
Search Control in Planning for Temporally Extended Goals

Froduald Kabanza
Département d’informatique

Universit́e de Sherbrooke
Sherbrooke, Qc JIK2R1, Canada

kabanza@usherbrooke.ca

Sylvie Thiébaux
National ICT Australia &

The Australian National University
Canberra 0200, Australia

sylvie.thiebaux@anu.edu.au

Abstract

Current techniques for reasoning about search control knowl-
edge in AI planning, such as those used in TLPlan, TALPlan-
ner, or SHOP2, assume that search control knowledge is con-
ditioned upon and interpreted with respect to a fixed set of
goal states. Therefore, these techniques can deal with reach-
ability goals but do not apply to temporally extended goals,
such as goals of achieving a condition whenever a certain fact
becomes true. Temporally extended goals convey several in-
termediate reachability goals to be achieved at different point
of execution, sometimes with cyclic executions; that is, the
notion of goal state becomes dynamic. In this paper, we de-
scribe a method for reasoning about search control knowl-
edge in the presence of temporally extended goals. Given
such a goal, we generate an equivalent Büchi automaton—
an automaton recognising the language of the executions sat-
isfying the goal—and interpret control knowledge over this
automaton and the world state trajectories generated by a for-
ward search planner. This method is implemented and exper-
imented with as an extension of the TLPlan planner, which
incidentally becomes capable of handling cyclic goals.

Introduction
Motivation
One of the most powerful approaches to coping with state-
space explosion in planning is to provide the planner with
knowledge of how to plan in specific application domains.
Such search control knowledge can be acquired from hu-
man experts of the domain, much like models of primitive
actions are. Interestingly, there is hope that both action mod-
els and search control knowledge will ultimately be learnt,
removing the hurdle of relying on human experts to provide
them, see e.g. (Pasula, Zuttlemoyer, & Pack Kaelbling 2004;
Fern, Yoon, & Givan 2004) for recent works on these topics.

Over the last decade, a number of planners such as TLPlan
(Bacchus & Kabanza 2000), TALPlanner (Kvarnström &
Magnusson 2003), and SHOP2 (Nauet al. 2003), have suc-
cessfully exploited the idea of using domain-specific con-
trol knowledge to guide a planner’s search for a sequence
of actions leading to a goal state. For instance, the forward
search planner TLPlan provides a logic-based platform fa-
cilitating reasoning about search control knowledge in the
form of temporal logic properties that promising plan pre-
fixes must not violate. TLPlan prunes from the search any
path leading to a plan prefix which violates these properties.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A key component of TLPlan’s reasoning about search
control knowledge is theGOAL modality: GOAL(f) means
that the first-order formulaf is true of all goal states.
TALPlanner and SHOP2 have similar mechanisms to refer
to goal properties. Using theGOAL modality and first-order
bounded quantification, one can specify generic search con-
trol knowledge which is applicable toanyproblem in a given
domain, without change. For instance, consider a health care
robot which assists ederly or disabled people by achieving
simple goals such as reminding them to do important tasks
(e.g. taking a pill), entertaining them, checking or transport-
ing objects for them (e.g. checking the stove’s temperature
or bringing coffee), escorting them, or searching (e.g. for
glasses or for the nurse) (Cestaet al. 2003). In this domain,
a useful piece of search control knowledge might be: “if a
goal is to bring some object to some room, then once you
grasp this object, keep it until you are in that room”.

It is not possible to write control strategies that are both
efficient and generic without using theGOAL modality, as
such strategies need to be conditioned upon the goals. Yet,
an important limit of current approaches is that theGOAL
modality is interpreted with respect to a fixed set of goal
states. This makes these approaches inapplicable to anything
but simple goals of reaching a desired state. Such goals are
called reachability goals.

The Problem
In this paper, we address the problem of extending the
search control framework to planning with temporally ex-
tended goals (Bacchus & Kabanza 1998; Dal Lago, Pistore,
& Traverso 2002). While reachability goals are properties of
the final state of a finite sequence, the temporally extended
goals we consider are general properties of potentially cyclic
execution sequences. Examples include maintaining a prop-
erty, achieving a goal periodically or within a number of
steps of the request being made, and achieving several goals
in sequence. In the health care robot domain for instance, we
may want to specify goals such as “walk Mrs Smith to the
bathroom, then get her a coffee, and if you meet the nurse
on the way, tell her that I need her”, or “get the house clean
every morning, and during each meal remind me to take my
pills”. Although planning for temporally extended goals and
planning for reachability goals are both PSPACE-complete
in the deterministic fully observable setting we consider (De
Giacomo & M. Y. Vardi 1999), in practice the former is often
computationally more demanding than the latter. Therefore,
good search control is crucial.

As it turns out, TLPlan uses the same formalism and tech-
nique to describe and process temporally extended goals and
search control knowledge. This should not cause confusion:
while the formalism and technique are the same, temporally
extended goals and search control knowledge are fundamen-
tally different in nature. The first is a property of the plans
we want to generate, and the second is a property of the
search (which incidentally in TLPlan, happens to be describ-
ing which plans the search should prune). In fact, TLPlan
disables the use of search control when planning for tempo-
rally extended goals. The reason is, as we mentioned before,
that when planning with such goals, there is no fixed set of
goal states with respect to which theGOAL modality can be
evaluated. Our purpose is to extend TLPlan’s mechanism
for reasoning about search control knowledge to make it op-
erational even in the presence of temporally extended goals.

Assumptions
For simplicity, we remain in the framework of deterministic
actions and, consequently, of temporally extended goals ex-
pressible in linear temporal logic (LTL). This is essentially
the framework adopted by TLPlan with however one signif-
icant difference. TLPlan can only handle problems that can
be solved by a finite, i.e. acyclic sequence of actions, while
in the general case, temporally extended goals may require
cyclic sequences. For instance, consider the goal “whenever
the kitchen is dirty, get it clean, and when you are finished
cleaning, get the next meal ready”. This requires a cyclic
plan of the form “do-for-ever: clean ; cook”, since after the
meal is cooked, the kitchen will be dirty again. Our approach
will handle this general case.

For simplicity, we also remain in the framework of LTL
to describe search control knowledge. In particular, we do
not consider branching temporal logics such as CTL and
variants (Pistore & Traverso 2001; Dal Lago, Pistore, &
Traverso 2002; Baral & Zhao 2004), even though, as will be-
come apparent, CTL would be useful to reason about what
definitely is or just possibly is a useful goal to work on. Han-
dling non-deterministic domains and more complex plan-
ning strategies is a topic for future work.

Overview of the Approach
Even under these assumptions, there are a number of ways
we could go about specifying and handling control knowl-
edge for planning under temporally extended goals. At one
extreme, we could allow theGOAL modality to apply to
temporal formulae.GOAL(f) would mean that the tempo-
ral formula f is derivable (in the LTL sense of the term)
from the temporally extended goalg under consideration.
One advantage of this approach is that the search control be-
comes highly expressive. It is possible to explicitly condi-
tion search control upon correct logical consequences of the
temporally extended goal, and to prescribe farsighted strate-
gies that take into account the behavior to be achieved in
its globality. A drawback is that this approach requires per-
forming LTL theorem proving for each formulae in the scope
of theGOAL modality in turn, prior to invoking the planner.1

1A variant of this is to evaluate theGOAL modality with re-
spect, not to the original temporally extended goal, but to the part

At another extreme, we could keep the language for speci-
fying search control knowledge, and even the control knowl-
edge itself, the same as in the reachability case, and analyse
the temporal goal to dynamically generate, while planning,
a series of reachability goals to be achieved in turn. The
GOAL modality would then be evaluated with respect of the
current reachability goal to be achieved. To guarantee com-
pleteness, backtracking on the reachability goals generated
may be necessary. For instance, when analysing the tempo-
rally extended goal “walk Mrs Smith to the bathroom, then
get her a coffee, and if you meet the nurse on the way, tell her
that I need her”, one could first generate the goal of getting
Mrs Smith to the bathroom, then the goal of getting her the
milk, temporarily preempting such goals with that of talking
to the nurse when she is met on the current plan prefix. This
option defers part of the search control decisions to the plan-
ner, since it chooses the successive reachability goals. This
makes the task of the domain modeller much easier, but may
lead to shortsighted search control strategies. In the above
example, search control would not be able to exploit the fact
that it is best to take Mrs Smith to the east-side bathroom
which is nearer to the kitchen where the robot will need to
go later to get the coffee.

As a middle ground, we could consider allowing temporal
formulae inside theGOAL modality, and analyse the tempo-
rally extended goal to dynamically generate entiresequences
of reachability goals, with respect to which the modality
would be evaluated. That is, given such a sequenceΓ,
GOAL(f) would be true iffΓ modelsf in the LTL sense
of the term. Again backtracking on the generated sequences
would be necessary to ensure completeness. The main dif-
ference between this option and the first one is that search
control decisions are not necessarily based on correct logi-
cal sequences of the original temporally extended goal.2

While all three approaches have their benefits and short-
comings, this paper focuses on the second. We describe a
method which analyses the temporally extended goal and
generates, during planning, successive reachability goals
which are passed onto the traditional search control process.
Backtracking occurs when an alternative goal appears more
promising or when the current strategy does not result in a
plan. The method is based on the construction of what is
known in the verification literature as a Büchi automaton
equivalent to the temporally extended goal (Wolper 1987).
Such an automaton recognises the language of (cyclic) exe-
cution sequences that satisfy the goal. It suggests a range of
possibilities for interpreting theGOAL modality, including
but not limited to the three described above. Our method is
incorporated to the TLPlan planner and evaluated on a num-
ber of example domains.

of it that remains to be achieved. This affects the modelling style
for search control. In that case, theorem proving would need to be
performed at each node of the search space, and the computational
cost would very likely outweigh the benefits of search control.

2Again, a variant exists wheref only needs to be true of a suf-
fix of the given goal sequence, as the current partial plan has com-
pleted the goals in the prefix.

Plan of the paper
The rest of the paper is organised as follows. The first
section provides some background on LTL, temporally ex-
tended goals, search control knowledge, the formula pro-
gression technique at the core of the TLPlan planner, and
Büchi automata. In the next section, we explain how the
reachability goals are extracted from the Büchi automaton as
planning proceeds, and give the extended TLPlan algorithm.
We go on by presenting experimental results, and conclude
with remarks on related and future work.

Background
Notations
We start with some notations. Given a possibly infinite se-
quenceΓ, we let Γi, i = 0, 1 . . ., denote the element of
index i in Γ, andΓ(i) the suffix(Γi,Γi+1, . . .) of Γ. Γ′; Γ
denotes the concatenation of the finite sequenceΓ′ and the
sequenceΓ. The infinite sequences we will consider will of-
ten be cyclic, of the formΓ = γ; γ(j); γ(j); . . . whereγ is
a finite sequence andj an index. That is, they consist of the
finite sequenceγ and then some suffix ofγ repeated indef-
initely. We will represent such cyclic sequences using the
pair (γ, j).

First-Order Linear Temporal Logic
The language we use to express goals and search control
knowledge is a first-order version of linear temporal logic.
It starts with a first-order language containing collections of
constant, function, and predicate symbols, along with vari-
ables, quantifiers, propositional constants> and⊥, and the
usual connectives¬ and∧. To these are added the unary
GOAL modality, the unary temporal modality© (next) and
the binary temporal modalityU (until). Compounding un-
der all those operators is unrestricted (in particular quanti-
fying into temporal contexts is allowed), except that©, U ,
andGOAL may not occur inside the scope ofGOAL. In the
following, we assume that all variables are bound.

Whereas, in the TLPlan planner, LTL is interpreted over
finite3 sequences of world states and a fixed set of goal states
(Bacchus & Kabanza 2000), here we interpret the language
over possibly infinite sequencesΓ of pairs Γi = (si, Gi)
consisting each of a current world statesi and a set of current
goal statesGi. The idea is that at stagei of the sequence we
are in world statesi and are trying to reach one of the states
in Gi. The temporal modalities allow the expression of gen-
eral properties of such sequences. Intuitively, an atemporal
formulaf means thatf holds now (that is, at the first stage
Γ0 of the sequence).©f means thatf holds next (that is,f ,
which may itself contain other temporal operators, is true of
the suffixΓ(1)). f1 Uf2 means thatf2 will be true at some
future stage and thatf1 will be true until then (that isf2 is
true of some suffixΓ(i) andf1 must be true of the all the
suffixes starting beforeΓi). GOAL(f) means thatf is true
in all the goal statesGi at the current stage, while an atem-
poral formula outside the scope ofGOAL refers to the world
statesi at the current stage.

3More precisely, an infinite sequence of world states consisting
of a finite sequence and an idling final state.

Formally, letD be the domain of discourse, which we
assume constant across all world and goal states, and letΓ a
sequence defined as above, withΓi = (si, Gi). We say that
a formulaf is true ofΓ, notedΓ |= f iff (Γ, 0) |= f where
truth is defined recursively as follows:

• if f is an atomic formula,(Γ, i) |= f iff si |= f according
to the standard interpretation rules for first-order logic

• (Γ, i) |= GOAL(f) iff for all gi ∈ Gi, gi |= f according
to the standard interpretation rules for first-order logic

• (Γ, i) |= ∀x f iff (Γ, i) |= f [x/d] for all d ∈ D, where
f [x/d] denotes the substitution ofd’s name forx in f .

• (Γ, i) |= ¬f iff (Γ, i) 6|= f

• (Γ, i) |= f1 ∧ f2 iff (Γ, i) |= f1 and(Γ, i) |= f2

• (Γ, i) |= ©f iff (Γ, i + 1) |= f

• (Γ, i) |= f1 Uf2 iff there existsj ≥ i such that(Γ, j) |=
f2 and for allk, i ≤ k < j, (Γ, k) |= f1

In the following, wheref is a formula not containing the
GOAL modality andΓ is a sequence of world states rather
than a sequence of pairs, we will abusively use the notation
Γ |= f , since in that case the particular sequence of sets
of goal states presented is irrelevant. We will make use of
the usual abbreviations∨,→,∃, as well as of the tempo-
ral abbreviations♦f ≡ >Uf (eventually f) meaning that
f will become true at some stage, and�f ≡ ¬♦¬f (al-
waysf), meaning thatf will always be true from now on.
Wheref is any formula andb is any atomic formula or any
atomic formula inside a goal modality, we will also use the
bounded quantifiers:∀[x : b(x)]f ≡ ∀x(b(x) → f) and
∃[x : b(x)]f ≡ ∃x(b(x) ∧ f).

Temporally Extended Goals
We represent temporally extended goals as LTL formulae
which do not involve theGOAL modality or quantifiers
(Bacchus & Kabanza 1998). These includes classical reach-
ability goals of ending up in a state satisfyingf as a spe-
cial case; they can be expressed as♦�f . Various useful
types of temporally extended goals include goals of tidy-
ing up the environment to restore whatever propertyf was
true at the start of the plan, i.e.,f → ♦�f , goals of non-
disturbance of some propertyf that was true at the start of
the plan, i.e.f → �f , guards goals expressing that when-
ever conditionc becomes true, propertyf must be achieved,
i.e., �(c → ♦f), and goals of achieving propertiesf1 and
f2 in sequence:♦(f1 ∧©♦f2). For instance,

(in(robot, c1) ∧ in(nurse, c1) → ©talkto(nurse))
U (�with(Smith) ∧©♦(in(Smith, bathroom)
∧©♦has(Smith, coffee)))

means that the robot should find Mrs Smith and stay with her
while getting her to the bathroom and then arranging for her
to get a cup of coffee, and that he should delivers a message
to the nurse if he meets her on corridorc1 on the way to
finding Mrs Smith.

�(in(robot, r1) → ♦in(robot, r2)) ∧
�(in(robot, r2) → ♦in(robot, r1))

means that the robot should continually move between room
r1 and roomr2, e.g., to check that everything is alright in
those rooms.

We consider plans that are infinite, i.e., cyclic, sequences
of actions—a finite sequence can easily be accommodated
using a specialwait action which does not change the world
state. Any such a plan,Π, executed in world states0,
induces an infinite sequence of world statesΓ such that
Γ0 = s0 andΓi+1 = result(Πi,Γi). We say that a plan
achieves a temporally extended goalf wheneverΓ |= f .
For instance, starting withs0 = {in(robot, r4)}, the second
goal above would be satisfied by the cyclic plan:

((move(r4, c2),move(c2, c1),move(c1, r2),
move(r2, c1),move(c1, r1),move(r1, c1)), 2)

The TLPlan planner (Bacchus & Kabanza 1998) is origi-
nally aimed for non-cyclic plans, that is, plans of the form
(γ;wait, |γ|) where|γ| is the length ofγ. If a goal, such as
the one above, can only be achieved by a cyclic plan, TLPlan
reports failure to find a plan.

Search Control Knowledge
While temporally extended goals belong to the problem de-
scription and are properties of the plans we want to generate,
search control knowledge belongs to the domain description
and indicates to the search process how to plan in the do-
main. We also represent search control knowledge as LTL
formulae, but this time involving theGOAL modality and
quantifiers. For instance,

�∀[(x, y) : GOAL(in(x, y))]
holding(robot, x) → holding(robot, x)U in(robot, y)

means that whenever getting objectx at locationy is part
of the current goal, the robot, if it happens to be holdingx,
should hold on to it until he is aty. Note the use of bounded
quantification here.

Here, as in the TLPlan planner (Bacchus & Kabanza
2000), the purpose of search control is to enable early prun-
ing of finite plan prefixes. A plan prefix can be pruned
as soon as it violates the control knowledge. For instance,
with the above piece of search control knowledge, we would
never expand a prefix in which the robot has released an
object before getting to its goal location. Search control
knowledge essentially consists of so-calledsafetyproperties,
which are those expressing conditions that must be main-
tained, or in other words, conditions that are only violated by
a finite prefix. Technically, such conditions are conveyed by
formulae on the left-hand side of anU modality or formulae
in the scope of a� modality. In contrast,livenessproperties
express conditions that must be eventually made true, or in
other words, conditions that can only be violated by a cyclic
sequence. Technically, they are conveyed by formulae on the
right-hand side of anU modality or formulae in the scope
of a ♦ modality. While liveness properties are interesting
from the purpose of specifying temporally extended goals—
and we should indeed check that any cyclic plan we generate
satisfy them—they are useless as far as control knowledge is
concerned because they cannot be used for early pruning.

Our syntax allows arbitrary use of theGOAL modality in-
side the scope of temporal operators. So in principle, we
could condition current search control decisions upon goals.
However, this, or equivalently authorizing temporal modal-
ities inside the scope ofGOAL, is something we concep-
tually want to avoid with the particular approach described
in this paper. Indeed, recall that we explore an approach
whereby search control knowledge for temporally extended
goals is simply implemented by means of interpreting tradi-
tional search control knowledge for reachability goals with
respect to a suitable sequence of reachability goals generated
by the planner.

We could easily restrict the language to both prevent the
expression of liveness properties (e.g., by using the well-
known ‘weak’ version ofU), and conditioning of present
decision on future goals (see e.g. (Slaney 2004) for both
syntactic and semantic restrictions). However, we refrain
doing so in order to stick to the general syntax adopted in
TLPlan, and more importantly to keep the language open to
more sophisticated reasoning about search control along the
lines mentioned in the introduction of this paper.

Formula Progression
To use search control knowledge effectively, TLPlan must
be able to check plan prefixes on the fly and prune them
as soon as violation is detected. The key to achieve this
is an incremental technique called formulaprogression, be-
cause it progresses or pushes the formula through the se-
quenceΓ induced by the plan prefix. The idea behind
formula progression is to decompose an LTL formulaf
into a requirement about the presentΓi and which can be
checked straight away, and a requirement about the fu-
ture that will have to hold of the yet unavailable suffix.
That is, formula progression looks atΓi and f , and pro-
duces a new formula fprog(Γi, f) such that(Γ, i) |= f iff
(Γ, i + 1) |= fprog(Γi, f). If Γi violates the part off that
refers to the present then fprog(Γi, f) = ⊥ and the plan
prefix can be pruned, otherwise, the prefix will be extended
and the process will be repeated withΓi+1 and the new for-
mula fprog(Γi, f). In our framework, where world states
are paired with sets of goal states inΓ, i.e., Γi = (si, Gi),
fprog(Γi, f) is defined as follows:4

Algorithm 1 Progression

fprog(Γi, f) = > iff si |= f else⊥, for f atomic
fprog(Γi,GOAL(f)) = > iff gi |= f for all gi ∈ Gi else⊥
fprog(Γi,∀x f) = fprog(

∧
d∈D f [x/d])

fprog(Γi,¬f) = ¬fprog(Γi, f)
fprog(Γi, f1 ∧ f2) = fprog(Γi, f1) ∧ fprog(Γi, f2)
fprog(Γi,©f) = f
fprog(Γi, f1 Uf2) = fprog(Γi, f2) ∨

(fprog(Γi, f1) ∧ f1 Uf2)

fprog runs in linear time in|f | × |Gi|. Progression can
be seen as a delayed version of the LTL semantics, which is
useful when the elements of the sequenceΓ become avail-
able one at a time, in that it defers the evaluation of the part

4Again, later on we abusively use simple world states as argu-
ment to fprog when it is clear thatf does not containGOAL.

of the formula that refers to the future to the point where the
next element becomes available. However, since progres-
sion only applies to finite prefixes, it is only able to check
safety properties, such as those involved in search control
knowledge. In particular, it is unable to detect violation of
liveness properties involved in temporally extended goals,
as these can only be violated by an infinite sequence. Such
properties will progress to>when satisfied, but will never
progress to⊥. For that reason, when dealing with tempo-
rally extended goals, we need an extra mechanism to check
that liveness properties are satisfied.

Büchi Automaton Equivalent to a Goal
A Büchi automaton equivalent to the temporally extended
goal (Wolper 1987) provides us with such a mechanism. A
Büchi automaton is a nondeterministic automaton over in-
finite words. The main difference with an automaton over
finite words is that accepting a word requires an accepting
state to be reached infinitely often, rather than just once.

Formally a B̈uchi automaton is a tupleB =
(Σ, Q,∆, q0, QF), whereΣ is an alphabet,Q is a set of au-
tomaton states,∆ : Q × Σ 7→ 2Q is a nondeterministic
transition function,q0 is the start state of the automaton, and
QF the set of accepting states. A run ofB over an infinite
word w = w0w1 . . . is an infinite sequence of automaton
states(q0, q1, . . .) whereqi+1 = ∆(qi, wi). The run is ac-
cepting if some accepting state occurs infinitely often in the
sequence, that is, if for someq ∈ QF , there are infinitely
manyi’s such thatqi = q. Wordw is accepted byB if there
exists an accepting run of ofB over w, and the language
recognised byB is the set of words it accepts.

Given a temporally extended goal as an LTL formula
f without GOAL modality and quantifiers, one can build
a Büchi automaton recognising exactly the set of infinite
world state sequences that satisfyf . The transitions in this
automaton are labelled with world states, i.e.,Σ = 2P where
P is the set of atomic propositions inf . In the worst case,
the number of states in the automaton is exponential in the
length of f . It is often small however for many practical
cases as illustrated in Figure 1. The many methods to build
such automata differ by the size of the result and the time
needed to produce it, see e.g. (Fritz 2003).

Formula progression can be seen as simulating parallel
runs in the B̈uchi automaton. A useful image for a single
run is that of the ‘active’ state of the automaton being up-
dated when the next world state is processed; if no transition
is possible at some point, no state becomes active, and the
run is non-accepting. Now since the automaton is nonde-
terministic, imagine that several states are active at a time
as a result of taking all transitions than can be taken at any
given step. Each progression step can be viewed as updating
the set of active states of the automaton when a new world
state is processed, and progression to⊥ amounts to having
no state left active. Formally, we can define a Büchi automa-
ton version of progression, bprog, which looks at the current
world stateΓi and at the set of currently active automaton
statesQi and returns a new set of active automaton states,
i.e. bprog(Γi, Qi) = ∪q∈Qi

∆(q, Γi). Let f be a tempo-
rally extended goal, andB a Büchi automaton equivalent to

Figure 1 Simple B̈uchi automata examples

?��
� � 	��?�
�

�
�

�
�

�
��
 �	-

?
∅

{p}
{p}{p}

automaton forf ≡ ♦�p

%
66

&
� 	��?

� 	��??��
�

 	6

?�'

& %

$�?

��
��

��
��

��
��

��
��

��
��m

mm

S
S
Sw

�
�

�/

6 6
�

�
�

�
��=

Z
Z

Z
Z

ZZ~
�

- ∅
{p, q}

∅
{p}

∅

{p, q}

{p}

{q}

{p}

{q}

{p, q}

{p}

{q}

{p}{q}

{q}
∅

{p, q}

∅

automaton for�(p → ♦q) ∧�(q → ♦p)

f . Let furthermore(f0, f1, . . .) be the sequence of formulae
obtained by successive progressions off through the world
state sequenceΓ, i.e. f0 = f and fi+1 = fprog(Γi, fi)
for all i, and let (Q0, Q1, . . .) be the sequence of active
states obtained by B̈uchi progression throughΓ in B, i.e.,
Q0 = {q0} andQi+1 = bprog(Γi, Qi) for all i. We have
that for alli Qi = ∅ iff fi = ⊥.

The Büchi automaton additionally makes it possible to
check that a plan satisfies the liveness properties required by
the temporally extended goal. Intuitively, for these liveness
conditions to be satisfied, executing the plan must induce a
sequence of world states that leads us to cycle through an ac-
cepting state of the automaton infinitely often. Formally, the
cyclic plansΠ = (π, k) we will consider will induce a cyclic
sequence of world statesΓ = (γ, k), with |π| = |γ|, and
furthermore the finite sequence of active automaton states
(Q0, . . . , Q|π|) obtained by B̈uchi progression throughγ in
B will be such thatQ|π| = Qk. A planΠ with these proper-
ties satisfies the goal iff 1) noQi is empty, and 2) there exists
a j ∈ {k, . . . , |π| − 1} such thatQj ∩ QF 6= ∅. The first
condition ensures that the safety properties are not violated,
and the second that the liveness properties are satisfied.

Whereas the B̈uchi automaton is more powerful than for-
mula progression, each have their preferred usage in our
planner. For processing search control knowledge, which is
a large collection of safety formulae, the linear-time formula
progression procedure given in algorithm 1 is best suited.
For full processing of temporally extended goals, which are
rather short in comparison and additionally include liveness
properties, it is worth investing time in building the Büchi
automaton. This only needs to be done once, at the start of
the planning episode. One can then resort to Büchi progres-
sion and checking for accepting cycles as described above.
TLPlan (Bacchus & Kabanza 1998) never needs to resort to

the Büchi automaton because it only handles the subset of
temporally extended goals that admit finite plans. For such
plans, a variant of formula progression can check for satis-
faction of liveness properties. Below, we describe a method
which also relies on the B̈uchi automaton to generate suc-
cessive reachability goals with respect to which theGOAL
modality is interpreted. These are taken as input by formula
progression when processing search control knowledge.

Method
Intuition
Given a description of the domain (including the available
actions and search control knowledge), an initial world state,
and a temporally extended goal, our planner searches for-
ward for a finite sequence of actions from which a cyclic
plan satisfying the goal can be formed. In doing so, it uses
Büchi progression to prune sequence prefixes which violate
the safety requirements of the goal. It also uses formula pro-
gression to prune prefixes violating the control knowledge.
In the latter, search control decisions are conditioned upon a
current reachability goal, via theGOAL modality. We now
explain how we use the B̈uchi automaton to dynamically
generate, while planning, the successive reachability goals.

We view the states of the B̈uchi automaton as represent-
ing intermediate stages of satisfaction of the temporally ex-
tended goal, and the labels of the transitions as conditions
to be reached to move from one stage to another. At any
step of the search, our current search controlstrategyis rep-
resented by a transition5 originating at an active state of the
Büchi automaton. The label of that transition is our current
reachability goal. We will often refer to that transition as the
strategy’s transition and to its origin state as the strategy’s
state. Because, in the automaton, the plan we are seeking
must induce a cyclic run that includes an accepting state, our
idea is to to guide the search towards such accepting states.
The most direct way to achieve this, is to prefer strategies
that are part of anacyclicpath to an accepting state. That is,
there should be a path to an accepting state starting with the
strategy’s transition, and that path should not go through the
same state twice.

When the planner generates the next action and the new
current world state, we update our strategy by choosing be-
tween the transitions available at the newly active automaton
states, with the following preferences. Since when a strategy
is selected, its label is used as the reachability goal to con-
trol search, we are hoping for the planner to produce a new
world state satisfying this goal. If this happens, we prefer
taking the strategy’s transition in the Büchi automaton and
selecting a new strategy originating at the the target state
of that transition, again preferring strategies that are part of
an acyclic path. Otherwise, as long as the world state pro-
duced by the planner matches the label of a transition back
to the strategy’s state, we prefer sticking to the current strat-
egy, thereby giving more time to the planner to achieve the
current goal. Otherwise we opportunistically choose a new
strategy by selecting a transition originating at a new ac-
tive state, again preferring strategies that are part of acyclic

5A triple: origin state, label, target state.

paths. We backtrack on the choice of the current strategy
when it fails to lead to a plan.

For instance, consider the automaton for the cyclic goal
�(p → ♦q)∧�(q → ♦p) in Figure 1. Suppose that the only
active state is the non-accepting state on the right-hand side.
There are two transitions that are part of an acyclic path from
that state to an accepting state: those labelled with{q} and
{p, q}, respectively. Suppose that we select{q}, this means
that search control knowledge is evaluated with respect to
the set of current goal statesGi = {si | si |= q ∧ ¬p}.
As long as the current world state does not containq, we
stick to the current strategy. If the planner produces a world
state that containsq but notp, our current strategy has suc-
ceeded and we take the transition to the bottom left-hand
side accepting state. That state becomes our new strategy
state. If on the other hand the planner had produced a world
state that contains bothp andq, we would opportunistically
have taken the transition to the top accepting state. Natu-
rally, when reaching an accepting state, things are not over
yet, as the planner must still generate the other part of the
cycle.

Algorithm
We now describe the details of our algorithm. In doing so,
we use the macro CHOOSEto denote a backtracking choice
point. We assume that this choice takes into account the
preferences we mentioned before.

Our planning procedure is shown in Algorithm 2. The
function PLAN takes as parameters a setA of planning oper-
ator descriptions, a search control formulaf , an initial world
states0, and a temporally extended goalg. It returns a cyclic
plan achievingg or FAILURE to do so. Its main task is to ini-
tialise the data structures required by the search. In particu-
lar, it builds the B̈uchi automatonB for the goalg (line 2),
and marks transitions inB that are part of some acyclic path
to an accepting state (lines 3). This marking will be used
to prefer marked transitions when choosing between strate-
gies. Initially, the setclosed of closed nodes of the search
is empty (line 4). The initial strategy (lines 5-6) consists of
a transitiont0 chosen among the set TRANS(B, q0) of all
transitions available at the initial stateq0 in B.

The function SEARCH takes as parameters the setA of op-
erator descriptions, the B̈uchi automatonB, the search con-
trol formula f , the current plan prefixPi (initially empty),
and the current search node, characterised by the current
world statesi (initially s0), the current formulafi obtained
by progression of the search control formula (initiallyf),
the setQi of currently active automaton states obtained by
Büchi progression (initially{q0}), and the transitionti rep-
resenting the current strategy (initiallyt0). The plan pre-
fixes we consider are sequences of triplets(si, Qi, ai) con-
sisting of the current world state, the currently active au-
tomaton states (this is often called the plan context (Pistore
& Traverso 2001)), and the action to be performed.

After closing the current node (line 9), the first task of the
SEARCH function is to check whether the current plan pre-
fix can form a cyclic plan achieving the goal (lines 10-13).
For this, it calls the function CYCLICPLAN , which takes the
Büchi automatonB and the current plan prefix as parame-

Algorithm 2 Planning Procedure

1. function PLAN(A, f, s0, g)
2. B ← BUILDAUTOMATON(g)
3. B ← MARKACYCLIC(B)
4. closed← ∅
5. q0 ← INITIAL (B)
6. t0 ← CHOOSEa transition in TRANS(B, q0)
7. return SEARCH(A, B, f, (), s0, f, {q0}, t0)

8. function SEARCH(A, B, f, Pi, si, fi, Qi, ti)
9. closed← closed ∪ {(si, fi, Qi, ti)}

10. (cyclic, accepting, plan)← CYCLICPLAN(B, Pi)
11. if cyclic then
12. if accepting then return plan
13. else return FAILURE
14. fi+1 ← PROGRESSFORMULA(si, fi, LABEL(B, ti))
15. if fi+1 = ⊥ then return FAILURE
16. Qi+1 ← PROGRESSAUTOMATON(si, B, Qi)
17. if Qi+1 = ∅ then return FAILURE
18. update← UPDATE(B, Qi+1, ti)
19. if update = ∅ then return FAILURE
20. else ti+1 ← CHOOSEa strategy inupdate
21. if ti+1 6= ti then fi+1 ← f
22. successors← EXPAND(si, A ∪ {wait})
23. if successors = ∅ then return FAILURE
24. (ai, si+1)← CHOOSEa successor fromsuccessors
25. if (si+1, fi+1, Qi+1, ti+1) ∈ closed then
26. return FAILURE
27. Pi+1 ← Pi; (si, Qi, ai)
28. return SEARCH(A, B, f, Pi+1, si+1, fi+1, Qi+1, ti+1)

29. function CYCLICPLAN(B, ((s0, Q0, a0), . . . , (sn, Qn, an)))
30. for k = 0 to n− 1
31. if (sk = sn) ∧ (Qk = Qn) ∧ (ak = an) then
32. for j = k to n− 1
33. if ∃q ∈ Qj such that ISACCEPTING(B, q) then
34. return (true, true, ((a0, . . . , an−1), k))
35. return (true, false, ((a0, . . . , an−1), k))
36. return (false, false, ((), 0))

ters, and returns two booleanscyclic andaccepting as well
as a cyclic plan.cyclic is true when a cyclic plan can be
formed from the current plan prefix, i.e., when the last ele-
ment of the plan prefix is identical to the thekth element, for
somek (lines 30-31).accepting is true when the plan leads
to an accepting cycle in the Büchi automaton, that is, when
some active setQj in the loop (j ≥ k) includes an accepting
state (lines 32-35). If the current plan prefix is cyclic and
accepting, then the search returns the corresponding cyclic
plan (lines 10-12). If it is cyclic but not accepting, then it
is a dead-end andFAILURE is returned (line 13). Otherwise,
the search needs to expand the current prefix further.

This expansion can only take place if the prefix does not
violate the control knowledge (lines 14-15). The function
PROGRESSFORMULA takes as parameters the current world
statesi, the current search control formulafi, and the label
li of the current strategy’s transitionti, and checks thatfi

successfully progresses throughΓi = (si, Gi) whereGi =
{s | s |= li}. That is, it computesfi+1 = fprog(Γi, fi)
and checks thatfi+1 6= ⊥. It is also required that the pre-

fix does not violate the safety requirements of the plan, i.e.
the new setQi+1 of active states of the B̈uchi automaton
B must not be empty (lines 16-17). This is checked by the
function PROGRESSAUTOMATON which takes as parame-
ters the current world statesi, the automatonB, and the
current state of active statesQi and computes the B̈uchi pro-
gressionQi+1 = bprog(si, Qi) in B.

The next step is to update the strategy (lines 18-21). The
function UPDATE takes as parameters the Büchi automaton
B, the new set of active automaton statesQi+1, and the cur-
rent strategyti. It returns the strategies available at a state
in Qi+1. We assume that these are ordered in decreasing or-
der of preference. As mentioned earlier, in our experiments,
we have adopted the following preferences. Any strategy
whose origin state is the target state ofti, if any, should be
ranked before strategies originating at any other state. Strat-
egyti should be ordered next. Furthermore, subject to those
constraints, marked strategies should rank before unmarked
ones. Many other orderings and complementary preferences
may make sense. When the newly selected strategy differs
from the current one, we reset the search control (line 21).
The reason is that we are using search control for reachabil-
ity goals, and that the strategy change will result in guiding
the planner towards a new reachability goal.

Finally, the current prefix is expanded (lines 22-28). The
function EXPAND computes the setsuccessors pairs con-
sisting of an actionai applicable in the current world statesi

together with the resulting world statesi+1 = result(ai, si).
(line 22). EXPAND explicitly considers the action of wait-
ing without changing the world state, which is necessary to
handle goals achievable by non-cyclic plans. One of the suc-
cessors is chosen (lines 23-24). Provided that the resulting
node has not already been closed (line 25-26), the plan pre-
fix is expanded (line 27), and the search recurses with the
new prefix and the new node (line 28).

Completeness
The algorithm is ‘complete’ in the following sense. If there
exists a sequence of strategies(t0, . . .) forming an accepting
run of the B̈uchi automaton and a sequence of world states
(s0, . . .) such that the sequenceΓ = ((s0, G0), . . .) |= f ,
wheref is the search control knowledge andGi is the set
of goal states satisfyingti’s label, then the algorithm will
return a plan satisfying the temporally extended goal. This
is because we potentially generate all such sequences, and
these cover all possible runs of the automaton, including ac-
cepting ones. In particular, if the search control formula is
f ≡ >, the planner will find a plan satisfying the goal if
one exists because we will not prune any solution from the
search space. A slightly more useful completeness result
would only assume the existence of the sequence(G0, . . .)
as a premise, instead of insisting that this sequence corre-
sponds to a sequence of strategies extracted from the au-
tomaton. While such strategies have the nice property of
representing successive reachability goals that the planner
needs to achieve in order to satisfy the temporally extended
goal, we have no guarantee that the control knowledge will
not progress to⊥ with all of them while not progressing to
⊥ with some other totally unmotivated goal sequence.

Figure 2 Health Care Domain Floor Map

o1

d11 d12 d24

o2

o5 o6
o7 o3

o4

d23

nurse robot

Smith

c2 (corridor)

r1 (ward) r2 (ward) r3 (bathroom) r4 (kitchen)

c1 (corridor)

With any approach relying on search control (and this
is true of the original TLPlan algorithm), it is difficult to
present more useful completeness results because the search
control written by the domain modeller could well prevent
finding any plan. The approach investigated in this pa-
per exacerbates this somewhat, since it uses search control
knowledge designed for reachability goals to solve problems
with temporally extended goals. There is tension between
the requirements of the temporally extended goals, and the
requirement that search control knowledge for reachability
goals prune as much of the search space as possible. There
is no guarantee that these requirements be compatible.

We offer the experimental results in the next section as
evidence that our approach, despite this tension, is useful
in practice. For these experiments, we took domains from
the TLPlan suite and did not alter the original search control
knowledge at all. We took genuine examples of temporally
extended goals we wanted to plan for, and in most cases the
algorithm found a sensible plan in under a second. Without
search control knowledge, the same algorithm and where ap-
plicable the original TLPlan algorithm were unable to find a
plan in reasonable time for any but the smallest problems.

Experimental Results

We incorporated the above algorithm to the Scheme imple-
mentation of TLPlan. TLPlan has two modes. Theclassic
mode handles reachability goals with search control knowl-
edge, and thetemporalmode handles non-cyclic temporally
extended goals without search control knowledge. Our ex-
tension adds acomprehensivemode which handles both gen-
eral temporally extended goals and search control knowl-
edge. We performed experiments in the health care robot
and blocks world domains, using MIT Scheme version 7.7
running on a Pentium 4, 2GHZ, 512MB RAM processor. All
time performance results reported below are in CPU seconds
(sec). The LTL to B̈uchi automaton translation relies on a li-
brary mapping typical formulas to corresponding Büchi au-
tomata, and causes negligible overhead. The experiments
aim at demonstrating (1) the feasibility of the comprehensive
mode, that is, the usability in the temporally extended goals
context of search control knowledge designed for reachabil-
ity goals, (2) its increased expressivity even compared to the
temporal mode, i.e. in handling cyclic goals, and (3) its ef-
ficiency, that is, where such comparisons make sense, the
performance gain compared to the temporal mode, and the
overhead compared to the classic mode.

Domains
The blocks world domain we consider is the version with 4
operators (stack, unstack, pickup, putdown) and TLPlan’s
standard search control knowledge which conveys, as a
function of the goal, most ways of avoiding building bad
towers.

The health care robot domain is isomorphic to the robot
room domain introduced in (Bacchus & Kabanza 1998),
where a robot moves within the floor plan shown in Fig-
ure 2, carrying objects from room to room. The atomic
propositions indicate the location of the robot and the ob-
jects, whether the robot is holding an object, and the posi-
tions (closed/open) of the doors. The planning operators are
moving, opening or closing a door, and grasping or releasing
an object. The control knowledge, taken as is from the do-
main specification for the classic mode, specifies (1) to keep
door opened unless the goal states otherwise, (2) not to grasp
objects unless they need to move or be held, (3) not to release
objects until their destination is reached. The health care do-
main can be simulated by having objects play person roles
(Mrs Smith, nurse) and having rooms with special functions
(e.g., kitchen or bathroom). Since the domain is determin-
istic, people can only move when accompanied (held) by
the robot. For instance, we can simulatewith(Smith) by
holding(Smith), has(Smith,Coffee) by in(Smith, r4), and
talkto(nurse) by closed(d11).

Reachability Goals
From the initial state in Figure 2, we set the goal to be:
♦�in(o1, r2). This corresponds to the reachability goal
in(o1, r2) and to the top B̈uchi automaton in Figure 1. In
comprehensive mode, the planner generates the following
plan in 0.04 sec:

((move(c2, c1),move(c1, r1), grasp(o1),
move(r1, c1),move(c1, r2), release(o1),wait), 6)

The classic mode obtains the same plan in the same time,
using the same control knowledge. This shows that our ap-
proach leads to little or no overhead with reachability goals.
As expected, control knowledge leads to dramatic gains: the
temporal mode, which has no control knowledge, was only
able to generate a 2448 steps plan after 5.88 sec. When vary-
ing the size (number of rooms and objects) of the problem,
the comprehensive and classic modes yield similar perfor-
mances in all cases. These outweigh those of the tempo-
ral mode by an amount increasing with the problem size
and ranging between one to two orders of magnitude for the
above configuration with 1 to 10 objects.

Similar observations were made in the Blocks World do-
main. To illustrate, with the initial configuration

clear(g) ∧ clear(e) ∧ clear(c) ∧ clear(a) ∧ ontable(f)
∧ontable(e) ∧ ontable(b) ∧ ontable(a) ∧ on(g, d)
∧on(d, f) ∧ on(c, b) ∧ handempty

and the goalon(d, a)∧ on(c, e)∧ on(e, f)∧ on(f, b) we ob-
tain a plan in 0.16 sec both in the classic and comprehensive
mode; the plan contains only the12 actions needed to ac-
complish the task. This goal is beyond the capability of the
temporally extended mode without search control.

Sequential Goals
Because there are few interactions among subgoals in the
health care robot domain, it is much faster to plan for a se-
quence of deliveries of separate objects than for the union of
these deliveries formulated as a single reachability goal. For
example, it only takes 0.11 sec to the comprehensive mode
to return a plan for the sequential goal:

♦(in(o1, r2) ∧©♦(in(o2, r4) ∧©(♦in(o4, r2)))))

(the temporal mode, faced with the same problem, runs out
of memory after 163 sec). In contrast, it took both the com-
prehensive and classic modes 0.19 sec, that is nearly twice
as long, to generate a plan for the reachability goal:

♦(in(o1, r2) ∧ in(o2, r4) ∧ in(o4, r2))

Experiments with a range of delivery problems from the
above initial configuration showed similar performances.
Therefore, it seems that not only temporally extended goals
allow additional expressivity of practical use (one often
wants to specify in which order tasks need to be accom-
plished), but also can be more efficient in domains with few
subgoal interactions.

In the blocks world, which has much richer subgoal inter-
actions, it is no longer the case that subgoal sequences are
easier to treat than the conjunction of the subgoals. In fact,
sequenced subgoals are not even equivalent to their conjunc-
tion. For instance, the goal♦(on(a, b)∧©♦on(c, a)) yields
the same (optimal) plan as the goal♦(on(a, b) ∧ on(c, a))
in the same 0.06 sec, but no less. Furthermore, the goal
♦(on(c, a) ∧ ©♦on(a, b)) is not equivalent, since the plan,
which is returned in 0.07 sec, is unable to preserve the first
subgoal when achieving the second.

Reactive and Cyclic Goals
We experimented with more complex goals combining
nestedU and� modalities. For instance, it takes 0.93 sec
for the comprehensive mode to generate a plan for our goal
example:

(in(robot, c1) ∧ in(nurse, c1) → ©talkto(nurse))
U (�with(Smith) ∧©♦(in(Smith, bathroom)
∧©♦has(Smith, coffee)))

The temporal mode, without search control, runs out of
memory after 192 sec of computation.

We also experimented with cyclic plans in the compre-
hensive mode. Recall that those plans cannot be generated
at all in temporal mode. For instance, consider the same ini-
tial configuration as in the figure except that the robot starts
in r1, and the goal:

�(in(robot, r1) → ♦in(robot, r3))∧
�(in(robot, r3) → ♦in(robot, r1))

The corresponding B̈uchi automaton is shown in Figure 1.
The following plan is returned in 0.31 sec.

((close(d11), open(d11),move(r1, c1),move(c1, c2),
move(c2, r3), close(d23), open(d23),move(r3, c2),
move(c2, c1),move(c1, r1)), 0)

Without search control (i.e., with search control set to>),
the comprehensive mode runs out of memory even in a sim-
pler problem where no objects are present. As the presence
in the plan ofclose andopen actions illustrate, our heuristic
for switching between strategies in the Büchi automaton is
suboptimal. What is happening here is that a transition la-
belled with∅ ends up being selected in the automaton. This,
in turn, means that the control knowledge will progress to>
(becauseGOAL modalities will evaluate to⊥), resulting in
useless actions being allowed.

In a nutshell, based on these results from the blocks world
and health care robot domains, our approach seems very
promising. We generally obtain plans for reasonably com-
plex goals in a matter of seconds, yet with an implemen-
tation in Scheme. Our approach of using search control
knowledge originally designed for reachability goals worked
well. Because the search control knowledge was quite con-
servative, there was never any conflict between this knowl-
edge and the goal.

Conclusion, Future and Related Work
In this paper, we have argued that search control knowledge
is an important component of the planning domain descrip-
tion. To work, every planning system already needs to be
given some knowledge of the domain, e.g. that of precondi-
tions and effects of primitive actions, and we consider it as
natural and indeed useful to also provide rules of thumb on
how to choose between those actions. Current planning sys-
tems condition search control decisions on properties of a
desired final state and can therefore only use search control
in conjunction with reachability goals. We have described
one of the many possible approaches to the use of search
control in conjunction with temporally extended goals.

This approach consists in interpreting search control with
respect to successive reachability goals which are chosen
from the labels of the transitions of a Büchi automaton
for the temporally extended goal. One of its strengths is
that search control knowledge originally written for sim-
ple reachability goals can be reused without change. Its
main weakness is that such search control knowledge fails to
take into account important aspects of temporally extended
goals, such as the interaction between sequential reachabil-
ity goals, and the interaction between reachability goals and
safety properties.

This paper is by no means the final answer to the dif-
ficult problem of specifying and exploiting search control
knowledge for temporally extended goals. There is potential
for improving the simple method described here by investi-
gating better heuristics for the selection of the reachability
goals. An important aspect of future work is to experiment
with alternative ways of evaluating theGOAL modality, in-
cluding but not limited to those mentioned in the introduc-
tion of this paper. In particular, we would like to investigate
the possibility of allowing CTL operators around theGOAL
modality. The B̈uchi automaton for the LTL goal would then
be the Kripke structure with respect to which to search con-
trol goals are evaluated. This would enable more complex
conditioning of search control decisions, e.g., on the possi-
bility that one reachability goal becomes our current reach-

ability goal before another does. From then, another nat-
ural extension is to consider nondeterministic domains, for
which CTL is needed in all aspects of search control.

Perhaps the most important item on our future work
agenda is the design of a search control specification lan-
guage which explicitly refers to temporally extended goals,
while enabling a modular specification much as in the reach-
ability case. The language of the Gapps compiler (Kaelbling
1988) can be seen as a primitive form of what we could aim
at. Gapps considers symbolic reduction rules that map prim-
itive goals such as♦p(x) and�p(x) or composite goals (dis-
junction, conjunctions) to subgoals or actions. In our case,
we need to consider more complex composite goals allow-
ing the interleaving of temporal modalities.

Another aspect of future work is determining whether
special forms or generalisations of Büchi automata could
help reducing the complexity of search. For instance, a
deterministic automaton would reduce the branching fac-
tor for our algorithm. While deterministic B̈uchi automata
are strictly weaker than non-deterministic Büchi automata,
it would be possible to build a deterministicω-automaton
with more complex acceptance conditions (e.g. a Rabin au-
tomaton) (Safra 1988). The worst-case complexity of doing
so being explonential in the number of states, we need to in-
vestigate the tradeoff in using those or one of the many other
generalisations of B̈uchi automata proposed in the literature
as an alternative to our current approach.

Our work is largely orthogonal to previous planning re-
search. While approaches for planning with temporally ex-
tended goals resort to similar mechanisms to those we use
here (progression, variants of the Büchi automaton) (Bac-
chus & Kabanza 1998; Kabanza, Barbeau, & St-Dennis
1997; Dal Lago, Pistore, & Traverso 2002), and while the
latter two also handle cyclic goals, they are not concerned at
all with search control. In particular, TLPlan is unable to ex-
ploit search control when dealing with temporally extended
goals and is restricted to acyclic plans.

Similar remarks apply to recent work on compiling LTL
formulae into the classical planning framework (Rintanen
2000; Cresswell & Coddington 2004). The aim is to enable
classical planners to solve problems involving either tempo-
rally extended goals, or search control knowledge. The com-
pilation in (Rintanen 2000) for instance, results in classical
planners effectively exploiting generic search control. How-
ever, the scheme is only adequate for reachability goals be-
cause theGOAL modality is still interpreted with respect to
a final goal state. Our method could be applied in the frame-
work of this compilation scheme to lift classical planners to
handling search control for temporally extended goals. The
compilation in (Cresswell & Coddington 2004), consists in
letting the planning operators track the state of an automaton
representing all reachable progressions of the temporally ex-
tended goal. This automaton, which is known as the ‘local
automaton’ in the verification literature (Wolper 1987), does
not deal with liveness properties. The approach is clearly
aimed at (acyclic) temporally extended goals rather than
search control. In particular the translation does not cope
with quantification and with theGOAL modality which are
essential components of search control.

Acknowledgements
The authors thank John Slaney for helpful discussions. This
work was initiated while Froduald Kabanza was visiting the
Australian National University. He is grateful for the support
received from ANU for this visit. He is also supported by the
Canadian Natural Sciences and Engineering Research Coun-
cil (NSERC). Sylvie Thíebaux thanks National ICT Aus-
tralia (NICTA) and the Australian Research Council (ARC)
for their support. NICTA is funded through the Australian
Government’sBacking Australia’s Abilityinitiative, in part
through the ARC.

References
Bacchus, F., and Kabanza, F. 1998. Planning for temporally ex-
tended goals.Annals of Mathematics and Artificial Intelligence
22:5–27.
Bacchus, F., and Kabanza, F. 2000. Using temporal logic to
express search control knowledge for planning.Artificial Intelli-
gence116(1-2).
Baral, C., and Zhao, J. 2004. Goal specification in presence of
nondeterministic actions. InProc. ECAI.
Cesta, A.; Bahadori, S.; G, C.; Grisetti, G.; Giuliani, M.; Loochi,
L.; Leone, G.; Nardi, D.; Oddi, A.; Pecora, F.; Rasconi, R.; Sag-
gase, A.; and Scopelliti, M. 2003. The robocare project. cognitive
systems for the care of the elderly. InProc. International Confer-
ence on Aging, Disability and Independence (ICADI).
Cresswell, S., and Coddington, A. 2004. Compilation of LTL
goal formulas into PDDL. InProc. ECAI.
Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning with
a language for extended goals. InProc. AAAI.
De Giacomo, G., and M. Y. Vardi. 1999. Automata-theoretic ap-
proach to planning for temporally extended goals. InProc. ECP.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-specific
knowledge from random walks. InProc. ICAPS.
Fritz, C. 2003. Constructing B̈uchi automata from linear temporal
logic using simulation relations for alternating Büchi automata. In
Proc. International Conference on Implementation and Applica-
tion of Automata.
Kabanza, F.; Barbeau, M.; and St-Dennis, R. 1997. Planning
control rules for reactive agents.Artificial Intelligence95:67–
113.
Kaelbling, L. 1988. Goals as parallel program specifications. In
Proc. AAAI.
Kvarnstr̈om, J., and Magnusson, M. 2003. TALplanner in IPC-
2002: Extensions and Control Rules.Journal of Artificial Intelli-
gence Research20:343–377.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdoch, J.; Wu, D.; and
Yaman, F. 2003. SJOP2, an HTN Planning System.Journal of
Artificial Intelligence Research20:379–404.
Pasula, H.; Zuttlemoyer, L.; and Pack Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules. InProc. ICAPS.
Pistore, M., and Traverso, P. 2001. Planning as model-checking
for extended goals in non-deterministic domains. InProc. IJCAI.
Rintanen, J. 2000. Incorporation of temporal logic control into
plan operators. InProc. ECAI.
Safra, S. 1988. On the complexity of w-automata. InProc. FOCS.
Slaney, J. 2004. Semi-positive LTL with an uninterpreted past
operator.Logic Journal of the IGPL.To appear.
Wolper, P. 1987. On the relation of programs and computations
to models of temporal logic. InProc. Temporal Logic in Specifi-
cation, LNCS 398, 75–123.

