.
50

dual-lp 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 30 (0.1 ± 0.0) 30 (0.7 ± 0.1) 30 (29.9 ± 11.5) 16 (1370.0 ± 605.6)
i-dual(hadd,hadd) 30 (0.1 ± 0.0) 30 (0.3 ± 0.1) 30 (13.5 ± 5.2) 25 (1360.7 ± 437.9)

0.
75

dual-lp 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 30 (0.1 ± 0.0) 30 (1.0 ± 0.2) 30 (444.2 ± 225.0) 6 (2106.9 ± 1112.0)
i-dual(hadd,hadd) 30 (0.1 ± 0.0) 30 (0.4 ± 0.1) 30 (200.8 ± 99.4) 7 (1517.3 ± 785.9)

Table 1: Results of the search and rescue experiment presented as coverage and average cpu-time (with 95% confidence interval)
in seconds. The problems parameters are: grid size (n), density of locations with potential survivors (r), and distance from the
robot to known survivor (d).

For each problem, this threshold is the smallest value with
only two decimal places that yields a feasible problem. The
problem instances are those of the IPPC augmented with the
constraint, and the instances with more than 8 blocks have
their blocks b9, b10, etc removed.

4.2 Results
The results for 30 randomly generated problems for dif-
ferent parametrisations of the search and rescue and eleva-
tors domain are shown in Tables 1 and 2, respectively. Ta-
ble 3 presents the results for the augmented IPPC explod-
ing blocks world instances over 30 runs with different ran-
dom seeds. For each problem, the results are presented as
“X(Y ± Z)”, where X is the number of problems solved
by the planner (coverage) and Y ± Z is the average (and
its 95% confidence interval) cpu-time in seconds over the X
solved problems. If a problem of the search and rescue or
elevators domain is proved to be infeasible (impossible to
meet the constraints), it is replaced by a new random prob-
lem. Table 4 shows the average number of states explored
and percentage of the total cpu-time spent encoding LP 3,
computing the vector of heuristics ~H , and solving LP 3 for
different problems of each domain.

For the search and rescue problems (Table 1), the dual LP
fails to scale up and is unable to solve even trivial prob-
lems (e.g., distance to known survivor d = 1) for higher
density of locations with potential survivor presence r and
larger grid size n. For trivial problems (d ∈ {1, 2}), i-dual
finds the optimal solution in all its parametrisations in less
than a second since Sπ

∗
encompasses only a few hundred

states. As shown in Table 4, i-dual is able to explore at least
one order of magnitude less states than the dual LP, allowing
it to scale up to larger problems. The results also show that
the scalability of i-dual can be further improved by giving up
optimality and using non-admissible heuristics (e.g., hadd), a

trade-off not present in the dual LP approach. As expected,
hadd also speeds up i-dual in part because hadd allows prun-
ing infeasible solutions earlier; however, it might also prune
feasible solutions due to its non-admissibility.

For the elevator problems (Table 2), the dual LP domi-
nates all i-dual parametrisations when there is only one ele-
vator (e = 1). This is expected since all the random prob-
lems with e = 1 have less than 40,000 reachable states;
therefore, it is feasible to encode the complete dual LP. In
the instances with two elevators, the dual LP fails to scale
up to the larger problems and the configuration e = 2, h =
2, w = 2 (0.5 million reachable states on average) contains
the largest problems in which dual LP obtained non-zero
coverage. The admissible parametrisations of i-dual were
also dominated by the dual LP when e = 2. The reason for
this under performance of i-dual using admissible heuris-
tics, as illustrated in Table 4, are: (i) the high computational
cost of hlmc, which consumes about 41% of the cpu-time
for the problems in e = 2, h = 1, w = 2; and (ii) the
weak guidance of hmax for the primary cost. For instance, in
e = 2, h = 1, w = 2, hmax consumes only 2.3% of the cpu-
time of i-dual(hmax,hmax) but this parametrisation of i-dual
reaches the 30 minutes cpu-time limit in 4 instances that
i-dual with hlmc successfully finds the optimal solution. In
contrast, hadd was able to offer good guidance and allowed
i-dual to solve problems with up to three elevators. For in-
stance, the configuration e = 2, h = 2, w = 4 contains the
largest instances in which we could explicitly compute the
set of reachable states, and i-dual(hadd,h0) explored on aver-
age only 5000 states out of the average 0.8 million reachable
states in those instances.

For the exploding blocks world (Table 3), the dual LP is
unable to solve problems with more than 5 blocks while
i-dual is able to solve problems with up to 8 blocks. Fur-
thermore, i-dual is two orders of magnitude faster than the

planner w = 1 w = 2 w = 3 w = 4
e

=
1

h
=

1
dual-lp 30 (0.1 ± 0.0) 30 (0.2 ± 0.0) 30 (0.8 ± 0.1) 30 (3.5 ± 0.5)

i-dual(hmax,hmax) 30 (0.2 ± 0.0) 30 (1.1 ± 0.2) 30 (11.3 ± 3.2) 30 (186.7 ± 76.0)
i-dual(hlmc,hmax) 30 (0.9 ± 0.1) 30 (6.1 ± 0.9) 30 (87.1 ± 20.0) 17 (1119.6 ± 202.6)
i-dual(hlmc,h0) 30 (0.9 ± 0.2) 30 (6.6 ± 1.0) 30 (101.9 ± 23.7) 14 (1110.8 ± 207.5)
i-dual(hadd,h0) 30 (0.1 ± 0.0) 30 (0.2 ± 0.1) 30 (3.3 ± 2.3) 30 (16.8 ± 4.1)

i-dual(hadd,hadd) 30 (0.1 ± 0.0) 30 (0.3 ± 0.1) 30 (2.7 ± 0.9) 30 (19.5 ± 4.8)

h
=

2

dual-lp 30 (0.4 ± 0.0) 30 (1.7 ± 0.4) 30 (9.8 ± 3.2) 30 (137.9 ± 42.3)
i-dual(hmax,hmax) 30 (1.6 ± 0.3) 30 (11.2 ± 2.0) 30 (185.3 ± 67.6) 11 (736.2 ± 217.9)
i-dual(hlmc,hmax) 30 (9.3 ± 1.4) 30 (91.6 ± 14.6) 19 (1117.2 ± 218.1) 0 (–)
i-dual(hlmc,h0) 30 (10.0 ± 1.4) 30 (106.5 ± 17.4) 15 (1115.5 ± 214.2) 0 (–)
i-dual(hadd,h0) 30 (0.4 ± 0.2) 30 (2.6 ± 1.2) 30 (57.2 ± 42.4) 30 (217.0 ± 89.2)

i-dual(hadd,hadd) 30 (0.6 ± 0.2) 30 (3.0 ± 0.8) 30 (27.6 ± 8.0) 30 (254.8 ± 79.9)

e
=

2

h
=

1

dual-lp 30 (38.8 ± 7.3) 30 (375.0 ± 117.5) 9 (968.3 ± 356.4) 0 (–)
i-dual(hmax,hmax) 23 (607.1 ± 229.7) 9 (790.7 ± 355.4) 2 (525.8 ± 283.8) 0 (–)
i-dual(hlmc,hmax) 25 (511.7 ± 180.3) 13 (681.5 ± 246.8) 2 (918.7 ± 46.2) 0 (–)
i-dual(hlmc,h0) 26 (436.7 ± 159.7) 16 (753.7 ± 260.9) 2 (1166.0 ± 25.2) 0 (–)
i-dual(hadd,h0) 30 (0.5 ± 0.3) 30 (18.7 ± 28.3) 30 (66.9 ± 73.5) 30 (369.3 ± 220.3)

i-dual(hadd,hadd) 30 (0.5 ± 0.2) 30 (8.6 ± 8.9) 30 (35.8 ± 32.7) 30 (272.4 ± 110.5)

h
=

2

dual-lp 24 (770.1 ± 150.5) 2 (1727.2 ± 55.0) 0 (–) 0 (–)
i-dual(hmax,hmax) 3 (662.0 ± 121.0) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 8 (989.3 ± 329.5) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,h0) 11 (1089.5 ± 294.1) 0 (–) 0 (–) 0 (–)
i-dual(hadd,h0) 30 (3.5 ± 1.8) 30 (80.5 ± 51.0) 28 (342.3 ± 156.7) 9 (816.4 ± 335.3)

i-dual(hadd,hadd) 30 (4.6 ± 2.7) 30 (68.3 ± 45.9) 28 (258.7 ± 144.9) 11 (960.3 ± 296.4)

e
=

3

h
=

1

dual-lp 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hmax,hmax) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,h0) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hadd,h0) 30 (36.2 ± 37.6) 25 (84.1 ± 68.2) 15 (89.9 ± 63.3) 9 (294.8 ± 303.3)

i-dual(hadd,hadd) 30 (57.8 ± 101.5) 27 (129.9 ± 115.6) 17 (386.9 ± 276.3) 9 (289.2 ± 214.9)

h
=

2

dual-lp 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hmax,hmax) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,hmax) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hlmc,h0) 0 (–) 0 (–) 0 (–) 0 (–)
i-dual(hadd,h0) 26 (128.0 ± 124.9) 14 (193.6 ± 162.4) 10 (268.8 ± 128.4) 2 (545.8 ± 160.3)

i-dual(hadd,hadd) 29 (223.8 ± 171.5) 15 (442.2 ± 272.8) 8 (386.2 ± 315.0) 1 (1478.0 ± n/a)

Table 2: Results of the elevator experiment presented as coverage and average cpu-time (with 95% confidence interval) in
seconds. The problems parameters are: number of elevators (e), number of calls to appear (h), and number of known calls (w).

problem # of blocks threshold dual-lp i-dual(hlmc,hmax) i-dual(hadd,hadd)
p01 5 0.10 30 (849.2 ± 108.47) 30 (9.7 ± 0.33) 30 (9.0 ± 0.29)
p02 5 0.07 14 (1603.1 ± 85.36) 30 (865.1 ± 38.86) 30 (665.3 ± 16.95)
p03 6 0.91 0 (–) 30 (14.4 ± 0.57) 30 (7.9 ± 0.25)
p04 6 0.16 0 (–) 30 (1466.1 ± 34.50) 30 (1153.1 ± 48.34)
p05 7 0.01 0 (–) 30 (2.3 ± 0.08) 30 (0.8 ± 0.03)
p06 8 0.30 0 (–) 0 (–) 0 (–)
p07 (r) 8 0.50 0 (–) 30 (1.8 ± 0.09) 30 (0.2 ± 0.01)
p08 (r) 8 0.63 0 (–) 30 (105.4 ± 6.15) 30 (16.3 ± 2.98)
p09 (r) 8 0.40 0 (–) 30 (301.2 ± 12.68) 30 (166.7 ± 6.53)

Table 3: Results of the exploding blocks world experiment presented as coverage and average cpu-time (with 95% confidence
interval) in seconds. Problems marked with (r) were reduced by keeping only the first 8 blocks. Threshold is the constrain value
over maximum expected number of exploded blocks allowed per problem.

Problem Planner
Avg. # of Average % time computing
vis. states Enc. ~H x

SA
R

(n
,
r,
d

) 4, 0.5, 4

dual-lp 102,928 7.2% – 92.4%
hlmc,hmax 4,129 1.6% 1.3% 96.3%
hadd,hadd 3,693 1.9% 0.4% 96.7%

5, 0.25, 4

dual-lp 53,075 21.3% – 77.9%
hlmc,hmax 1,459 3.1% 7.4% 88.2%
hadd,hadd 1,263 3.7% 2.5% 92.0%

5, 0.75, 3
hlmc,hmax 6,015 1.4% 1.8% 95.8%
hadd,hadd 4,604 1.9% 0.7% 96.3%

E
le

va
to

rs
(e
,
h
,
w

)

1, 2, 2

dual-lp 5,317 43.1% – 52.5%
hmax,hmax 1,478 5.4% 47.4% 43.9%
hlmc,hmax 1,255 0.4% 95.3% 3.7%
hlmc,h0 1,258 0.4% 95.9% 3.1%
hadd,h0 529 6.5% 32.5% 55.2%
hadd,hadd 486 5.1% 60.2% 30.1%

2, 1, 2

dual-lp 117,819 6.2% – 93.5%
hmax,hmax 10,641 2.9% 2.3% 93.4%
hlmc,hmax 9,240 2.3% 38.9% 57.5%
hlmc,h0 10,748 3.7% 41.6% 53.0%
hadd,h0 1,034 5.4% 4.1% 88.2%
hadd,hadd 957 8.3% 15.4% 72.4%

3, 2, 2
hadd,h0 4,347 3.6% 14.5% 80.7%
hadd,hadd 4,929 2.5% 14.7% 81.7%

E
xp

lo
di

ng
B

W

p01
dual-lp 342,650 2.5% – 97.2%
hlmc,hmax 3,466 10.5% 4.0% 83.8%
hadd,hadd 3,388 10.8% 1.0% 86.4%

p02
dual-lp 359,343 1.4% – 98.4%
hlmc,hmax 19,730 1.7% 0.2% 97.5%
hadd,hadd 17,302 1.9% 0.0% 97.5%

p04
hlmc,hmax 30,689 1.7% 0.3% 97.4%
hadd,hadd 28,576 1.8% 0.1% 97.6%

Table 4: Average number of states explored and percentage
of the total cpu-time spent encoding LP 3, computing the
vector of heuristics ~H , and solving LP 3 for selected prob-
lems in Tables 1 to 3. hX , hY represents i-dual(hX , hY).
The dimension of ~H for the search and rescue (SAR), el-
evators, and exploding blocks world problems is 2, 2, and
1 + 2(w + h), respectively.

dual LP for the problems that the latter can solve (p01 and
p02). As shown in Table 4, i-dual obtains this performance
by using the heuristics to prune a large portion of the reach-
able state space. By extending the cpu-time cutoff to 2 hours,
i-dual using hadd was able to solve p06 while i-dual using
hlmc was still unable to find the optimal solution.

5 Conclusion, Related and Future Work
The i-dual algorithm combines heuristic search and the
dual LP formulation of SSPs to optimally solve constrained
SSPs resulting, to the best of our knowledge, in the first
heuristic search algorithm for constrained SSPs (C-SSPs).
I-dual is able to efficiently encode and enforce secondary
cost constraints, and to focus the search on regions that are
relevant to the optimal stochastic policy, using (admissible)
value function heuristics. This results in up to two orders
of magnitude improvements in run-time and memory when
compared to C-SSP algorithms based on linear program-
ming alone. Furthermore, i-dual is able to trade-off optimal-

ity with scalability and quickly compute policies that still
respect the constraints, an option not offered by the primal
linear programming approach.

I-dual handles dead ends by assigning a penalty for reach-
ing such states; nonetheless, i-dual can be easily adapted
to use other approaches for handling dead ends in a sim-
ilar spirit to S3P (Teichteil-Königsbuch 2012b) and iS-
SPUDE (Mausam and Kolobov 2012). This adaptation con-
sists in solving two C-SSPs: (i) a C-SSP with the probability
to reach the goal as primary cost and the constraints on k
secondary costs; and (ii) a C-SSP with the desired primary
cost as objective function and k + 1 constrained secondary
costs, namely, the original k secondary costs and the proba-
bility of reaching the goal upper bounded by the result of (i).
Note that no dead-end penalty is necessary for either C-SSPs
and that the C-SSP in (i) is the constrained version of the
max-prob criterion for SSPs (Mausam and Kolobov 2012).

In terms of related work, Altman (1999) was one of
the first to research linear and dynamic programming al-
gorithms for a range of constrained Markov Decision Pro-
cesses. Dolgov and Durfee (2005) extend the work of Alt-
man to the generation of deterministic policies for con-
strained MDPs, including MDPs with different discount fac-
tors for the various secondary costs, for which the gen-
eration of optimal stochastic policies is an open problem.
By replacing the LP with a Mixed-Integer Linear Program,
i-dual could also be used to generate optimal determinis-
tic policies for C-SSPs, albeit more efficiently than (Dolgov
and Durfee 2005). This is part of our future work agenda.
Even though stochastic policies dominate deterministic ones
for C-SSPs and computing the latter is known to be NP-
complete (Feinberg 2000), deterministic policies can be use-
ful in domains where policies need to be understandable and
trusted by humans (Khan, Poupart, and Black 2009), or in
multi-agent domains where randomisation can lead to mis-
coordination (Paruchuri et al. 2004).

Poupart and co-authors (2015) introduce an approximate
linear programming algorithm for constrained partially ob-
servable MDPs that uses some of the ingredients of i-dual,
notably the search in occupation measures space by using
LPs. Their goal is to manage a potentially infinite belief state
space using iterative refinement of finite set of beliefs. When
applied to MDPs, their algorithm is equivalent to plain lin-
ear programming. I-dual differs from this approach by per-
forming incremental envelope expansion instead of iterative
refinement; furthermore, their algorithm does not make use
of heuristics to guide the search. It would be interesting to
combine the main advantages of their algorithm and i-dual
to deal with POMDPs.

Santana, Thiébaux, Williams (2016) propose RAO*, an
extension of AO* for finite-horizon POMDPs with chance
constraints, i.e., bounds on the probability of a constraint
being violated. In the particular case where their violation
cause policy termination, chance constraints fall within the
range of constraints over expectations handled by i-dual.
Similarly to i-dual, RAO* uses heuristics on the chance con-
straints for early detection of constraints violations. Besides
the difference in the constraints handled and the focus on
partial observability, RAO* differs from i-dual by perform-

ing heuristic search in the primal space and considering only
deterministic policies.

Trevizan and Veloso (2012) introduce an algorithm for
unconstrained SSPs that shares with i-dual the usage of sub-
problems with artificial goals. Similar to i-dual, their algo-
rithm uses heuristic values as the terminal costs of the ar-
tificial goals to guide the search towards the goals of the
original problem. Their algorithm differs from i-dual by per-
forming search in the primal space and by using the sub-
problems in an online planning and execution fashion, while
still providing execution guarantees. Our future work agenda
includes combining both algorithms to obtain a version of
i-dual for planning and execution that could offer guarantees
regarding constraint violation during execution.

Teichteil, Sprauel, and Kolobov (2012a, 2014) consider
the generation of optimal stochastic policies for discounted
MDPs with path constraints expressed in probabilistic com-
putational tree logic (pCTL). They describe iterative linear
and dynamic programming algorithms that improve on al-
gorithms used in the probabilistic model-checking commu-
nity (Kwiatkowska and Parker 2013, Baier et al. 2004). Hav-
ing an efficient algorithm for C-SSPs which could be used or
extended to deal with path constraints in probabilistic tem-
poral logic is one of the motivation that lead to i-dual, and
this extension is an item on our future work agenda.

Acknowledgements
This research was partially funded by AFOSR grant
FA2386-15-1-4015 and NICTA. NICTA is funded by the
Australian Government through the Department of Commu-
nications and the Australian Research Council through the
ICT Centre of Excellence Program. We would also like to
thank Patrik Haslum for fruitful discussions which helped to
improve this paper, and the anonymous reviewers for their
constructive and helpful comments.

References
Altman, E. 1999. Constrained Markov Decision Processes, vol-
ume 7. CRC Press.
Baier, C.; Größer, M.; Leucker, M.; Bollig, B.; and Ciesinski, F.
2004. Controller synthesis for probabilistic systems. In Proc. Int.
Conf. on Theoretical Computer Science (TCS).
Bertsekas, D., and Tsitsiklis, J. 1991. An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research
16(3):580–595.
Bertsekas, D., and Tsitsiklis, J. N. 1996. Neuro-Dynamic Program-
ming. Athena Scientific.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: improving
the convergence of real-time dynamic programming. In Proc. Int.
Conf. on Automated Planning and Scheduling.
Bryce, D., and Buffet, O. 2008. 6th International Planning Compe-
tition: Uncertainty Track. In 3rd Int. Probabilistic Planning Com-
petition (IPPC-ICAPS’08).
D’Epenoux, F. 1963. A probabilistic production and inventory
problem. Management Science 10:98–108.
Dolgov, D. A., and Durfee, E. H. 2005. Stationary determinis-
tic policies for constrained mdps with multiple rewards, costs, and
discount factors. In Proc. Int. Joint Conf. on Artificial Intelligence.

Feinberg, E., and Shwarz, A. 1995. Constrained discounted dy-
namic programming. Math. of Operations Research 21:922–945.
Feinberg, E. A. 2000. Constrained discounted markov decision
processes and hamiltonian cycles. Math. Oper. Res. 25(1):130–
140.
Hansen, E. A., and Zilberstein, S. 2001. LAO: A heuristic search
algorithm that finds solutions with loops. Artificial Intelligence
129(1):35–62.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. Int. Conf.
on Automated Planning and Scheduling.
Howard, R. 1960. Dynamic Programming and Markov Processes.
MIT Press.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in probabilis-
tic domains using a deterministic numeric planner. In Proc. Work-
shop of the UK Planning and Scheduling Special Interest Group.
Kallenberg, L. 1983. Linear Programming and Finite Markovian
Control Problems. Math. Centrum, Amsterdam.
Khan, O. Z.; Poupart, P.; and Black, J. P. 2009. Minimal sufficient
explanations for factored markov decision processes. In Proc. Int.
Conf. on Automated Planning and Scheduling.
Kwiatkowska, M. Z., and Parker, D. 2013. Automated verification
and strategy synthesis for probabilistic systems. In Int. Symp. on
Automated Technology for Verification and Analysis.
Mausam, and Kolobov, A. 2012. Planning with Markov Decision
Processes. Morgan & Claypool.
Paruchuri, P.; Tambe, M.; Ordóñez, F.; and Kraus, S. 2004. To-
wards a formalization of teamwork with resource constraints. In
Proc. Int.l Joint Conf. Autonomous Agents and Multiagent Systems.
Poupart, P.; Malhotra, A.; Pei, P.; Kim, K.-E.; Goh, B.; and Bowl-
ing, M. 2015. Approximate linear programming for constrained
partially observable markov decision processes. In Proc. AAAI
Conf. on Artificial Intelligence.
Puterman, M. 1994. Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc.
Santana, P.; Thiébaux, S.; and Williams, B. 2016. RAO*: an algo-
rithm for chance constrained POMDPs. In Proc. AAAI Conference
on Artificial Intelligence.
Sprauel, J.; Kolobov, A.; and Teichteil-Königsbuch, F. 2014. Sat-
urated path-constrained MDP: planning under uncertainty and de-
terministic model-checking constraints. In Proc. AAAI Conf. on
Artificial Intelligence.
Teichteil-Königsbuch, F.; Vidal, V.; and Infantes, G. 2011. Extend-
ing Classical Planning Heuristics to Probabilistic Planning with
Dead-Ends. In Proc. AAAI Conf. on Artificial Intelligence.
Teichteil-Königsbuch, F. 2012a. Path-Constrained Markov De-
cision Processes: bridging the gap between probabilistic model-
checking and decision-theoretic planning. In Proc. European Conf.
on Artificial Intelligence.
Teichteil-Königsbuch, F. 2012b. Stochastic safest and shortest path
problems. In Proc. AAAI Conf. on Artificial Intelligence.
Trevizan, F. W., and Veloso, M. M. 2012. Short-sighted stochastic
shortest path problems. In Proc. Int. Conf. on Automated Planning
and Scheduling.
Undurti, A., and How, J. P. 2010. An online algorithm for con-
strained pomdps. In Proc. IEEE Int. Conf. on Robotics and Au-
tomation.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international planning
competition. J. Artif. Intell. Res. (JAIR) 24:851–887.

