GPT Meets PSR

Blai Bonet Sylvie Thiébaux

Computer Science Department Computer Sciences Laboratory

University of California at Los Angeles The Australian National university
Los Angeles, CA 90024, USA Canberra, ACT 0200, Australia
bonet@cs.ucla.edu Sylvie.Thiebaux@anu.edu.au
Abstract of heuristic search in the belief space, which it solves opti-
_ _ mally in finite time using an off-line variant of Real-Time
We present a case study in confronting theT general- Dynamic Programmingirpp) (Bartoet al. 1995).

purpose planner with the challenging power supply restora- . ; . -
tion (PSR benchmark for contingent planningsris derived The PSR problem consists in planning actions to recon-

from a real-world problem, and the difficulty of modeling and figure a faulty power distribution network in such a way as
solving it contrasts with that of the purely artificial bench- to minimize breakdown costs. Due to sensor and actuator

marks commonly used in the literature. This confrontation uncertainty, the location of the faulty areas and the current
leads us to improve general techniques for contingent plan- network configuration are uncertain, which leads to a trade-

ning, to provide @bDL-syle encoding oPsrwhich we hope off between acting to resupply customers and acting (intru-
to see used in planning competitions, and to report the first sjvely) to reduce uncertainty. (Bertadt al. 2002) reports
results on generatingptimalpolicies forpsr the first successful attack of a general purpose planner on

thepsrdomain:MBP was able to solve non-trivial instances
Introduction of the _problem of generating a co_ntingent plan guaranteed
))) o to achieve a given supply restoration goal. By contrast, our
Coping with partially observable domains is arguably one of gbjective was to havepT address the full scope of trsR
the most exciting and difficult challenges the field of plan- penchmark, for which there is no specified goal but rather
ning has been faced with. Despite promising advances in the request to minimize breakdown costs. This amounts to
using compact symbolic representations, heuristic search, generatingoptimal policies for a contingent planning prob-
and domain-specific control knowledge (Bertatial. 2001; lem, which we wish to emphasize is typically much harder.
Bonet & Geffner 2000; Hansen & Feng 2000; Karlsson Tpe fact that even small instances of this optimization
2001; Majercik & Littman 1999), the perception is that par- proplem were stretchingPT's limits motivated the devel-
tial observability still lies on the critical path between plan- opment ofimproved, generamethods for planning under
ning research and applications. This perception is supported jncomplete information. E.g, to avoid the costly genera-
by the fact that, with very few exceptions (Cassarglral. ~ tjon of a large number of irrelevant states, we had to resort
1996; Bertoliet al. 2002), experimental results reported in {5 an incremental version afTop. This, in turn, required
the literature are confined to a well worn set of purely arti- ;5 to find clever ways aflynamicallycomputing a domain-
ficial benchmarks, featuring bombs in toilets, tigers hidden jygependent admissible heuristic for contingent planning (a
behind doors, and rotten eggs. We have reached the pointyriant of the well knowrompp), without generating the en-
where assessing the accuracy of this perception and pushingtjre state space. This results in a substantial improvement in
the envelope require that general-purpose uncertainty plan- the apjlity ofGPTto cope with larger problem instances.
ners confront benchmarks derived from real-world applica- In addition to reporting an interesting case study and im-

tiolns, and that such confrontations begin to inform their de- proved techniques for contingent planning, this paper makes
velopment. a number of contributions towards the useeRkas a bench-

This paper reports a case study in doing just that. We ok for ; i i i
_ planning under uncertainty. For instance, we give a
confront the General Planning To@gT) (Bonet & Geffner concise PDDL style, problem-independent encoding match-

2000) with the power supply restoratiorgR challenge is- in ; e ; i ;

. . . : - g the informal description afsrin (Thiébaux & Cordier
sued in (Thebaux & Cordier 2001), and examine the impact »501) which we expect to be particularly useful for future
that this benchmark had on new developmentsHa. planning competitions.

GPTs input language is close tebDL, but additionally
accounts for the possibility of partial sensor feedback and
non-deterministic dynamicsGPT views planning under in-
complete information (or contingent planning) as a problem

We start with an overview ofsrand of the contingent
planning model it can be recast as. We next present the tech-
nigues we developed to improwPTs performance and in
particular the dynamic computation of the heuristic. We then

Copyright © 2003, American Association for Artificial Intelli- explain how we encodedsRin GPTSs input language, and
gence (www.aaai.org). All rights reserved. why this required to extendpT to deal withPDDL axioms

CcB5 16 SD5

area suw by CB4
open

i i ,/\23 124

I
I 15
122 121 120 119 so19 sb20 sb21
(¥4 SD18

SD17 SD16 Sq15
i

117

| =}
cB3 SD24 sD23 114 sD14 ce7 sS4
112 11 S[*ZZ 116 SD25
o O 18
cB2 SD1l SD10 | sDi2 113 sD13 closed
110
—=—0
SD9 19 SD8 SD7 18 CB6
circuit-breaker
115 SDé 7 switch
st26 |
|

CB1 11 SD1 12 SD2 13 SD3

Figure 1: Rural Network in (Tiébaux & Cordier 2001)

(McDermott 1998). Finally, we present experimental results
before summarizing our contribution and concluding with
remarks about related and future work.

The PSR Benchmark

In (Thiébaux & Cordier 2001), the authors recast the prob-
lem of supply restoration in power distribution systems as
a benchmark for planning under uncertainty. They give an
informal description of theesr benchmark which we now
summarize, and issue the challenge of modeling and solving
PSRwith general purpose planning tools.

Network Topology For the purpose of the benchmark, a
power distribution system (see Figure 1) consists of elec-
tric lines and devices of two types: circuit-breakers (large

would be to open SD16 and SD17 to isolate the fault, close
CB4 to resupply 122 and 121, and close SD15 to have CB7
resupply 119. Unfortunately sris much more complicated,
because as we explain below, the sensors used to locate the
faults and determine the devices’ positions, as well as the
actuators used to open/close devices, are unreliable.

Sensors Each device is equipped with a fault detector
and a position detector, both continuously providing action-
independent sensing information. The role of the position
detector is to indicate the device’s current position. Position
detectors have two modes: “normal” in which the informa-
tion they provide is correct, and “out of order” in which they
do not provide any information at all. The role of the fault
detectors is to help locate faults. Fault detectors have one
“normal” mode and two failure modes: “out of order” and
“liar”. In normal mode, the fault detector of a fed device in-
dicates whether or not it is upstream of a faulty line located
on the same area — upstream is to be taken in relation to the
flow of current whose source is a circuit-breaker feeding the
area. When not fed, a normal fault detector indicates the
same information as when it was last fed. For instance, if
only 120 is faulty, only the fault detectors of SD17 and SD18
should indicate that they are upstream of a fault; Then CB4
will open and the information provided by the fault detec-
tors of the devices in the lost area should remain the same
until they are fed again. In “liar” mode, fault detectors re-
turn the negation of the correct fault status, and in “out of
order” mode, they do not return any information at all.

Actuators Each device is also equipped with an actuator
whose role is to execute opening/closing actions and report

squares in the figure) and switches (small squares). DevicesOn their execution status. Actuators also have a “normal”,
are connected to at most two lines and have two possible po- “out of order” and “liar” modes. In normal mode, the ac-
sitions: either closed or open (open devices, e.g. SD19, are tuator of the prescribed device execute the requested action

white in the figure). Circuit-breakers are viewed as power

sources. When closed, they feed power into the network,
and that power flows through the various lines up to the point
where it is stopped by an open device. The positions of the
devices are initially set so that each circuit-breaker feeds a
different area of the network (the area fed by CB4 is boxed

in the figure; Adjacent areas fed by different circuit-breakers

are distinguished using dark and gray). The current network
configuration can be modified by opening or closing devices.

Closing and opening are the only available actionssr

Faults, Supply Restoration Under bad weather, lines are
often affected by permanent faults. When a line is faulty, the
circuit-breaker feeding it opens to prevent overloads. This
leads not just the faulty line but the entire area the breaker
was feeding to be out of power. Supply restoration consists
in reconfiguring the faulty network so as to minimize break-
down costs: ideally we want to open and close devices in
such a way as to isolate the faulty lines and resupply a maxi-
mum of the non-faulty lines on the lost areasrwould be
relatively easy to solve if we knew the exact locations of the
faulty lines and the current network configuration. For in-
stance, in case of a fault on 120 leading CB4 to open and the
boxed area to be left without power, an adequate restoration
plan, provided complete knowledge of the network state,

and sends a positive notification. In “out of order” mode, the
actuator fails to execute the action (the position remains un-
changed) and sends a negative notification. In “liar” mode, it
also fails to execute the action but still sends a positive noti-
fication. We take all sensor/actuator modes to be permanent
across a supply restoration episode.

Minimizing Cost under Uncertainty Under sensor and
actuator uncertaintypsr takes another dimension. Many
fault location and network configuration hypotheses are con-
sistent with the observations, and each of them corresponds
to an hypothesis about the behavior modes (normal, liar)
of the sensors and actuators. Since observations can only
change when a device is operated, there is no non-intrusive
way of gathering information to eliminate hypotheses. Of-
ten, decisive information comes at the price of an increase in
breakdown costs: our best option to determine whether a line
is faulty may be to resupply it via an healthy circuit-breaker,
and check whether that breaker opens, yet leading a new area
to be temporarily lost! Minimizing breakdown costs there-
fore amounts to trading off the need to act to resupply lines
against that of acting to reduce uncertainty. This optimiza-
tion problem is extremely challenging. To the best of our
knowledge, even domain-specific solvers compute subopti-
mal solutions, see e.g. (TBhauxet al. 1996).

Contingent Planning Problems (B1) A space of belief stateB,
Classical planning and its generalizations can be understood (B2) an initial belief staté, € B,

in terms of astate mOdetonSiSting of a set of states, a set of (Bg) goa| belief states given by a non-emm cSs where
actions, and transition and observability functions. Different b€ Beiff b C Sg,

planning models correspond to state models with different (B4) actionsA(b) applicable in each belief states B
types of transition and observability functions. In this paper, '
we considercontingent planningwhose state model com- S X "
bines a possibly non-deterministic transition function with a deterministically maps into the sett"(b,a) = {b :
partial observation function, as this is the class into which o € O0(b,a)}, and _ o
psRrfalls. Contingent planning models are characterized by: (B6) positive costg(b, a) of performing actioru in b.

(B5) a dynamics in which every actiom € A(b) non-

(M1) A state spacé, A solution to state model B1-B6 is a policy mapping be-
(M2) an initial situation given by a stdte, € S, lief states to actions. In order to characterize valid solu-
(M3) goal situations given by a non-empy; C S tions, we need to define the setmofrajectories, for policy

m, as the collection of all finite tuple&y, ...,b,) where

bi+1 € F(bg, m(by)). Then,r is a solution to B1-B6 iff the
number ofr-trajectories is finite and evemy-trajectory can

be extended to a-trajectory ending in a goal belief state.
This ensures that the policy reaches the goal and that its cost

(M4) actionsA(s) applicable in each statec S,

(M5) a dynamics in which each actiom € A(s) non-
deterministically maps into the setF'(s,a) C S of
successor states,

(M6) positive costs:(s, a) of performing actioru in s such is well-defined, as
thatc(s, a) = 0 for eachs € S¢, and
(M7) observations» € O(s,a) received when the actual COShyorst(T) &' max {cost(7) : T is w-trajectory}

state after the execution afis s.

As is well-known, a solution for such a model is not a se-
guence of states but a policy which, at each decision stage
needs to consider the full history of observations and actions.
A simple characterization of such policies is achieved by 0
consideringoelief states In its simplest form, the term be-
lief state refers to sets of states that the agent executing the
policy deems possible at some point. Thus, the initial belief
stateby is the singletor{ so }, and ifb denotes the belief state
prior to performing an action, the belief staté, describing
the possible states after the executiom i

wherecost(7) is the cost of trajectory defined as the sum

of the costs of individual transitions within the trajectory. As
usual, an (overall) optimal policy is one of minimum cost.
The above model targets the worst-case scenario. Later
n, we will also be interested in minimizing trexpected
policy cost. In that case, the non-deterministic transition
function and observation are enriched with transition and ob-
servation probabilities, so belief states prebability distri-
butionsover states rather than sets of states. The correspond-
ing model in belief space is grounded in similar definitions
for b, andb?, which consider such probabilities, costs are ex-
b, & U{F(s,a) : s € b}. pectations rather than maxima, and finiteness is not required,

The actionsA(b) that can safely be applied in a situation see (Bonet & Geffner 2000) for details.
described by belief stateare those that are applicable in all .
states compatible with, i.e. General Planning Tool

As demonstrated in (Bonet & Geffner 2000; 2001), contin-

def
A(b) = N{A(s) : s € b}. gent planning problems can be solveptimally using al-
The (worst-case) cost of performing actiere A(b) in be- gorithms based on heuristic search in belief space. In par-
lief stateb and the observations that may result are ticular, (Bonet & Geffner 2001) presented a nowéitline
def version therTDP algorithm which solves such problems in
c(b,a) = max {c(s,a) : s € b}, finite time2 This version ofRTDP is at the core of thepPT
O(b, a) def U{O(s,a) : 5 € by} planner where it is u_sed to so_lvearange ofplanning models.
: . i . The GPT planner is adomain-independerlanning sys-
After performing actioru € A(b) in belief state), only one tem which works by converting the description of a plan-
observatiorn € O(b, a) is received, and upon receipt of ning problem into an appropriate state model (either in state
the_next possible situations are characterized by the lélief space or belief space) and then applying an heuristic search
defined as algorithm. The term domain-independent refers to the fact
b, € {s€by:0€0(s,a)}, thatgPT only uses the description of the problem in order

to solve it. Thus, for example, no domain-specific control
knowledge and/or heuristic functions are allowed.

Before starting the searclgPT performs a precompila-
tion step in which, among other things, it generates the part
_ o . . o of thestatespace that issachablefrom sy and computes an

'There is no loss of generality in assuming a single initial state: admissible domain-independent heuristic estimate for each
multiple initial states can be encoded as non-deterministic effects
of astart action constrained to be the only action applicable in 2The standar@&TpP algorithm is a learning algorithm that only
the initial state. converges asymptotically.

An interesting property of belief states—see e.g. (Bonet &
Geffner 2000)—is that there is a straightforward equivalence
between model M1-M7 and the followimgpn-deterministic
and fully observablstate model in belief space:

reachable state. This heuristic, calleghor, is used to de-
fine a heuristic function over belief states for the worst-case
or expected-case scenario as follows:

hworst(b)
heXp(b)

def

max { hQMDp(S) HCES b},

Z hQMDp(S) . b(S)
seS
where, in the expected cad€s) is the probability ofs in
belief stateb. It is not hard to show thatyorsi(b) andhexp(b)
are admissible heuristics for the respective contingent plan-
ning problems. Therefore, armed with these heuristics, the
search algorithm over belief states is guaranteed to return
optimal solutions.

In our benchmarks, we find thapT spends almost all
its time in this precompilation step and even runs out of
memory due to the huge number of reachable states. This
limits its applicability to challenging problems suchrsr
One way to avoid this bottleneck is to generate states and
compute the heuristigncrementally as the search algo-
rithm explores the belief state space. In principle, comput-
ing houpe Without necessarily generating the entire reach-

def

able state space is feasible using algorithms such as labeled

RTDP or LAO* (Bonet & Geffner 2001; Hansen & Zilber-
stein 2001). However, in the restricted case of our contingent
planning models, we are able to devise a more efficient ap-
proach by considering a slightly different admissible heuris-
tics hpyn @nd using classical heuristic searctdymamically
compute the estimates for the states as they are required.
Incremental state computation and dynamic computation
of heuristic estimates are two domain-independent tech-
nigues and have been implemented in ¢rer system. We
empirically demonstrate their benefits later on in the paper.
The idea of incremental generation of the state space is
easy to implement. Simply, whenever a belief staig ex-
panded,GPT checks if all states € b have already been
compiled (incorporated) into the model. If na® T expands
such states and compiles the new information. The dynamic
computation of the heuristic, however, is more subtle.

Dynamic Computation of the Heuristic

We definehpyy (s) as the cost of the shortest path from state
s to a goal state. It turns out that in the worst-case scenario,
howor(s) €qualshoyy (s), and that in the expected-case sce-
nario, hoyn () is a lower bound orhoype(s). hpyn Can be
computed with algorithms such as Dijkstra or Uninformed
cost search but in our case, where many searches will be
performed for different states, we are able to do better.

The basic idea behind the algorithm is to collect the in-
formation found in previous searches for its reuse in future
searches. This is achieved by usingiaa* search (Korf
1985) with transposition tables (Slate & Atkin 1977). In the
following discussion, we assume a deterministic transition

3The use of classical heuristic search methods a&far (or
even of RTDP or LAO* as for houmpe) raises the question of which
heuristic function to use in such a search, i.e. which heuristic to use
for computing the heuristic. An interesting possibility is to extract
information from the problem encoding as it is done in state-of-
the-artsTRIPSplanners. However, we just take= 0 here.

IDA(s : state)

begin

t=20

while —goalfound A t < oo do
|t = boundedDF§t, s, 0)

return t

/I base cases
f = g+ TTABLE[s].v
if TTABLE[s].solved then
if f < tthen
\\ L goalfound= true
else if f > t¢then

return f
L retun f
else ifisGoal(s) then

goalfound = true
return g

/I expand state
new-t = oo
for a € A(s)do
f = boundedDF&t, res(s, a), g + c(s, a))
if goalfoundthen
new-t = f
break

new-t = min{new_t, f}

/I update transposition table

v =newt —g

if TTABLE[s].v < v then
| TTABLE[s].v = v

if goalfoundthen
| TTABLE[s].solved = true

return new-_t
end

Algorithm 1: 1DA* algorithm for hpyy -

function; a problem with non-deterministic transitions can
be mapped onto a deterministic one by adding actions for
the different non-deterministic effects.

The standardbA* algorithm performs a series of cost-
bounded depth first searches with successively increasing
cost thresholds. As usual, the total valfief a node is com-
posed of the cogtalready spent in reaching that node and of
the estimated cost of reaching the goal. At each iteration,
the search only expands nodes whose value is below the cur-
rent threshold, cutting off all other nodes. The threshold is
initialized to the estimated costof the start state (0 in our
case), and is increased at each iteration to the minimum path
value that exceeds the previous threshold.

A transposition table TABLE is a table indexed by states
that is used to store the result of previous searches, thereby
preventingDA* from re-exploring previously visited nodes.
Upon visiting states with cost g and having completed
the cost-bounded search below it with resfiltthe trans-
position table fors is updated as TABLE[s] = f — g.
Then, wheneves is re-visited with a cosg such thatf =
g + TTABLE[s] exceeds the current threshadldthe algo-
rithm can safely increase the thresholdftaithout further
exploration. Otherwise the search belevs performed and
the transposition table is updated as explained above.

It is not hard to see that TRBLE[s] is always alower
boundon hpyy(s). Thus, if the goal is found when search-
ing belows, the lower bound becomexactand no future
searches below are necessary. A description of thisa*
search is given in Algorithm 1. As can be seen, the trans-

position table has two fields: BLE[s].v which contains
the current lower bound olnyy (s), and TTABLE([s].solved
which says whether this bound is exact. The table is ini-
tialized with TTABLE[s].v = h(s) (i.e. 0 in our case) and
TTABLE[s].solved = false.

PDDL-like encodings of PSR

GPTSs input language is a variant ebDL based on the func-
tional version ofsTRIPS(Geffner 2000) in which states are
not merely sets of atoms but first-order models over finite
domains. Terms with arbitrary nesting of function symbols
are allowed and actions may modify functional fluents. Like
PDDL, the language enables a clear separation of the do-
main definition from that of the problem instances. Figure 2
shows our encoding of the fullSrR domain, together with
that of a problem instance with 4 faulty lines at unknown
locations for thesimple network in Figure 3. We now de-
scribe the most important elements of the encoding.

States

A domain definition first specifies the class of planning mod-
els the domain belongs to (keywaordodel), and declares
the types, function, predicate and object symbols used.

We need type®EVICE andLINE, a typeSIDE and ob-
jectssidel andside2 to distinguish between the two
sides of each device to which lines can connect, as well as
a typeMODEand objectok, out , andliar denoting the
possible fault detector and actuator modes (for a position de-
tector mode, a simple boolean suffices).

We represent a state @fsr as follows. The fluents
closed , andfaulty have the obvious readings. The
functional fluentsac _mode andfd _mode return the modes
of the actuator and fault detector of a device, wigite ok
tells whether its position detector behaves normally, and
fault _status tells whether the device was upstream of
a fault when last fed. Other fluents refer to the topology of
the network:ext tells whether a given line is connected to
a given side of a devicéreaker tells whether a device is
a circuit-breaker, andpposite mapssidel to side2
and vice versa. The initial values of functions and predicates
are given in the problem instance definition. Some values
may not be completely known. For our example in Figure 2,
all values are known, except that fafulty : there is just
a constraint that the number of faulty lines equals 4. Note
that propositions not mentioned at all in the initial state are
taken to be false. By inspecting the domain and problem
definitions,GPTis able to identify and compile away those
propositions with a fixed value across the entire set of states.

Axioms

One of the difficulties oPsRis that actions have relatively
complex effects: e.g. when we close a device, a faulty
line may become fed and affect devices upstream of it in
some way (breakers open, and switches have their fault sta-
tus changed). Being upstream is a dynamic notion which

depends on the current network configuration, and so needs

to be computed after each action execution. Furthermore,
computing it requires an iterative or recursive traversal of

the network’s paths, and there is no intuitive way of doing
this in the body of aPDDL-style action. Consequently, to
modelpsRractions while keeping the encoding independent
of a particular network, we need to axiomatize upstream as
aderivedpredicate. Such a predicate is one whose value is
derived from the current value of other predicates and func-
tions and cannot be directly modified by actions.

We found that the best option to define derived predicates
such asupstream was to use directional recursive ax-
ioms of the form(:predicate (name arguments)
condition) , much as in the original version @fDDL
(McDermott 1998). The meaning is that when the condition
is true, we shouldnhfer that the value of the predicate at the
specified arguments is true. Note that these inferences can-
not be contraposed and that what cannot be inferred as true
is false. This closed world assumption is a crucial strength
of PDDL axioms. Were we to use first order logic axioms
instead, we would be unable to axiomatize upstream (which
is the transitive closure of a relation) since transitive closure
is not first-order axiomatizable in general. Upstrezanbe
axiomatized in first order logic under assumptions such as
that the network is loop-free and each device is fed only by
one breaker (i.e., the closure is irreflexive and the base rela-
tion is a function), but even under these restrictions, it is not
trivial as in the absence of the closed world assumption we
need to specify wheapstream doesnot hold.

In our encoding, (upstream ?x ?sx ?y ?sy)
means that the current produced by some circuit-breaker
flows from sidesx of devicex to sidesy of devicey. It
is necessary to speak of devices’ sides rather than devices
in order to keep proper track the direction of the current
flow. The three conjuncts respectively ensures that the cur-
rent flows (1) up to sidex of x, (2) throughx, and (3) on
as far as sidsy of y.* For readability, we define four other
derived predicatescon which tells whether two devices’
sides are connected via a given liaffected which tells
whether a device is upstream of a faulty lified which
tells whether a device is fed by checking that there is a side
of a device upstream of one of its sides (or that the device is
a closed breaker), aridd _line which tells whether a line
is fed by checking that it is connected to a closed fed device.

If a purePDDL encoding (without axioms) is required, it
is possible to automatically compile axioms into additional
context-dependent effects of existing actions or into addi-
tional actions. However, this leads to gross inefficiency, and
in the worst-case, to exponentially larger domain descrip-
tions or exponentially longer plans (Efiauxet al. 2003).

Actions, Observations

With the help of the derived predicates agdET's ramifica-

tion rules (keywordramification), PSRactions can be
expressed very concisely. The syntax of a ramification rule
is similar to that of an action, except that ttodserva-

tion and:cost fields do not apply. While the effects of
an action become true at the next time step, those of a rami-

“In our experiments, we in fact use a more efficient but longer
encoding ofupstream and other derived predicates, which is
omitted on grounds of readability and space.

(define (domain psr)
(:model (:dynamics :deterministic) (:feedback :partial))
(:types DEVICE SIDE LINE MODE)
(:functions
(ac_mode DEVICE MODE)
(fd_mode DEVICE MODE)
(opposite SIDE SIDE))
(:predicates
(ext LINE DEVICE SIDE)
(breaker DEVICE)
(closed DEVICE)
(faulty LINE)
(fault_status DEVICE)
(pd_ok DEVICE))
(:objects sidel side2 - SIDE
ok out liar - MODE
done - :boolean)

(:predicate (con ?x - DEVICE ?sx - SIDE ?y - DEVICE ?sy - SIDE)

(:and (cor (cnot (= ?x ?y))
(:not (= ?sx 7?sy)))
(:exists ?I - LINE
(:and (ext ?1 ?x ?sx) (ext 2| ?y ?sy)))))

(:predicate (upstream ?x - DEVICE ?sx - SIDE ?y - DEVICE 7?sy
(:and (:or (breaker ?x)
(:exists ?z - DEVICE
(:exists ?sz - SIDE
(:and (con ?z (opposite ?sz) ?x ?sX)
(upstream ?z ?sz ?x ?sx)))))
(closed ?x)
(:or (con ?x (opposite ?sx) ?y ?sy)
(:exists ?z - DEVICE
(:exists ?sz - SIDE
(:and (closed ?z)
(con ?z (opposite ?sz) ?y ?sy)
(upstream ?x ?sx ?z ?sz)))))))

(:predicate (affected ?x - DEVICE)
(:exists ?I - LINE
(:and (faulty ?I)
(:exists ?y - DEVICE
(:exists ?sy - SIDE
(and (ext ?I ?y ?sy)
(:exists ?sx - SIDE
(upstream ?x ?sx ?y ?sy))))))))

(:predicate (fed ?x - DEVICE)
(cor (:and (breaker ?x) (closed ?x))
(:exists ?y - DEVICE
(:exists ?sy - SIDE
(:exists ?sx - SIDE
(upstream ?y ?sy ?x ?sx))))))

(:predicate (fed_line ?I - LINE)
(:exists ?x - SWITCH
(:exists ?sx - SIDE
(:and (ext ?l ?x ?sx) (closed ?x) (fed 7?x)))))

(:ramification status_ramification
:parameters ?x - DEVICE
:effect (:when (fed ?x)

(:set (fault_status ?x) (:formula (affected ?x)))))

(:ramification open_ramification
:parameters ?x - DEVICE
:effect (:when (:and (breaker ?x) (affected ?x))
(:set (closed ?x) false)))

(:action open
parameters ?x - DEVICE
:effect (:when (= (ac_mode ?x) ok) (:set (closed ?x) false))
:observation
(= (ac_mode ?x) out)
(:vector ?y - DEVICE
(:if (pd_ok ?y) (:formula (closed ?y)) false))
(:vector ?y - DEVICE
(:iif (= (fd_mode ?x) ok) (:formula (fault_status 7?x))
(:if (= (fd_mode ?x) liar)
(:formula (:not (fault_status ?x)))
false))))

(:action close
:parameters ?x - DEVICE
:effect (:when (= (ac_mode ?x) ok) (:set (closed ?x) true))
:observation
(= (ac_mode ?x) out)
(:vector ?y - DEVICE
(:if (pd_ok ?y) (formula (closed ?y)) false))
(:vector ?y - DEVICE
(iif (= (fd_mode ?x) ok) (:formula (fault_status ?x))
(:if (= (fd_mode ?x) liar)
(:formula (:not (fault_status ?x)))
false))))

(:action finish
:effect (:set done true)
:cost (:sum ?| - LINE
(:if (or (faulty ?l) (fed_line ?I)) 0 5))))

(define (problem simple)
(:domain psr)
(cobjects 11 12 I3 14 15 16 17 - LINE
chbl ch2 cb3 sdl sd2 sd3 sd4 sd5 sd6 sd7 - DEVICE)
(:init
(:set (opposite sidel) side2) (:set (opposite side2) sidel)
(:set done false)

(:set (breaker cbl) true)
(:set (breaker cb2) true)
(:set (breaker cb3) true)

(:set (ext 11 cbl side2) true) (:set (ext 11 sd6 sidel) true)
(:set (ext 12 sd6 side2) true) (:set (ext 12 sd5 sidel) true)
(:set (ext 12 sd7 side2) true) (:set (ext I3 sd5 side2) true)
(:set (ext I3 sdl sidel) true) (:set (ext |14 sdl side2) true)
(:set (ext 14 sd2 side2) true) (:set (ext |14 sd3 side2) true)
(:set (ext I5 cb2 side2) true) (:set (ext I5 sd4 sidel) true)
(:set (ext 16 sd2 sidel) true) (:set (ext 16 sd4 side2) true)
(:set (ext 16 sd7 sidel) true) (:set (ext |7 cb3 side2) true)
(:set (ext I7 sd3 sidel) true)

(:foreach ?x - DEVICE
(:set (closed ?x) true)
(:set (fd_mode 7?x) ok)
(:set (pd_ok ?x) true)
(:set (ac_mode ?x) ok))
(:set (closed sd3) false)
(:set (closed sd5) false)
(:set (closed sd7) false)
(:foreach ?I - LINE (:set (faulty ?I) :in { true false }))
(= (sum 2| - LINE (if (faulty 2I) 1 0)) 4))

(:goal (= done true)))

Figure 2: Encoding of the Fulsr& Simple Problem

fication rule become true immediately. These rules are use-
ful to specify indirect action effects and domain constraints.
When an action is executed, it effects are computed, then the
ramification rules are applied to the resulting state in the or-
der they appear, and only then the action’s observations and
cost are evaluated. Note that the ramification rules are also
applied in the initial state, before any action takes place.

In our encoding of the fulPSrR PSractions have no pre-
condition. Their effect is simply to change the position of
the device unless the actuator is abnormal. Then the ramifi-
cation rules take care of setting the fault status of fed devices
appropriately (if a device is affected its status is set and oth-
erwise unset), and of opening affected breakers. The obser-
vations include the notification of the operated device which
is positive iff the device’s actuator is not out of order, the
position of the devices whose position detector is normal, as
well as the fault status of the devices whose fault detector is
normal, or their negation for those whose fault detectorlies.

A pure PDDL encoding of the actions can be obtained by
simulatingGPT's ramification rules via an extra action treat-
ing fed devices and affected breakers, which we can easily
constrain to interleave with the other actions. Another op-
tion is to add a paramet@c to the derived predicates, and
make their value conditional upon devicebeing closed.
This is achieved by replacir(glosed ?x) inthe present
definitions with (Cclosed ?c ?x) defined to be true
whenx is closed oc = x. The actions’ effects are then eas-
ily described using the conditional versionaifected

SFor space reasons the encoding in Figure 2 sloppily identifies
the absence of information wifalse . However, it is possible to
create a three valued ty@BSand return observations of that type.

Goal

As we want to address the full scope of the benchmark for
which there is no specified goal but the request to minimize
breakdown costs, we formulate the problem as a pure opti-
mization problem. We declare a propositidone initially
false, and an actiofinish which makesdone true and
whose cost is linear in the number of unsupplied healthy
lines. Note that all other actions have the default cost of
1. Setting the goal talone allows GPT to finish the plan

at any step by paying the price corresponding to the current
breakdown costs. Therefore, any optimal policy found by
GPTfor the goaldone minimizes breakdown costs.

It is important to understand that minimal breakdown
costs cannot be achieved by supplyiagT with a restora-
tion goal such as “supply all lines that can be supplied”. The
reason is that partial observability sometimes prevents the
existence of a policy satisfying such a goal, even though ac-
tions can still be taken to reduce breakdown cbsts.

Comparison with AR encodings

Our encoding oPsRdiffers substantially from thedR en-
codings used byieP (Bertoli et al. 2002), which are propo-
sitional in nature and are automatically generated for a given

network by a custom procedure. The procedure computes all

minimal acyclic paths in the network and uses those to deter-
mine all the conditions on device positions and line modes
under which a given device is affected by an action. Unfortu-

nately, the number of these conditions and consequently the

action description can grow exponentially large in the num-
ber of devices in the network. This together with the propo-
sitional character ofAR leads to huge descriptions (over 8
MB for the rural network in Figure 1), which is to be con-
trasted with our concise network-independent encoding. On
the other hand, the number of propositions in #& en-

consisting entirely of non-faulty lines and maneuverable de-
vices (i.e. with normal actuators). As we argued abore;

is able to act optimally even when no such plan exists. We
wish to emphasize that our encoding is targeted at solving a
typically much harder problem, requiring optimization.

Experimental Results
Domains, Algorithms, and Optimization Criteria

Our experiments involve several variants of the fer
given above, the comparison of several heuristics and algo-
rithms for computing them, and two optimization criteria.

Domains We consider the following modifications to the
full PsrRdomain in Figure 2.

(D1) We prevent closing actions to power loops or cre-
ate areas fed by multiple breakers by setting the pre-
condition of(close ?x) to(:not (bad ?x)) ,
wherebad is true for switches fed on two sides, and
for breakers connected to a loopy part of the network.

(D2) We preventcPT to open a device which is currently
fed by setting the precondition qbpen ?x) to
(:not (fed ?x)) , and favor closing over open-
ing when breaking ties.

(D3) We giveGPT the goal of supplying all lines than can
be supplied, where we identify suppliable with the
stricter notion of safe path existence explained above.

(D4) We make the fault detector of a unfed device return no
information rather than the same information it was
returning when last fed.

Madifications D1-D3 leadsPTto address essentially the
same domain asiBP, under the same assumptions as the
experiments reported in (Bertat al. 2002). This enables a
somewhat fairer comparison of the strength and weaknesses

coding is smaller than that induced by the present one, and of both planners, althougbpT still attempts to minimize

this positively impacts on the efficiency ebb-based plan-
ners such amBpP. Indeed, we found that a propositional
expansion of our encoding intdR caused computational
difficulties for MBP and that vice-versa theR encoding
generated by the procedure was unmanageablerfar

The goal constitutes another difference between the two
encodings. Since1BP does not reason about plan cost,
(Bertoli et al. 2002) treatsPsr as the problem of finding
a contingent plan achieving the goal of supplying all suppli-
able lines, under various additional assumptions (D1-D3) to
be discused below. As deciding which lines are suppliable
in a given state is a non-trivial problem, tb&R encoding
identifies suppliable with a stricter condition of existence of
a “safe path” between a breaker and the line, that is a path

5For a small example, consider a linear network with 3 lines,
one breaker at each end and two switches. From left to right, let
us call thoseCB1, SD1, SD2, CB2 All are initially closed, except
SD2 which is open. There is at least one fault on the area fed
by CBY, all fault detectors are out of order, the position detector of
CB2is out of order, and everything else is correct. We leave it as an

action costs whilevsp does not. D1 is useful on its own, as

no loops and no double feeding is a standard assumption in
supply restoration. D4 enables us to address larger problem
instances than would be normally possible: it obviates the
need to remember fault status and make them state variables,
which significantly reduces the number of states.

We experiment with the following domain variations,
standard gtd): the full PsrRdomain with modification D1,
mbp: the full domain with modifications D1-D3, as well
asstd* and mbp*, which result from applying modification
D4 to std and mbp, respectively.

Algorithms For each domain, we experiment with the fol-
lowing 3 algorithms,org.: the original implementation of
RTDP with precompilation step anfloupe heuristic,incr.:
RTDP with incremental state space generation and dynamic
computation ofipyy, andh=0: RTDP with incremental state
space generation seeded wiity) = 0 for all belief states b.

Optimization Criteria We produce policies with minimal
expected€xp) or worst-casewst) cost. For mbp and mbp

exercise to the reader to show that no policy can decide whether it domains, where the supply restoration goal is given, the cost
has supplied all suppliable lines, and that on the other hand opening only includes (unit) action costs, not breakdown costs. For
SD1and closingCB1reduces the expected breakdown costs. the exp criteria, we take all initial states in each problem

cB3 ” SD3 cB2 15 sD4

15 16 14 14
CB2 SD4 l sp2

sp7
I 12 13 11 12 13
—t 4
CBI SD6 SD5 SD1 CcB1 SD1 sD2 SD3
simple basic
n X
0 linear (m)
cB sp1 SDm-1 SDm

Figure 3: Small Test Networks

instance to be equiprobable, as this avoids making up fault
probabilities. In principle, howevegPTcan handle any dis-
tribution. In particular, it would be straightforward to spec-
ify independent fault and mode probabilities and consider
the corresponding distribution.

Networks, Problems and Results

Small Networks We first testedcPT on the small net-
worksbasic , simple andlinear in Figure 3. Fotba-

sic , we considered 5 problem instandes—b5, wherebn
hasat mostn faulty lines at unknown locations. Feim-

ple , we considered 7 instance4 —s7, wheresn hasex-
actly n faulty lines at unknown locations (e.g. ti®DL
encoding ofs4 is shown in Figure 2). Similarly, m_en is

an instance of the linear network with lines and exactly:
faulty lines — we considered 12 such instances. All experi-
ments with small networks were run on a standalone Ultra-
10 with 300MB of memory and a clock speed of 440MHz.

Figures 4 and 5 show the results obtainedsigyr with in-
cremental state space generation andhthg heuristic (incr.
algorithm) for the various domain versions and optimization
criteria. The left-hand sides of the tables refer to domains
mbp and std, and the right hand-sides to the * versions mbp*
and std*. The tables show the run time (sec.), the number of
states generated, and the optimal policy cost. Note that the
cost of mbp(*) and std(*) policies are incomparable. A dash
(=) means thatPTran out of memory.

The original version of GPT (org. algorithm) run out of
memory during the precompilation step for basically all but
the tiniest instances. As shown in the figures, the incr. algo-
rithm is at least able to cope with all instances of the * do-
main versions which lack the additional exponential growth
of the number of reachable states. The price to pay for the
time and memory gain provided by the * versions is a re-
duction in policy quality. For instance, even in a very sim-
ple instance such ds4 e2, the cost of the optimal policy
for mbp/exp (resp. std/exp) is 2.50 (resp. 9.16), and that for
mbp*/exp (resp. std*/exp) is 3.00 (resp. 9.50).

Another observation is that the run times éimple and
linear , for which we know theexactnumber of faults,

regular versions * versions

‘ prob. ‘ time | H time |

cost | states cost | states
mbp/wst/incr mbp*/wst/incr
14 _e0 0.14 0.00 2 0.15 0.00 2
14 _e2 0.34 4.00 507 0.30 4.00 310
14 _ed 0.14 0.00 7 0.15 0.00 7
16 _e0 0.14 0.00 2 0.15 0.00 2
16 _e2 4.15 5.00 5838 2.74 5.00 3152
16 _e4 3.20 4.00 6073 1.60 4.00 2418
16 _e6 0.14 0.00 9 0.17 0.00 9
18 _e0 0.14 0.00 2 0.19 0.00 2
18 _e2 57.40 5.00 42167 30.43 5.00 20880
18 _ed - - - 139.04 6.00 55383
18 _e6 26.54 4.00 30020 12.47 4.00 12255
18 _e8 0.19 0.00 11 0.19 0.00 11
mbp/exp/incr mbp*/exp/incr
14 _e0 0.26 0.00 2 0.32 0.00 2
14 _e2 0.55 2.50 525 0.52 3.00 316
14 _ed 0.27 0.00 7 0.28 0.00 7
16 _e0 0.27 0.00 2 0.29 0.00 2
16 _e2 6.71 3.20 6950 4.31 3.66 3316
16 _e4 7.67 2.86 10716 4.69 3.20 3056
16 _e6 0.27 0.00 9 0.31 0.00 9
18 _e0 0.28 0.00 2 0.32 0.00 2
18 _e2 100.89 3.57 56126 52.59 4.00 24902
18 _ed - - - 236.28 3.97 59376
18 _e6 278.88 2.75 136024 47.79 2.92 22334
18 _e8 0.34 0.00 11 0.32 0.00 11
std/wst/incr std*/wst/incr
14 _e0 0.15 0.00 53 0.17 0.00 53
14 e2 0.51 | 10.00 1399 0.30 10.00 549
14 _e4 0.14 0.00 42 0.18 0.00 42
16 _e0 0.17 0.00 86 0.16 0.00 86
16 _e2 18.22 | 20.00 25360 3.35 | 20.00 5110
16 _e4 2426 | 10.00 46695 215 10.00 4526
16 _e6 0.16 0.00 72 0.16 0.00 72
18 _e0 0.23 0.00 123 0.22 0.00 123
18 _e2 - - - 60.11 | 30.00 37718
18 _ed - - - 109.97 | 20.00 85452
18 _e6 - - - 22.41 | 10.00 31157
18 _e8 0.23 0.00 110 0.19 0.00 110
std/expl/incr std*/exp/incr
14 _e0 0.28 0.00 53 0.30 0.00 53
14 _e2 0.97 9.16 1726 0.64 9.50 626
14 _ed 0.28 0.00 42 0.30 0.00 42
16 _e0 0.29 0.00 86 0.29 0.00 86
16 _e2 30.37 | 16.53 30809 8.37 17.00 6627
16 _e4 32.13 | 10.00 51569 3.34 | 10.00 5385
16 _e6 0.29 0.00 72 0.29 0.00 72
18 _e0 0.37 0.00 123 0.35 0.00 123
18 _e2 - - - 151.65 | 24.00 50538
18 _ed - - - 521.30 | 19.42 | 118752
18 _e6 - - - 2411 | 10.00 31907
18 _e8 0.37 0.00 110 0.33 0.00 110

Figure 4: Results folinear (incr. algorithm)
than their expected-case counterpart. This is because when
there are at least as many faults as breakers, in the worst
case nothing is resuppliable and so the optimal policy is to
do nothing, while in the expected case the policy must still
prescribe what to do for other situations besides the worst.
Sticking with incremental state generation and * versions,
Figure 6 evaluates the benefits of thg, heuristic (incr.
algorithm) in comparison té = 0. The run time improve-
ment is dramatic, up to the point where even some std*/exp
instances are not solvable with the zero heuristic. Similar
results are obtained with the other domains and criteria.

exhibit an easy-hard-easy pattern. The same phenomenonLarger Networks After testingGPT on small instances,

was observed in (Bertoét al. 2002), and was attributed to
the ability of MBP’s symbolic algorithm to exploit problem
structure. SincespPTs algorithm enumerates states and is

we considered the challengingiral network instance
solved (non-optimally) byBp. In the original instance, see
(Bertoli et al. 2002), everything about the rural network in

unable to exploit such structure, it appears that the real causeFigure 1 is known to be correct, except the mode of liBes

for the pattern is that the number of states is dictated by the
number of ways of choosing faulty lines amongn, which
peaks atv = m/2. We also note that critically constrained

andl15 , the mode of the fault detectors D1, SD2, SD3,
S26, as well as the mode of the position detector and actu-
ator of SD26 which are unknown. This leads to 1944 initial

std worst-case instances are much easier to solve optimally states and to a myriad of reachable states @2° for std).

regular versions
prob. time | cost | states

‘ * versions

time | cost | states ‘ ‘ * velrsion ‘ ’ ‘ *version
) \ . prob. incr. h=0 prob. inc. | h=0
51 058 mb;g%zu|ncr 1065 034 mbps/%gt/lncr a5 sta/exp stafexp
b2 2.16 5.00 3992 1.00 5.00 1341 :3 'gg 822 ggg s; égég 1457833;
b3 4.31 6.00 7091 1.85 6.00 2115 14 b 4 0'30 0'30 S . !
b4 4.77 6.00 7952 2.07 6.00 2452 - . - s3 175.24 12054.37
b5 4.40 6.00 7862 205 6.00 2510 16 _e0 0.29 0.27 s4 379.12 14785.79
16 e2 8.37 139.80 s5 40.96 3322.15
sl 46.86 5.00 28987 9.28 5.00 5552 16 _ed 334 177.88 s6 2.99 194.88
s2 - - - 42.72 8.00 22720 16 ” ') ’ "
_e6 0.29 0.28 s7 0.31 0.29
s3 - - - 105.72 9.00 36689 18 0 035 0.28
s4 - - - 107.89 8.00 31489 18 7e2 151-65 3683 23
s5 354.60 6.00 198621 26.30 6.00 14909 18 _e4 521'30 T
s6 7.51 4.00 10935 2.35 4.00 2862 18 :eG 24:11 _
s7 0.17 0.00 13 0.18 0.00 13 18 8 0.33 0.31
mbp/exp/incr mbp*/expl/incr
bl 0.80 3.00 1065 0.52 3.16 466 H . s H _
b2 239 | 331 | 3ess || 222 | 387 | 1377 Figure 6: Run Times for incr. anid = 0 on Small Instances
b3 6.15 3.38 6905 4.23 3.84 2178
e I I -l o | Il gl Bt The incremental state generation and dynamic computa-
ST | 4753 | 328 | 28987 870 | 342 | 5155 tion of hpyy pays off again: the org. and = 0 algorithms
z N T ieaae | 2% | G were unable to solve any of those instances within the allo-
o - - T || 2783 831 32190 cated memory. AlthouglepPT is still not able to solve the
6 30.14 | 242 | 31614 6.45 | 300 | 3967 larger instances, it is worth noting that some of those it can
s7 030 | 0.00 13 033 | 0.00 13 solve arebig. Even the subset of states generated with,
- — S‘dgﬁgiw — — Std*/swggincr — grows near to a million, which is very significant for optimal
b2 541 | 1500 | 12200 089 | 1500 | 2192 planning in a partially observable domain. It is clear that we
b3 il Bbrpodl BiEwweed ppral Eroc Il are reaching the limits of what can be achieved with algo-
b5 10.96 | 15.00 | 26022 148 | 1500 | 3916 rithms based on explicit state representations, and that the
SLo| o1SB 400 aaarzl 10081 500 | 174 use of compact representations is the key to further improve-
3 - - — || s848 | 2000 | 44735 ment of these results. Symbolic representations are indeed
o N I T 5% | 55 | eaes one of the reasons behind the success ofvthe planner:
% 2069 | 500 | 45444 245 | 500 | 4736 it solved the original rural network instance in a few sec-
: : td/' p : td*/‘ p onds following a 30mn compilation of the network descrip-
o s tion into efficient data structures. Another obvious reason
b2 o3| G43) 1seod sar | Too) 28 behind the discrepancy between the run-times1sf and
ba 3053 | 703 | 37691 797 | 732 | 5219 GPToON similar problems is thatPT always optimizes cost.
gf e M R E.g., on small networks, this causes the mbp* domain to be
2 - — || 6286 | 528 | 36484 only somewhat easier f@PT than its std* counterpart.
s3 - - - 175.24 8.85 61411
s4 - - - 379.12 10.68 60145
5 - - - 40.96 8.09 28388 .
% | 2005 | 428 | asaaa|| 299 | 428 | sos8 Conclusion, Future, and Related Work
s7 0.33 0.00 123 0.31 0.00 123

)] i i . We believe that the systematic (and even competitive) con-

Figure 5: Results fobasic andsimple (incr. algorithm) frontation of realistic benchmarks by general-purpose plan-

) i ners is a key to further advance the field of contingent plan-

Unfortunately, even equipped withhyy, GPTwWas unable ping - This paper contributes to the demonstration of this
to sqlve this instance. To identify the largest scaled QOwn idea, explaining how thesrbenchmark motivated the de-

version of this problem thatpT could solve, we consid- yelopment of new techniques which are shown to increase
ered two variations of the rural networlsimplified- the ability of theGPT planner to cope with larger problem

rural ~ is like rural ~ except that we remove all interme- jhsiances. Our technical contribution to contingent plan-
diate switches on areas other than that feddBl On ning, namely the incremental computation of an admissi-
tho_se areas, we o_nly keep the breaker and open svyltches,b|e domain-independent heuristic coinciding witgyop in

which leaves us with 7 breakers, 11 lines, and 11 switches. ;re non-deterministic domains, is applicable in conjunction

small-rural is further reduced by removing all break- yith virtually any explicit heuristic search algorithm in be-
ers excepCBL, CBSandCB6 as well as the area attached jief space, and is particularly useful when even the reachable

to them, so are left with 3 breakers, 7 lines, and 6 switches. giate space is too large to be entirely explored. For all but the
For both networks, we considered 8 problem instances with gmgjlespsrinstances, the benefits of incremental computa-
an increasing degree of uncertainty peaking at that of the {jo are clear as the original version ®T could not com-
original. These instances comprise 2, 4, 8, 24, 72, 216, 648, yjete the precompilation step. Yet, we plan to do a compre-
and 1944 initial states, respectively. Figure 7 shows the run pansjve COMParison dfgor andhoyy over other domains.
time (sec.), optimal policy cost, and number of states gener- (gerto|j & Cimatti 2002) presents another, perhaps better in-
ated by the incr. algorithm for mbp* and std* under the tWo ¢5;med, heuristic for contingent planning which does not re-
optimization criteria. We used a time-shared server with a quire the complete generation of the state space. However,
similar processor as before and 4GB of memory, only half it js not admissible and is therefore better suited to a hill-

of which GPTwas allowed to use. climbing search than to the search for an optimal solution.

small _rural

simplified _rural

rsml rsm2 rsm3 rsmé4 rsm5 rsm6

rsm7 rsm8 rspl rsp2 rsp3 rsp4 rsp5

0.59
3.00
457

274
6.00
2096

5.42
6.00
4099

2457 | 108.54
8.00 8.00
10082 30322

583.38
8.00
91015

time
cost
states

mbp*/wst/incr

36196.09
9.00
822475

8.56
3.00
729

240.88
6.00
20673

481.05
6.00
38646

9339.97
8.00
639947

3950.55
9.00
273386

0.74
2.00
457

2.47
3.75
1843

4.82
3.75
3679

19.69 73.73
4.17 4.17
9491 28666

388.63
4.17
84694

time
cost
states

mbp*/expl/incr

81541.57
5.19
822026

8.53
2.00
729

231.79
3.75
20103

460.43
3.75
37429

1922.22
4.17
148129

15384.11
4.17
890097

3153.21
4.40
266034

1.26
3.00
1138

4.97
6.00
4519

9.04
6.00
8225

28.81 114.49
11.00 11.00
19880 61427

574.59
11.00
183577

time
cost
states

std*/wst/incr

7076.00
12.00
615771

80.86
3.00
6929

2039.79
6.00
148631

3794.65
6.00
279134

1.458
2.00
1138

3.86
3.75
3414

7.23
3.75
6473

33.53 132.28
5.83 5.83
19587 56668

647.39
5.83
168541

time
cost
states

std*/explincr

6602.78
6.06
528050

82.20
2.00
6929

1836.27
3.75
131668

3352.00
3.75
243421

Figure 7: Results fosmall _rural

By presenting eDDL-like encoding ofPSR this paper
contributes to its future as a benchmark. In particular, except
perhaps for the reintroduction of axioms irHoDL, there is
now no obstacle t®sRs featuring in a planning competi-
tion. Ours is the first published network-independent en-
coding: (Thebaux & Cordier 2001) only provides an in-
formal description, while the propositiondlR encoding in
(Bertoli et al. 2002) is generated by a special-purpose pro-
cedure based on the analysis of the paths in the network of
interest. In a sense, this makes our experimentssmthe
first 100% domain-independent ones, as knowledge of the
structure of particular networks was not even used in the
encoding, let alone in solving the problem. In the future,
we plan to encode the numeric aspects of the benchmark
(the constraints on the capacity of breakers and lines), and
study the impact on planner behavior and optimal policies.
A straightforward but also interesting variation would be to
assign a cost not just to the final states of a plan, but also to

intermediate states, and trade that extra cost against the need

to gain information by discounting costs along trajectories.
Finally, this paper is the first to report the generation of
optimal solutions forrsr— albeit still for rather small net-
works and in far longer than real-time. Special-purpese
software such asY®RE achieves real-time performance on
large networks (hundreds of devices and lines), but returns
suboptimal policies which do not attempt to gain informa-
tion (Thiebauxet al. 1996). We plan to compare the qual-
ity of the behaviors ofsPTand SYDRE. Burton (Williams
& Nayak 1997) is a general-purpose planner based on the
compilation of a planning problem into a real-time execu-
tive, which has been applied to problems in spacecraft en-
gine reconfiguration close tesr However, Burton as-
sumes total observability and deterministic actions: as in
the SyDRe system, uncertainty in the problem is handled by
a mode-identification module, which determines the most
likely state of the system and passes it onto Burton. The
symbolicMBP planner was able to obtain extremely impres-
sive results with a simpler version pERfor which the sup-
ply restoration goal is given and optimization is not required.
This leads to the conclusion that a combination of the fea-
tures ofcPTandmBP i.e., admissible heuristic search in the

belief space, restriction to reachable (belief) states, and use

of compact BDD-like representations to obviate the need for
explicit state enumeration, could be a killer fogrR

Acknowledgements Thanks to Erik Khoo and John
Slaney for their valuable input to ti@DL encoding ofPSR

andsimplified

_rural (incr. algorithm)

References

Barto, A.; Bardtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programminghrt. Int. 72:81-138.

Bertoli, P., and Cimatti, A. 2002. Improving heuristics for plan-
ning as search in belief space. APS 143-152.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability. In
1JCAI, 473-478.

Bertoli, P.; Cimatti, A.; Slaney, J.; and T@baux, S. 2002. Solving
power supply restoration problems with planning via symbolic
model checking. IEECAI, 576-580.

Bonet, B., and Geffner, H. 2000. Planning with incomplete infor-
mation as heuristic search in belief spaceAIRS 52—61.

Bonet, B., and Geffner, H. 2001. Gpt: A tool for planning with
uncertainty and partial information. IdCAI Workshop on Plan-
ning under Uncertainty and Incomplete Informati@&2—87.
Cassandra, A.; Kaelbling, L.; and Kurien, J. 1996. Acting under
Uncertainty: Discrete Bayesian Models for Mobile-Robot Navi-
gation. InNIROS-96

Geffner, H. 2000. Functional strips: a more flexible language for
planning and problem solving. In Minker, J., etdggic-Based
Artificial Intelligence Kluwer.

Hansen, E., and Feng, Z. 2000. Dynamic programming for POM-
PDs using a factored state representatiorAlPS 130-139.
Hansen, E., and Zilberstein, S. 2001. LAA heuristic search
algorithm that finds solutions with loop#rt. Int. 129:35-62.
Karlsson, L. 2001. Conditional progressive planning under un-
certainty. InlJCAI, 431-436.

Korf, R. 1985. Iterative-deepening A*: An optimal admissible
tree search. INJCAI, 1034-1036.

Majercik, S., and Littman, M. 1999. Contingent planning under
uncertainty via stochastic satisfiability. AAAI, 549-556.
McDermott, D. 1998. PDDL — The Planning Domain Definition
Language, Version 1.2. Technical Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control.
Slate, D., and Atkin, L. 1977. CHESS 4.5 — the Northwestern
University chess program. In Frey, P., gdhess Skill in Man and
Machine Springer-Verlag. 82—118.

Thiébaux, S., and Cordier, M.-O. 2001. Supply restoration in
power distribution systems — a benchmark for planning under
uncertainty. InECP, 85-95.

Thieébaux, S.; Cordier, M.-O.; Jehl, O.; and Krivine, J.-P. 1996.
Supply restoration in power distribution systems — a case study
in integrating model-based diagnosis and repair planningAlp
525-532.

Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2003. In de-
fense of PDDL axioms. Technical Report TR-ARP-01-03, ANU.
http : //csl.anu.edu.au/~thiebaux/paper/trarp0103.pdf.
Williams, B., and Nayak, P. 1997. A reactive planner for a model-
based executive. IWCAI, 1178-1185.

