
Optimal Planning with Global Numerical State Constraints

Franc Ivankovic, Patrik Haslum, Sylvie Thiébaux, Vikas Shivashankar and Dana S. Nau
Optimisation Research Group, NICTA Dept. of Comp. Sci., and Inst. for Sys. Rsrch.

Research School of Computer Science, ANU University of Maryland at College Park
first.last@anu.edu.au {svikas,nau}@cs.umd.edu

Abstract

Automating the operations of infrastructure networks such as
energy grids and oil pipelines requires a range of planning and
optimisation technologies. However, current planners face
significant challenges in responding to this need. Notably,
they are unable to model and reason about the global numer-
ical state constraints necessary to capture flows and similar
physical phenomena occurring in these networks. A single
discrete control action can affect the flow throughout the net-
work in a way that may depend on the entire network topol-
ogy. Determining whether preconditions, goals and invariant
conditions are satisfied requires solving a system of numer-
ical constraints after each action application. This paper ex-
tends domain-independent optimal planning to this kind of
reasoning. We present extensions of the formalism, relaxed
plans, and heuristics, as well as new search variants and ex-
perimental results on two problem domains.

Motivation
New sensor technologies and data analytics provide a wealth
of information and prediction about current and future states
of technical systems, and about the environment in which
they operate. This is true, for instance, of infrastructure net-
works such as power grids, transport systems and water net-
works. Smart use of this information, using automated plan-
ning, to optimise the systems’ resource usage, improve their
operations and increase their reliability, has the potential to
generate significant economic and environmental benefits.

However, as already observed by several researchers
(Aylett et al. 1998; Thiébaux and Cordier 2001; Piacentini et
al. 2013), existing planners miss a key capability necessary
to handle such networks and other interconnected physical
systems: they are unable to process the numerical constraints
governing network flows. A single (discrete) control action
can, as a side effect, change the flow in all system compo-
nents, and do so in a way that depends on the state of most
components. For instance, closing a line switch in a power
system can affect power flows in all the network lines, as
well as the voltage and phase angle of all network buses, in
a way that depends on the state of all other switches.

The global scope of these constraints make them imprac-
tical to formalise and handle using existing planning frame-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

works. Planning requires solving a set of (possibly nonlin-
ear) numerical constraints after each action application, to
determine the values of flows and flow-dependent numerical
values across the network. These values are used in action
preconditions, goal requirements, and invariant conditions
that are necessary to ensure that the system operates reliably.
For instance, in power systems, we need to solve a complex
system of equations linking real and reactive power flows to
bus voltages and phase angles, to determine whether closing
a switch would lead any line capacities to be exceeded.

This paper deals with domain-independent optimal plan-
ning with such global numerical state constraints. We extend
the classical planning formalism, the notion of relaxed plan,
and admissible planning heuristics to incorporate these con-
straints. To mitigate the extra complexity of successor state
computation, we introduce a new optimal search strategy us-
ing preferred actions. In certain circumstances, which we
characterise, it can avoid generating many successor states
and substantially reduce computation time. Experimental
evaluation on two new planning domains with linear con-
straints suggests that global numerical constraints still raise
substantial challenges for planning research.

Existing Work
Early work on planning—including STRIPS, planners
based on theorem-proving, and many subsequent action
formalisms—used state constraints to concisely represent
actions, allowing a rich set of derived predicates and func-
tions in preconditions and goals and helping to alleviate the
frame and ramification problems (e.g., Green 1969; Fikes
and Nilsson 1971; Liftschitz 1987; Ginsberg and Smith
1988; Winslett 1988 Thiébaux and Herzberg 1992; Sande-
wall 1994; Levesque et al. 1997).

However, state constraints have not found their way into
efficient implementations of modern planners. Much recent
research in planning has focused on improving the algorith-
mic aspects of plan generation for an impoverished version
of STRIPS that does not support state constraints. The uni-
versally quantified effects found in ADL variants do not
really help, since state constraints do not update variables
based on the predecessor state, but are equations relating
the values of variables in the same state. In principle these
constraints could be compiled away at the cost of much
more complex preconditions and goals or longer plans. But

this can lead to (exponentially) large conditions to repre-
sent, and severe blowup in domain description size or plan
length (Thiébaux, Hoffmann, and Nebel 2005). In the Inter-
national Planning Competition (IPC) series, the Power Sup-
ply Restoration (PSR) domain is an example where such
blowup occurs (Hoffmann et al. 2006).

PDDL2.2’s derived predicates and axioms (Thiébaux,
Hoffmann, and Nebel 2005; Hoffmann and Edelkamp 2005)
enable the compact encoding of a larger class of boolean
constraints, suitable for capturing transitive closure and thus
the reachability aspects of network flows. However, only a
handful of domain-independent planners support them, and
with few exceptions (e.g., Gerevini et al. 2005; Helmert
2006) do not include substantial improvements to domain-
independent heuristics to deal with complications arising
from the presence of axioms. Moreover, we know of no re-
search into optimal planning with derived predicates.

Finally and despite the importance of application domains
that require them, numerical state constraints have been ne-
glected by the planning community. No numerical counter-
part to derived predicates has been developed to represent
constraints linking numerical and boolean variables. Effec-
tive domain-independent heuristics for domains with numer-
ical variants of derived predicates are an open question. Ap-
proaches to planning for hybrid dynamical systems, such as
domain-predictive control (Löhr et al. 2012), are well suited
to model the association of a small number of discrete modes
with (dynamical) equations, but not to modeling network
flows, as the number of modes required is equal to the num-
ber of network configurations, which is prohibitively large.

Nevertheless, several papers describe applications of
planning in physically interconnected domains. For exam-
ple, Aylett et. al (1998) consider managing a chemical plant,
while Piacentini et. al (2013) address balancing power in
an electrical network, both using planning systems. To rea-
son about network flows, both use an architecture in which
the planner interacts with a special-purpose flow solver. In
both cases, the planner does not plan for discrete topological
changes that affect flow Instead, in the chemical plant case,
discrete valve operations are also outsourced to the solver,
and the planner handles other aspects of the plant manage-
ment problem; in the case of power balancing, the problem
does not include switching operations.

As another example, Thiébaux et. al (2013) present a
mixed-integer programming (MIP) model including numer-
ical power flow equations to generate power supply restora-
tion plans. MIP is well-suited in this case, because there are
good short plans with known lengths; but it is poorly suited
for generating high quality plans over long or indeterminate
horizons. Our work is a step towards making planning an
alternative to MIP in such circumstances.

Planning Formalism
We now define the extended planning formalism. The next
section illustrates these definitions with concrete examples.

In classical planning representations such as propositional
STRIPS or SAS+, states are assignments to a finite set of
variables, each of which has a finite domain of values. Ac-
tions’ preconditions (and the problem goal) are logical for-

mulas over these variables, and each action’s effect is to as-
sign new values to some subset of variables. Usually, pre-
and goal conditions are restricted to be conjunctions of ele-
mentary formulas, which are variable–value equalities.

Our planning formalism extends the classical one with an
additional set of state variables and with state constraints.
To avoid ambiguity, we call the state variables of the clas-
sical part of the model the primary variables, and the others
the secondary variables. Secondary variables do not have to
have finite domains. (In our implemented planner, they are
reals.) The two kinds of variables interact only via state con-
straints, which take the form of implications, ϕ→ γ, where
ϕ is a logical expression over the primary variables, and γ a
constraint on the secondary variables. We call these switched
constraints, and when the triggering condition ϕ is true we
say the constraint is active.

State constraints may appear appear in action precondi-
tions, in the goal, and in a designated set Cinv of invariant
constraints. Precondition and goal constraints must be satis-
fied when the action is applied and the goal is achieved, re-
spectively, while the invariant constraints must be satisfied
in all states visited by the plan. Invariant constraints typi-
cally serve two purposes: they define (sometimes uniquely,
sometimes not) the values of secondary variables, and they
impose constraints on these variables as required by the do-
main. For example, in power systems, they include both the
equations that determine the power flows in each state, and
operational constraints such as staying within line and gen-
erator capacity limits. In meshed networks, there can be mul-
tiple power flow solutions.

Secondary variables are not directly assigned by action
effects, nor set in the initial state. Instead, the planner is free
to choose in each state any assignment to them that satisfies
the constraints active in that state. The condition for action
applicability and goal achievement (Definition 2(ii)) ensures
that such an assignment for each state exists, without forcing
the planner to commit to one in particular until the action to
be taken has been chosen. This treatment of the secondary
variables is also different from traditional metric planning,
in which numeric variables are locally updated by action ef-
fects like other variables, but which has no mechanism for
compactly expressing global state constraints. Hence, these
extensions to classical planning are orthogonal.

Definition 1. A state is an assignment s of values to all vari-
ables in a set V of primary state variables. We write s(v) for
the value of v in s, and s(ϕ) for the value of a formulaϕ over
the primary variables. If C is a set of switched constraints,
then the set of active constraints (from C) in s is

active(C, s) = {γ | ϕ→ γ ∈ C, s(ϕ) = true}.

A state s is valid iff active(Cinv, s) is satisfiable.

Note that active(Cinv, s) is a set of (non-switched) con-
straints over the secondary variables only. The solver that
checks satisfiability of these does not need to deal with
switched constraints, or indeed any aspect of the primary
variables. For example, if the constraints are linear inequali-
ties over the reals, this test can be carried out with a standard
LP-solver. (This is what our implemented planner uses.)

Definition 2. A partitioned condition is a pair (cP , cS),
where cP is a set of elementary formulas (variable–value
equalities) over the primary variables and cS a set of
switched constraints. (cP , cS) holds in state s iff (i) s(cP) =
true and (ii) active(cS ∪ Cinv, s) is satisfiable.

Action preconditions and the goal are partitioned condi-
tions. As with the primary and secondary state variables, we
call the two parts of these partitioned conditions the primary
and secondary precondition and goal, respectively.

As usual, an action a is applicable in a state s iff its pre-
condition pre(a) = (preP (a),preS(a)) holds in s. We say
that a is allowed in s if a is applicable and applying it leads
to a valid state. Although we restrict primary conditions to
be conjunctions of elementary equalities, we can encode
more complex conditions on primary variables through con-
straints. For example, if p1, . . . , pk are propositional vari-
ables, andCinv includes the constraints (pi = true)→ (vi =
1) and (pi = false) → (vi = 0) for 1 ≤ i ≤ k, then
preS(a) = {true→ (

∑k
i=1 vi) = 1} enforces the precondi-

tion that exactly one of p1, . . . , pk is true.
Action effects are purely classical, and (directly) affect

only the primary variables. Action a’s effects, eff(a), is
a set of variable-value assignments, where each primary
variable occurs at most once. Applying eff(a) to a state s
leads to a state s′ where each primary variable v such that
(v, x) ∈ eff(a) has the (unique) value x assigned by a, and
any variable not appearing in eff(a) keeps its value from s.

Definition 3. A planning problem consists of:

• A set VP of primary variables.
• A set VS of secondary variables.
• A set A of actions, each action a defined by:
− a partitioned pre(a) = (preP (a),preS(a)), and
− an effect eff(a), which is a set of primary variable-

value assignments.
• A set Cinv of invariant switched constraints.
• An initial assignment s0 of values to all variables in VP .
• A partitioned goal condition G = (GP , GS).

An action sequence π = 〈a1, . . . , an〉 induces a state se-
quence 〈s0, s1, . . . , sn〉, where si is the result of applying
eff(ai) to si−1. π is a plan iff each state si is valid, each
action ai is applicable in si−1, and sn satisfies the goal.

π’s cost is the sum of the costs of its actions. The optimal
planning problem is to generate plans with guaranteed min-
imum cost. In the simple case, actions costs are constants.
Later in the paper we also consider the case when the cost
of an action is a function of the state in which it is applied.

Domain Examples
To illustrate these definitions, we examine the two domains
we use in our experiments. In the following, constants are
distinguished from variables by an overline bar (c̄ vs v).

Hydraulic Blocks World
For our first domain, whose interest is mostly didactical,
consider a Blocks World with a fixed number m of tow-
ers, where the n blocks have different weights. Each tower

Fluid reservoir

d3

Cylinder 3

a3
_

l3
_

5
_

d2

Cylinder 2

a2
_

l2
d1

Cylinder 1

a1
_

l1
_

6
2
3

4
1

Figure 1: Hydraulic Blocks World

sits on a piston inside a vertical cylinder sticking up from a
sealed reservoir of hydraulic fluid (Figure 1). The problem
is to reach a goal configuration of blocks without letting any
piston go above the top or below the bottom of its cylinder.

The primary variables are booleans representing what
cylinder a block is in and what object it’s on. This can be
achieved using the usual predicates on, handempty and
clear, and additional propositions inik stating that block i
is in cylinder k. Actions are the usual pickup/putdown
unstack/stack, augmented to indicate what cylinder the
block is in, e.g., unstack(i, j, k) takes block i off block j
in cylinder k. There are no secondary preconditions, but a
variant with such preconditions could for instance prevent
the robot arm from reaching too far into a cylinder.

The key secondary variable is the height dk of fluid in
each cylinder k, and the main safety constraint is that the pis-
ton in each cylinder k does not go any higher than the height
l̄k of the cylinder nor any lower than the bottom cylinder:

0 ≤ dk ≤ l̄k k ∈ 1 . . .m

The fluid heights depend on the total weight pk of the tower
in each cylinder k. To compute pk, we introduce secondary
variables pi,k, i = 0, . . . , n, k = 1, . . . ,m, representing the
sum of the weights w̄j of all blocks in the range j ∈ 1, . . . , i
that are in cylinder k. Each pi,k can be computed iteratively
from pi−1,k using two switched constraints linking from the
primary variable inik, and an unswitched base case:

p0,k = 0
inik = false → pi,k = pi−1,k i ≥ 1
inik = true → pi,k = pi−1,k + w̄i i ≥ 1

The total weight of the blocks in cylinder k is pk = pn,k.
Now dk can be determined via the following system of equa-
tions, which states that (a) the total amount of fluid v̄ in the
cylinders never changes, (b) the downward force fk at the
bottom of cylinder k equals the weight pk of the tower plus
the weight of the fluid in the cylinder (the fluid density ρ̄
times the fluid’s volume, where āk is the cylinder’s cross-
sectional area), and (c) the pressure (force per unit area) at
the bottom of a cylinder is the same for each cylinder:∑m

k=1 ākdk = v̄ k = 1, . . . ,m (a)
fk = pk + ρ̄ākdk k = 1, . . . ,m (b)
fk/āk = fk+1/āk+1 k = 1, . . . ,m− 1 (c)

Power Supply Restoration
Our second domain exemplifies the kind of useful problem
our approach enables planning to address. The power supply
restoration problem we consider is to reconfigure a power

network to isolate known faults and resupply a given set of
loads. In contrast to the PSR benchmark of the IPC, our ver-
sion handles numeric power flows and capacity constraints,
which is vital to network reliability.

The network is a graph 〈B,L〉 whose nodes are buses
i ∈ B supporting constant consumer loads l̄i; a subset of
buses (G) supply variable generation gi, and another subset
(F) are the faulty ones. Edges (i, j) ∈ L, i < j are elec-
tric lines equipped with switches that, when open, disable
the edge. A bus is fed (fi) iff there is a path (of lines with
closed switches) from a generator bus (in G) to it, in which
case its entire load must be supplied. Lines (resp. generator
buses) also have capacities that constrain the power pij that
can flow through them (resp. the generation gi produced).

The only primary variables are the line switch positions
yij . Opening/closing a switch toggles yij between false
(open) and true (closed). The planner also controls each gen-
erator’s output. We model this using the freedom our formal-
ism gives the planner to assign the underconstrained sec-
ondary gi variables, rather than explicit actions. Hence, in
a meshed network configuration there can be multiple solu-
tions to the active state constraints.

There are three main types of invariant constraints
(Thiébaux et al. 2013). The first define the line power flows.
Whilst our formalism allows for non-linear constraints such
as the steady state AC power flow equations, for simplicity,
we use here the well-known linear DC power flow model
whereby the power flow pij from i to j is proportional to the
difference θi − θj between the phase angles of the buses the
line connects and to the line suceptance b̄ij . Of course open
lines have no flow, hence the following switched constraints:

yij = true → pij = −b̄ij(θi − θj) (i, j) ∈ L
yij = false → pij = 0 (i, j) ∈ L

Constraints of the second type encode the flow propaga-
tion through the network, (a) using Kirchhoff’s Law (flow
conservation at the buses) whilst enforcing (b) that no faulty
bus (i ∈ F) is fed, (c) non-faulty generator buses (i ∈ G\F)
are fed, and (d) connected buses have the same fed status.

gi +
∑

j:(j,i)∈L

pji = l̄ifi +
∑

j:(i,j)∈L

pij i ∈ B (a)

fi = 0 i ∈ F (b)
fi = 1 i ∈ G \ F (c)
yij = true→ fi = fj (i, j) ∈ L (d)

The rest of the constraints encode capacity limits on the
generation (e) and power flow (f).

0 ≤ gi ≤ ḡi i ∈ B (e)
−p̄ij ≤ pij ≤ p̄ij (i, j) ∈ L (f)

Switching actions cause transient phenomena which can
threaten network stability. For example, before connecting
two buses by closing a line, the difference between their
standing phase angles should be sufficiently small; if not, a
generation redispatch is necessary to reduce it (Hazarika and
Sinha 1999). This can be captured by adding a secondary
precondition to the closing action for each line (i, j) con-
straining the difference θi − θj to lie within safety bounds.
However, we have not used it in our experiments.

A restoration plan is a sequence of switching operations.
One objective is to resupply as much load as possible as fast
as possible: if we plot the power supplied as a function of
time (plan steps), the objective function that we wish to max-
imise is the area under this curve (Thiébaux et al. 2013). Un-
like typical planning objectives (e.g., cost or makespan), this
value can be strongly affected by reordering independent ac-
tions. Another objective is to minimise the deviation from
the standard (pre-fault) network configuration. We can cap-
ture both objectives as a sum of state-dependent action costs.
However, minimising plan length is a reasonable proxy, at
least for the latter objective, and is much easier for planners
to do. We consider both variants of the problem.

Relaxed Plan Heuristic
To derive heuristics to guide search for optimal plans, we use
the well-known idea of optimal relaxed planning. We define
a notion of relaxed rechability that shares the monotonicity
property of classical delete-relaxation. From this, we obtain
analogues of the classical hmax and h+ heuristics for our
more expressive planning formalism. To compute h+, we
use the landmark-based algorithm of Haslum, Slaney and
Thiébaux (2012). By changing the algorithm slightly, we can
even get an analogue of the LM-Cut heuristic (Helmert and
Domshlak 2009) for problems with unit-cost actions.

Defining the Relaxation
Several researchers (e.g., Gregory et al. 2012) have noted
that in classical, propositional planning, delete-relaxation
can also be characterised as planning with a value accu-
mulating interpretation of action effects instead of the usual
value assignment semantics: each state variable, v, in a re-
laxed state has a set of values instead of just one value, and
applying an action effect (v, x) adds the new value, x, to
the set, without removing any existing value. This extends
straightforwardly to logical expressions: writing s+(ϕ) for
the set of values of a formula ϕ in a relaxed state s+, we
have

• true ∈ s+(v = x) iff x ∈ s+(v);
• false ∈ s+(v = x) iff ∃y ∈ s+(v) : y 6= x;
• true ∈ s+(¬ϕ) iff false ∈ s+(ϕ), and vice versa;
• v ∈ s+(ϕ ◦ψ) iff ∃v′ ∈ s+(ϕ), v′′ ∈ s+(ψ) : v = (v′ ◦ v′′)

for any connective ◦.
The relaxed planning problem is defined by replacing
s(ϕ) = true with true ∈ s+(ϕ), i.e., actions’ preconditions
and the goal only need to be possibly true, and replacing the
normal (value-assigning) definition of action effects with the
relaxed (value-accumulating) one. Any plan for the original
problem is also a plan under the relaxed semantics; hence
the minimal relaxed plan cost is a lower bound on minimal
real plan cost. The key property ensuring this is that the re-
laxation is monotonic: for any formula ϕ and relaxed state
s+, if v ∈ s+(ϕ) (v ∈ {false, true}) then v ∈ s+′(ϕ) for any
relaxed state s+′ reachable from s+ by relaxed action appli-
cations. Extending this to our setting requires one addition:
determining which constraints are active in a relaxed state.

Definition 4. For a relaxed state s+ and set of switched con-
straints C, the relaxed active constraints (from C) in s+ are
active+(C, s+) = {γ | ϕ→ γ ∈ C, false 6∈ s+(ϕ)}.
In other words, a switched constraint ϕ → γ is active in
a relaxed state only if false is not a possible value for the
triggering condition ϕ in s+; i.e., ϕ must be true.

We define the relaxation of a planning problem by re-
placing states, state updates, evaluation of primary precon-
ditions and goals, and the sets of active constraints by their
relaxed counterparts. The analogue of monotonicity in the
classical planning relaxation (“true conditions remain true”)
is that the set of active constraints can only shrink along a
relaxed action sequence; hence, satisfiable sets of switched
constraints remain satisfiable.

Lemma 5. Let s+ be a relaxed state, s+′ the state that results
from (relaxed) application of an action sequence a1, . . . , an,
and (cP , cS) a partitioned condition. If (cP , cS) holds in s+,
then it also holds in s+′.

Proof. Monotonicity of the primary condition cP follows di-
rectly from monotonicity of the classical relaxation.

Let ϕ → γ be a switched constraint in cS . Since the
classical relaxation is monotone, false ∈ s+′(ϕ) only if
false ∈ s+(ϕ). Thus if false 6∈ s+(ϕ) then false 6∈ s+′(ϕ), and
thus active+(cS , s

+′) ⊆ active+(cS , s
+). Since removing

constraints cannot cause a contradiction, if active+(cS , s
+)

is satisfiable then so is active+(cS , s
+′).

Computing Heuristics
The monotonicity property implies that we can build a re-
laxed planning graph following the same procedure as in
classical planning. Fact layers are simply relaxed states, each
action layer includes all (not previously applied) actions that
are allowed in the current relaxed state, and the next relaxed
state is the result of applying all their effects.1 Note that just
as in the classical relaxed planning graph, we make an inde-
pendence assumption in that the allowedness of each action
is tested separately from other actions in the same layer.

This construction provides us with a (yes/no) relaxed
reachability test, which enables us to compute h+ using the
iterative landmark algorithm (described below). In addition,
assuming a cost of 1 for every action, the number of action
layers needed before the goal condition holds provides an
analogue of the hmax heuristic. In our experiments on the
power supply restoration problem with constant action costs,
we found using h+ to be more effective than using hmax or
no heuristic, in terms of total runtime.

Optimisations. Recall that an action a with pre(a) =
(preP (a),preS(a)) is allowed in a relaxed state s+ iff
true ∈ s+(preP (a)) and both active+(preS(a) ∪ Cinv, s

+)
and active+(Cinv, s

+′) are satisfiable, where s+′ is the re-
sult of applying eff(a) to s+. Checking satisfiability requires
the external constraint solver, hence is much more expensive
computationally than the primary precondition check.

1There is no need for explicit no-ops, since previously achieved
values remain under the value accumulating semantics.

However, since the set of active constraints can only
shrink with the relaxed application of more actions
(Lemma 5), active+(Cinv, s

+′) ⊆ active+(Cinv, s
+) ⊆

active+(preS(a) ∪ Cinv, s
+). Thus, we do not need to per-

form the second call, since it will succeed if the first one
does. Furthermore, if actions have no secondary precondi-
tions, i.e., preS(a) = ∅ for all a, we can even eliminate the
first call. Because the state s for which we are computing the
heuristic is valid, we know that active(Cinv, s) is satisfiable.
Again due to Lemma 5, this means active+(Cinv, s

+) is also
satisfiable for any s+ that is relaxed-reachable from s.

The two domains in our experiments have no secondary
action preconditions, so we use this optimisation to substan-
tially reduce the number of calls to the external constraint
solver. We need only one call, to check if the secondary goals
have been achieved, for each relaxed reachability test.

Computing h+. The iterative landmark algorithm
(Haslum, Slaney, and Thiébaux 2012) computes a set of
disjunctive action landmarks (Karpas and Domshlak 2009)
such that a minimum-cost hitting set over this collection
is an optimal relaxed plan, whose cost is h+. Because
this algorithm interfaces with the planning formalism only
through a relaxed reachability test (is the goal relaxed-
reachable from the initial state using a given subset of
actions?), which we can perform as explained above, and
because our relaxation, like the classical delete-relaxation,
does not require any action more than once in an optimal
relaxed plan, we can apply this algorithm to compute h+
also in our setting. We use all algorithm improvements
proposed by Haslum, Slaney and Thiébaux (2012); we also
use the integer programming solver (Gurobi) to compute
cost-optimal hitting sets.

Restricting the algorithm to generating only disjoint land-
marks, we obtain a faster-to-compute but potentially weaker
heuristic. With unit-cost actions, this is equivalent to the
LM-Cut heuristic (Bonet and Helmert 2010).

Computing h+ Incrementally. When computing h+ for
each state, we can use information from the parent state to
speed up the iterative landmark algorithm. Let s be a state,
L(s) the set of landmarks found for s, and s′ the state re-
sulting from applying action a in s. Then each element of
{l ∈ L(s) | a 6∈ l} is also a landmark for s′. Thus, we can
start the algorithm with this collection of landmarks, instead
of an empty set. This reduces the number of iterations, and
hence the number of relaxed reachability tests substantially.
A similar technique was used by Pommerening and Helmert
(2012) for the LM-Cut heuristic.

Preferred Actions in A? Search
To compute optimal plans, we rely on A? search. Computing
an optimal relaxed plan at every generated state is expensive,
but can provide much more information than just an admis-
sible heuristic estimate. We combine two ideas—preferred
actions and Partial Expansion A?—to create a novel search
algorithm that can achieve significant runtime savings when
the heuristic is computationally expensive but quite accu-
rate, and states have many successors. This situation is char-

1: procedure PREFPEA?

2: Set open = {(s0, 0, h(s0), pref(s0))}, closed = ∅.
3: while open 6= ∅ do
4: Select n = min≺ open, where

(n ≺ n′) ≡ (f(n) < f(n′))
∨ (f(n) = f(n′) ∧ h(n) < h(n′))
∨ (f(n) = f(n′) ∧ h(n) = h(n′)
∧ pref(n) 6= ∅ ∧ pref(n′) = ∅))

5: if n is a goal state then return n.
6: if pref(n) 6= ∅ then
7: Select a ∈ pref(n), remove a from pref(n).
8: Generate s′ from n through a.
9: NEWSTATE(s′, g(n) + cost(a))

10: else
11: for each non-preferred successor (a′, s′) of n do
12: NEWSTATE(s′, g(n) + cost(a′))

13: Move n to closed.
14: return null.

15: procedure NEWSTATE(s, g)
16: if 6 ∃n′ ∈ open ∪ closed with state s then
17: Add (s, g, h(s), pref(s)) to open.
18: else if g < g(n′) then
19: Set g(n′) = g and update parent pointer.
20: if n′ ∈ closed then Move n′ back to open.

Figure 2: Partial Expansion A? with Preferred Actions. The
NEWSTATE subroutine handles updating of path cost and
node re-opening, as in standard A?.

acteristic of many planning heuristics and problems, includ-
ing the power supply restoration problem that we tackle.

The preferred actions (also known as “helpful”) in a state
s are actions in the relaxed plan computed for s that are
also applicable in s. The intuition behind their use is that
if the relaxed plan is similar to a real plan, then taking
an action that is part of it is more likely to be a step to-
wards the goal, and therefore giving preference to the suc-
cessor states generated by such actions can lead to a goal
state more quickly. This has been shown highly useful in
greedy and hill-climbing search (Richter and Helmert 2009;
Hoffmann 2000), but as far as we are aware there has been
no use of this source of information in optimal search.

An optimal search algorithm such as A? must expand
any state that could possibly lie on a cheaper path to the
goal, i.e., any state whose f -value is less than the optimal
plan cost, f?. The Partial Expansion A? (PEA?) algorithm
(Yoshizumi, Miura, and Ishida 2000) tries to avoid placing
unpromising states on the open list, by expanding states only
partially and re-inserting them on the open list for later con-
sideration. However, vanilla PEA? still evaluates all succes-
sors to determine which are promising. Felner et al. (2012)
noticed that using a problem- and heuristic-specific proce-
dure, it is sometimes possible to determine the partial suc-
cessor set without generating and evaluting all successors.

We adopt the idea of PEA?, but stage node expansion by
the preferredness of successors instead of f -value. Pseudo-

Figure 3: Illustration of PREFPEA?. Black nodes have
f(n) < f?; these must be fully expanded. Gray nodes have
f(n) = f?; some of these will be expanded, and may be par-
tially expanded. White nodes have f(n) > f?. The dashed
part represents non-preferred successor nodes that are never
generated or evaluated. Once the search has reached the f?
layer and hit a node on an optimal path, tie-breaking on h
will keep it on this path (assuming no zero-cost actions).
From this point, only preferred successors are generated.

code for the procedure is shown in Figure 2. When a state
is generated, its set of preferred actions are found (as a side
effect of computing its heuristic value) and stored with the
node. When the node is selected for expansion, we generate
(and evaluate) only one preferred successor, using one of the
actions in its preferred set. This action is then removed from
the preferred set, and the parent node kept in the open list.
Only when an expanded node has no remaining preferred
actions are all its non-preferred successors generated, and
the node moved to the closed list. We prioritise expansion of
nodes that have still unexplored preferred successors. This
is done using non-emptiness of the preferred action set as
an additional tie-breaking criterion, after the standard tie-
breaking in favour of lower h-value. That is, if two nodes
n and n′ have equal f - and h-values, but pref(n) 6= ∅ and
pref(n′) = ∅, then n is chosen for expansion before n′.

Impact on Search Efficiency
The benefit of PREFPEA? is limited to avoiding heuristic
evaluation of some siblings of nodes expanded in the f?
layer. This is illustrated in Figure 3. However, if the heuris-
tic is accurate and states have, on average, many successors
but few preferred ones, these savings can be substantial. If,
on the other hand, heuristic estimates are far off and the
branching factor is small, so are the savings. Our two exam-
ple domains illustate these two cases. Because PREFPEA?

changes the order of expansion, and because remaining ties
are still broken arbitrarily, it is possible for PREFPEA? to
be “unlucky” and expand more nodes than A? on a particu-
lar problem instance, even if the aggregate results are better.
We observed this in a small number of cases (< 2%).

For the power supply restoration (PSR) domain, we use
a semi-rural network (from Thiébaux et al. 2013) and
171 problems with 1–3 faults. We use a constant (state-
independent) cost of 1 for each action. For hydraulic
blocksworld (HBW), we use 80 problems with 4–7 blocks
and 3–5 cylinders. Parameters such as block weights, cylin-
der heights and areas, etc. are set randomly, with the aim of
creating the problems that are solvable, but where the con-

>30% >40% >50% >60% >70% >80% >90%

Hydraulic Blocksworld

Power Supply Restoration

h+(initial state) as a percentage of h*

%
 o

f
P

ro
b
le

m
s

0
1
0

2
0

3
0

4
0

(a)

<=0 >0 >10% >20% >30% >40% >50% >60% >70% >80% >90%

Hydraulic Blocksworld

Power Supply Restoration

Reduction in Number of State Evaluations

%
 o

f
P

ro
b
le

m
s

0
1
0

2
0

3
0

4
0

(b)

Figure 4: (a) Accuracy of the relaxed plan heuristic, mea-
sured by h+(s0) as a percentage of f∗. (b) Distribution of
the reduction in number of state evaluations using PREF-
PEA? compared to plain A?. (A “reduction” < 0 means
PREFPEA? evaluates more states, as a result of expanding
more nodes. This increase is never more than 15%.)

straints force plans to be different than in the unconstrained
case. Note that the addition of both a limit on the number of
towers and the global numeric state constraints makes this
domain much harder than the usual STRIPS Blocksworld.
(Blind A? search solves only 4 out of 20 6-block problems,
while A? search with the h+ heuristic solves 17.)

With plain A?, the planner solves 150 PSR problems and
62 HBW problems (within 30 minutes). With PREFPEA?, it
solves 2 more problems in the PSR domain.

Figure 4(a) shows how close the heuristic estimate in the
initial state is to the optimal plan cost (i.e., h+(s0) as a per-
centage of f?). It is more accurate in PSR than in HBW.
Furthermore, the average branching factor in PSR is 26.7,
while in HBW it is only 1.99. Given this, the difference in
the reduction in number of state evaluations between the two
domains, shown in Figure 4(b), is to be expected. In PSR, us-
ing PREFPEA? saves 42.8% of state evaluations compared
to using A? (aggregated over problems solved with both),
and over 90% on a quarter of the instances. Since heuristic
computation accounts for 95% of total runtime, on average,
in this domain, this translates into a roughly proportional
41.6% reduction in aggreated runtime.

In HBW, the aggregate reduction in evaluations is only
3.4%, and because heuristic evaluations are also much faster
in this domain (averaging only 16.2% of total time), this
does not lead to any reduction in total runtime.

State-Dependent Action Costs
Recall that the primary objective of power supply restora-
tion is to maximise the load supplied over time (Thiébaux
et al. 2013). Equivalently, we can say it is to minimise the
unsupplied load at each plan step. This can be expressed as
a sum of action costs, but those costs must depend on the
state in which the action is applied.

Formulating state-dependent action costs in unrestricted
numeric PDDL (Fox and Long 2003) is easy, since the prob-
lem metric can be any fluent expression, and actions can
have arbitrarily complex (and conditional) effects on nu-
meric fluents. Another way to express state-dependent ac-
tion costs is through PDDL3’s preferences in action precon-
ditions (Gerevini et al. 2009), which incur a penalty (cost)
when applying an action in a state where the preference is
unsatisfied. However, optimal planning with state-dependent
action costs has received very little attention. The opti-
mal MIPS-BDD planner handles an expressive fragment of
PDDL3’s preferences, but not preferences in action precon-
ditions (Edelkamp 2006). The recent LTOP planner (Tierney
et al. 2012) extends optimal temporal planning to complex
objectives, including action costs that are a function of the
action’s duration, but not of state. We are not aware of any
optimal planner for the kind of problem we consider.

Formalism. For an action’s state-dependent cost, we use a
finite sum of conditional costs, cost(a) = {(ϕi, ci)}i=1...k+
c0, where ϕi is a (partitioned) condition and ci is a positive
constant (c0 is an unconditional constant cost, which may
be zero). The cost of applying a in a state s is cost(a, s) =∑
{ci | (ϕi, ci) ∈ cost(a), s(ϕi) = true} + c0. Incorporat-

ing this cost in a forward state-space search is trivial, since
the state in which each action is applied is fully known.

In the power supply restoration problem, the conditional
costs are the same for each action: {(fi = 0, l̄i) | i ∈ B}.
(Recall that fi is a constrained variable for whether bus i is
fed, and l̄i is the load attached to the bus.) We add to this a
constant cost of 1, for the secondary objective of minimising
the number of switching operations.

Extending h+. Extending h+ to accurately estimate the
state-dependent cost-to-go is far more challenging. The way
we express state-dependent action costs is essentially a form
of conditional action effects. Hence, we could apply the
same kind of problem transformation that is used to com-
pile away conditional effects to reduce the problem to one
that has only constant action costs: Replace each action a
with one copy aX for each subsetX ⊆ cost(a). Each copy’s
cost is constant, cost(aX) =

∑
{ci | (ϕi, ci) ∈ X} + c0,

i.e., the sum of costs in the subset X , and its precondition is
pre(aX) = pre(a)∧{¬ϕi | (ϕi, ci) ∈ cost(a)−X}, ensur-
ing it is applicable only in states where the conditional costs
not in X would not apply. However, this clearly can lead to
an exponential blow-up. In our PSR problems there can be
as many as 44 loads to supply, so this full compilation would
split each action into 244 copies.

To avoid this, we take an approach similar to optimal
relaxed planning with conditional effects (Haslum 2013).
First, we relax the problem further by assuming that every
action will be applied in a least-cost state, making its cost

> 20% > 30% > 40% > 50% > 60% > 70% > 80% > 90%

with Unit Costs

with State−Dependent Costs

h+(initial state) as a percentage of h*

%
 o

f
P

ro
b
le

m
s

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Figure 5: Accuracy of the relaxed plan heuristic with state-
dependent action costs, and with unit cost actions. The accu-
racy in the unit-cost case here is different from that in Figure
4(a), because the problem set is smaller.

constant. Then, we compute an optimal relaxed plan (action
set) under this assumption, using the algorithm in the earlier
section. Next, we use systematic branch-and-bound search
to try to sequence the resulting set of actions so that the as-
sumed cost is actually achieved. If sequencing is not possi-
ble, we split each action a in the set that could not achieve its
assumed cost, but only into two copies. We select one of the
conditional costs (ϕi, ci) ∈ cost(a) that was triggered in one
of the failed attempts to sequence the action set, and split the
action on whether this cost applies or not. That is, one copy,
a0, gets the added precondition ¬ϕi (corresponding to any
choice ofX with (ϕi, ci) 6∈ X) and the other copy, a1, has ci
added to its unconditional cost (corresponding to any choice
of X with (ϕi, ci) ∈ X). From both copies, we remove the
selected conditional cost. This process is then repeated from
the first step, using the modified problem, until the sequenc-
ing step succeeds.

Results
The iterated relaxed plan construction is very effective at re-
ducing the number of actions copies: For the initial states of
single-fault PSR problems, the average number of iterations
is 3.62 and the average number of action copies created less
than ten. In contrast, full compilation could create as many
as 244 copies of each action.

However, the heuristic is not time-efficient. The time to
evaluate a single state is, on average, 6.85 times higher than
in the unit-cost case. This reflects both the repeated h+ com-
putation and the overhead of sequencing the action set. The
heuristic also becomes less accurate than it is with constant
costs, as shown in Figure 5. As a result, blind search solves
more of these problems than search with the heuristic.

Conclusion
We have introduced an extended planning formalism that
combines the classical, discrete state/action planning model
with systems of constraints. It can model interconnected
physical systems, in which a single discrete control action
can have global effects (e.g., network flows) that depend
on the states of many components. This can be seen as a

special case of semantic attachment (Dornhege et al. 2009),
in which the semantically attached symbols (our secondary
variables) are restricted to occur in preconditions. However,
because our formalism provides a precise way of describ-
ing the interaction between the attachements and the pri-
mary variables, via switched constraints, we are able to de-
rive domain-independent problem relaxations that incorpo-
rate the result of the semantically attached “procedure” in
a meaningful way. From this relaxation, existing techniques
can be used almost off-the-shelf to derive a variety of ad-
missible heuristics. We believe this methodology can be ap-
plied to other non-classical planning formalisms, e.g., the
Planning-Modulo-Theory framework (Gregory et al. 2012).

To solve problems in this formalism, we couple a plan-
ner with an external solver, in a way that retains the advan-
tage of heuristic search whilst allowing reasoning within any
type of theory (e.g. linear or non-linear numerical equations,
chemical reactions, or qualitative spatial calculi). For in-
stance, whilst we model the power supply restoration (PSR)
problem with a linear DC power flow model, and use an LP
solver in our experiments, nothing prevents us from replac-
ing it with an AC power flow solver, as used by Piacentini
et. al (2013)—other than perhaps the lack of convergence
guarantees offered by these solvers in the general case.

Piacentini et al. (2013) use a similar, coupled architec-
ture to address the power balancing problem. However,
their heuristic relies on knowing certain pre-computed val-
ues that depend on some primary variables (including the
switch states) and are not updated as these primary variable
change—which makes it difficult to handle switching op-
erations. In contrast, our approach naturally integrates the
external solver within the heuristic, enabling us to plan with
arbitrary primary variable changes, including switching.

The type of planning problems we consider are hard. On
the PSR problem, our planner runs at least two orders of
magnitude slower than the MIP-based solution by Thiébaux
et al. (2013). To improve planning performance we have
used, and extended, several ideas from the planning and
search literature. Our PREFPEA? algorithm exploits pre-
ferred actions in optimal search. Although preferred actions
have been widely used in non-optimal planning, we are not
aware of any previous optimal planner that makes effective
use of them. PREFPEA? can significantly outperform A?

when the branching factor is high and the heuristic function
is accurate but computationally expensive. This occurs, for
example, in our PSR domain, but can also be found in many
cases of purely classical planning.

Finally, we considered the extension of optimal planning
to state-dependent action costs. Although there has been a
recent shift away from simple metrics like plan length to-
wards more general notions of plan cost, no optimal planner
that we know of has tackled problems where the cost of an
action is conditional on the state in which it is taken. Our re-
sults show that much more work is needed for optimal plan-
ning with state-dependent action costs to match the recent
advances of its constant-costs counterpart.

Acknowledgements This work was supported in part by
ARO grant W911NF1210471, ONR grant N000141210430,

and ARC project DP140104219, “Robust AI Planning for
Hybrid Systems”. NICTA is funded by the Australian Gov-
ernment through the Department of Communications and
the Australian Research Council through the ICT Centre of
Excellence Program. The information in this paper does not
necessarily reflect the position or policy of the funders, and
no official endorsement should be inferred.

References
Aylett, R.; Soutter, J. K.; Petley, G. J.; and Chung, P. W. H.
1998. AI planning in a chemical plant domain. In ECAI,
622–626.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In ICAPS.
Edelkamp, S. 2006. Optimal symbolic PDDL3 planning
with MIPS-BDD. In 5th International Planning Competi-
tion Booklet. Available at http://zeus.ing.unibs.it/ipc-5/.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
Sturtevant, N.; Schaeffer, J.; and Holte, R. 2012. Partial-
expansion A* with selective node generation. In AAAI, 471–
477.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2005.
Fast planning in domains with derived predicates: An ap-
proach based on rule-action graphs and local search. In
AAAI, 1157–1162.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(5-6):619–668.
Ginsberg, M. L., and Smith, D. E. 1988. Reasoning
about action I: A possible worlds approach. Artif. Intell.
35(2):165–195.
Green, C. C. 1969. Application of theorem proving to prob-
lem solving. In IJCAI, 219–240.
Gregory, P.; Long, D.; Fox, M.; and Beck, C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
ICAPS, 65–73.
Haslum, P.; Slaney, J.; and Thiébaux, S. 2012. Minimal
landmarks for optimal delete-free planning. In ICAPS, 353–
357.
Haslum, P. 2013. Optimal delete-relaxed (and semi-relaxed)
planning with conditional effects. In IJCAI, 2291–2297.
Hazarika, D., and Sinha, A. 1999. An algorithm for standing
phase angle reduction for power system restoration. IEEE
Trans. Power Systems 14(4):1213–1218.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. JAIR 24:519–579.
Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; dos
S. Liporace, F.; and Trüg, S. 2006. Engineering benchmarks
for planning: the domains used in the deterministic part of
IPC-4. JAIR 26:453–541.
Hoffmann, J. 2000. A heuristic for domain independent
planning and its use in an enforced hill-climbing algorithm.
In ISMIS, 216–227.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming language
for dynamic domains. J. Log. Program. 31(1-3):59–83.
Liftschitz, V. 1987. On the semantics of STRIPS. In Proc.
1986 Workshop on Reasoning about Actions and Plans, 1–9.
Löhr, J.; Eyerich, P.; Keller, T.; and Nebel, B. 2012. A
planning based framework for controlling hybrid systems.
In ICAPS.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2013.
Combining a temporal planner with an external solver for
the power balancing problem in an electricity network. In
ICAPS.
Pommerening, F., and Helmert, M. 2012. Optimal planning
for delete-free tasks with incremental LM-cut. In ICAPS.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In ICAPS, 273–
280.
Sandewall, E. 1994. Features and fluents (vol. 1): the repre-
sentation of knowledge about dynamical systems. New York,
NY, USA: Oxford University Press, Inc.
Thiébaux, S., and Cordier, M. 2001. Supply restoration
in power distribution systems – a benchmark for planning
under uncertainty. In ECP.
Thiébaux, S., and Herzberg, J. 1992. A semi-reactive plan-
ner based on a possible models action formalization. In
AIPS, 228–235.
Thiébaux, S.; Coffrin, C.; Hijazi, H.; and Slaney, J. K. 2013.
Planning with MIP for supply restoration in power distribu-
tion systems. In IJCAI.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artif. Intell. 168(1-2):38–69.
Tierney, K.; Coles, A.; Coles, A.; C., K.; Britt, A.; and
Jensen, R. 2012. Automated planning for liner shipping
fleet repositioning. In ICAPS, 279–287.
Winslett, M. 1988. Reasoning about action using a possible
models approach. In AAAI, 89–93.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
AAAI.

