Interval-Based Relaxation for General Numeric Planning

Enrico Scala and Patrik Haslum and Sylvie Thiebaux and Miquel Ramirez
The Australian National University and NICTA
Canberra, ACT, Australia
firstname.lastname@anu.edu.au

Abstract. We generalise the interval-based relaxation to sequential numeric planning problems with non-linear conditions and effects, and cyclic dependencies. This effectively removes all the limitations on the problem placed in previous work on numeric planning heuristics, and even allows us to extend the planning language with a wider set of mathematical functions. Heuristics obtained from the generalised relaxation are pruning-safe. We derive one such heuristic and use it to solve discrete-time control-like planning problems with autonomous processes. Few planners can solve such problems, and search with our new heuristic compares favourably with them.

1 Introduction

The ability to express quantitative information is crucial to realistically model many planning domains, in particular domains that involve interaction with physical systems. Examples include positions and use it to solve discrete-time control-like planning problems with autonomous processes. Few planners have the expressive range to attempt these problems and heuristic search using our generalised interval-based relaxation heuristic is more efficient than comparable alternatives.

2 Motivating Example

Let us consider the numeric domain represented in Figure 1: A ball, at position \(x \) on a plane, moves with velocity \(v \), possibly falling from one of the sides. \(x = 0 \) at the centre, and position and velocity is positive to the right. The change in velocity is a function of the inclination \(\alpha \) of the plane, accounting for gravity \(g \) and drag along the surface, proportional with a constant \(\mu \) to the speed squared (like in the car domain by Bryce et al. [3]). The drag always acts in the opposite direction to the current velocity. An action models the discretised movement of the ball over \(\delta_t \) units of time, changing variables \(x \) and \(v \) as follows:

\[
x = x + v \delta_t
\]

\[
v = \begin{cases}
v + (g \sin \alpha - \mu v^2) \delta_t & \text{when } v \geq 0
v + (g \sin \alpha + \mu v^2) \delta_t & \text{when } v < 0
\end{cases}
\]

The left hand side is the updated value of \(x \) and \(v \). \(\delta_t \) is a constant and determines the precision of the discretisation. The other two actions increase and decrease \(\alpha \) by a constant amount, by tilting the plane.

Game Over
Win

Figure 1: The ball moves along the plane, and is accelerated by tilting the plane. The goal is to make it fall into the winning hole on the right. If the ball falls off the left side, the game is lost.
The goal is to bring the ball into the hole on the right; this is achieved when \(x \) exceeds a given threshold.

This domain has both cyclic dependencies (i.e., a self-cycle in the second numeric effect) and non-linear effects (e.g., the velocity squared). Earlier work on defining heuristics for numeric planning has focused on linear effect expressions [17, 5, 13] or on acyclic planning tasks [1]. By removing these two assumptions, we address this class of numeric planning problems. Our key concern is the relaxation that underlies heuristics.

3 Notation and Background Material

We focus on sequential numeric planning with ground actions, corresponding to PDDL 2.1 level 2 [11] but extended with additional interpreted mathematical functions.

A state of the system is a partial assignment over propositions \(P \) and real-valued numeric variables \(X; V = P \cup X \). A propositional condition is a positive literal, while a numeric condition is a tuple \(\langle \xi, \geq, >, =, \rangle \) where \(\xi \) is a numeric expression recursively defined as follows: (I) a rational constant is an expression; (II) a variable \(x \) is an expression; (III) if \(\xi' \) is an expression, then so are \(\xi + \xi' \) where \(\circ \in \{+, -, \cdot, \div, ^{\sqrt{}}\} \), for \(n \in \mathbb{N} \), \(b^n \) and \(\log_b(\xi) \), where \(b \in \mathbb{R} \) and \(b > 0 \), and \(\sqrt{\xi} \). Other functions (e.g., trigonometric functions, with \(\cos \), \(\sin \), etc) can also be supported, as long as they are functions in the mathematical sense, and computable; for the interval-based relaxation, functions must also have an interval extension (cf. next section). We write \(\text{val}(x, s) \) and \(\text{val}(\xi, s) \) for the value of variable \(x \) and expression \(\xi \) in state \(s \), respectively.

The value of a variable not assigned in \(s \) is undefined. Undefinedness propagates through expressions, in the sense that the value of a function is undefined whenever any of its arguments is. Some functions have restricted domains, and their result is undefined when any of their arguments is outside its domain; for example, \(\sqrt{x} \) is undefined whenever \(x < 0 \). A condition \(\langle \xi, \geq, >, =, \rangle \) is unsatisfied whenever the value of \(\xi \) is undefined [11]. With slight abuse of notation, we write \(x \in \xi \) to mean that variable \(x \) appears in expression \(\xi \).

Let \(C \) be a set of propositional and numeric conditions. We write \(s \models C \) when state \(s \) satisfies all conditions in \(C \).

Definition 1 (Numeric Action). A numeric action \(a \) is a pair \(\langle \text{pre}(a), \text{eff}(a) \rangle \) where \(\text{pre}(a) \) is a set of propositional and numeric conditions and \(\text{eff}(a) \) is a set of effects. A classical effect is of the form \(p = T \) or \(p = F \) (\(p \in P \)). A numeric effect is \(x := \xi \), where \(\circ \in \{+, -, \cdot, \div, ^{\sqrt{}}\} \) and \(\xi \) is an expression over variables in \(X \). \(\text{eff}(a) \) cannot contain multiple effects on the same variable.

We use subscripts to distinguish propositional and numeric parts (e.g., \(\text{eff}_\text{num}(a) \) is the set of numeric effects of \(a \)). For an effect \(e \), \(\text{lhs}(e) \) denotes the affected variable, \(\text{op}(e) \) the effect operator \((=, +, -) \) and \(\text{rhs}(e) \) denotes the right-hand side expression.

Definition 2 (Numeric Planning Problem). A numeric planning problem is a tuple \(\Pi = (\mathcal{S}_0, \mathcal{A}, \mathcal{G}, \mathcal{V}) \) where \(\mathcal{V} = P \cup X \) is the set of variables, \(\mathcal{S}_0 \) is an assignment to variables in \(\mathcal{V} \) that is complete for variables in \(P \), \(\mathcal{A} \) is a set of numeric actions, and \(\mathcal{G} \) is a set of propositional and numeric goal conditions.

An effect is called state-dependent if the right-hand side is not a constant. Increase and decrease effects can be reformulated as assignments (e.g., \(x+ = \xi \) as \(x = x + \xi \)). However, we will see that this distinction is, surprisingly, crucial, because increase and decrease effects are additive operations, which assignments are, in general, not.

Given an action \(a \), we partition \(\text{eff}_\text{num}(a) \) into sets \(\text{incr}(a), \text{decr}(a) \) and \(\text{assn}(a) \) of increase, decrease and assign effects, respectively. We also write \(\text{const}_\text{assn}(a) \) for the set of state-independent propositional and numeric assignment effects of \(a \) (e.g., \(x = 5 \)).

Action \(a \) is applicable in state \(s \) if \(s \models \text{pre}(a) \), and its execution results in state \(s' = \text{succ}(s, a) \) such that \(\forall e \in \mathcal{V} : \text{val}(x, s') = \begin{cases} \text{rhs}(e) & \text{if } e \in \text{const}_\text{assn}(a) : \text{lhs}(e) = x \\ \text{val}(\text{rhs}(e), s) & \text{if } e \in \text{assn}(a) : \text{lhs}(e) = x \\ \text{val}(x, s) + \text{val}(\text{rhs}(e), s) & \text{if } e \in \text{incr}(a) : \text{lhs}(e) = x \\ \text{val}(x, s) - \text{val}(\text{rhs}(e), s) & \text{if } e \in \text{decr}(a) : \text{lhs}(e) = x \\ \text{val}(x, s) & \text{otherwise (Frame Axiom)} \end{cases} \)

Definition 3 (Plan). A plan \(\pi \) for \(\Pi = (\mathcal{S}_0, \mathcal{A}, \mathcal{G}, \mathcal{V}) \) is a sequence of actions \(a_0, ..., a_n \) from \(A \) such that each action in \(\pi \) is applicable in the state resulting from the application of its predecessors, i.e., \(s_0 \models \text{pre}(a_0), \text{succ}(s_0, a_0) \models \text{pre}(a_1), \) etc. and \(\text{succ}(s_{n-1}, a_{n-1}) \models \mathcal{G} \). A plan \(\pi \) is said to be optimal if, among all valid plans, it has a minimal number of actions.

3.1 The Interval-Based Relaxation

Numeric planning is harder than propositional planning, and undecidable in the general case [15]. To obtain useful heuristics we must look for relaxations of the model that yield a computationally effective representation of the task to solve. Moreover, it is important to look for relaxations generating heuristics that are adequate for the task they are relaxing [17]. We consider only relaxations (and heuristics) that are pruning-safe. A relaxation is pruning-safe if it has no solution only when the original (non-relaxed) problem is also unsolvable; that is, it overestimates the space of reachable states.

An idea pursued in previous work in both classical and numeric planning is that of abstracting away negative effects of the actions, considering only their positive contribution towards achieving a goal or precondition. In propositional planning this amounts to ignoring the delete effects of actions. In general, it implies a possibilistic relaxed interpretation, in which variables accumulate sets of possible values monotonically [14]. Applying this principle to numeric variables, which have unbounded domains, requires a compact representation of the set of values; this is provided by the interval-based representation [1, 23]. Pioneered by Hoffman [17], the interval-based relaxation [1] is the underlying principle used in nearly all heuristics for numeric planning [17, 13, 5, 6]. An exception is the work of Eyervich et al. [9] on the Temporal Fast Downward system, which extends the context-enhanced additive heuristic [16] to temporal and numeric planning. However, this heuristic does not account for indirect effects: action \(a \) indirectly affects variable \(x \) when the effect \(e \) of another action \(b \) on \(x \) depends on a variable \(y \) (in \(\text{rhs}(e) \)) which is changed by \(a \). Ignoring indirect effects in numeric planning makes any reachability analysis not pruning-safe (The context-enhanced additive heuristic is also not pruning-safe, but for a different reason.)

For ease of presentation, we will in the following describe only the relaxation of the numeric part of the problem. The propositional part is handled by standard delete-relaxation. The two parts interact only in the relaxed satisfaction of conjunctive conditions.

Note that Hoffman does not exploit the interval representation explicitly, but uses a transformation to Linear Normal Form where variables’ domains can only increase. This can be interpreted as constructing an enclosure, by lower and upper bounds, of the possible values attainable by a variable.
3.1.1 Definition of the Interval-Based Relaxation

In the interval-based relaxation (IBR), a state assigns each (defined) numeric variable to an interval of the real line, representing the set of values that the variable can possibly attain. We will refer to this as a relaxed state, \(s^+ \). A closed interval \(x = [x, x] \) denotes the lower bound \(x \) and upper bound \(x \) of a variable \(x \) can attain. An open interval \(x = (x, x) \) is analogous but with \(x \) and \(x \) excluded; i.e., \((x, x) = \{ z : x < z < x, x \in \mathbb{R} \} \). A mixed bounded interval mixes open and closed bounds. Closed interval binary operations between two intervals \(x \) and \(y \) are defined as follows [23]:

- \(x + y = [x + y, x + y] \)
- \(x - y = [x - y, x - y] \)
- \(x \cdot y = \min(x, x, x, x) \cdot \max(x, y, x, y) \)
- \(x \div y = \min(x, y, x, y) \div \max(x, y, x, y) \) (if \(0 \notin y \) otherwise one of the bounds diverges [23]).

Binary operations between open or mixed bounded intervals follow the same rules; if an open and a closed bound contribute to the new interval bound, the result is open.

The interval extensions of other mathematical functions in the planning language (such as \(x^n \), \(\sqrt{x} \), \(\log(x) \)) can be similarly defined. The requirement is only that the result of the interval operation contains every value that could result from applying the function to any value(s) in the argument interval(s). To illustrate, we show the interval power, exponentiation and square root. Let \(x \) be an interval \([x, x] \), \(n \in \mathbb{N} \) and \(b \in \mathbb{R}, b > 0 \). We have:

\[
x^n = \begin{cases} [x^n, x^n] & \text{if } x > 0 \text{ or } n \text{ is odd} \\ [0, \max(x^n, x^n)] & \text{if } x < 0 \text{ and } n \text{ is even} \end{cases}
\]

\[
b^x = \begin{cases} [b^x, b^x] & \text{for } 0 < b < 1 \\ [b^x, b^x] & \text{for } b \geq 1 \end{cases}
\]

\[
\sqrt{x} = \begin{cases} [\sqrt{x}, \sqrt{x}] & \text{if } x \geq 0 \\ [0, \sqrt{x}] & \text{if } x < 0 \\ \text{undefined} & \text{otherwise} \end{cases}
\]

The square root of a negative value is not a real number. Hence, the interval square root is the result of restricting the argument interval to the range over which the function is defined, and undefined only if there is no such value. All three extend to open or mixed bounded intervals: for integral power, inequalities in the two first cases are non-strict; for the square root, the second case applies when \(x \in \mathbb{R} \).

Expressions, conditions and actions in the IBR are syntactically the same as in the original PDPL problem; what changes is their interpretation. In particular, the value of an expression \(\xi \) in a relaxed state \(s^+ \), denoted \(\val^+(\xi, s^+) \), is the interval computed using interval operations as defined above. Note that mathematical identities are not necessarily preserved by the relaxed interpretation. For example, if \(\val^+(x, s^+) = [-2, 2] \), then \(\val^+(x \times x, s^+) = [-4, 4] \), while \(\val^+(x^2, s^+) = [0, 4] \). A numeric condition \(\xi \in \mathbb{R} \) is satisfied in a relaxed state \(s^+ \) if \(\val^+(\xi, s^+) \) is defined and there exists some value \(v \in \val^+(\xi, s^+) \) such that \(v \equiv 0 \). A set of conditions (that can appear both in the goal or action preconditions) is relaxed satisfied if each condition in the set is.

An action \(a \) is applicable in \(s^+ \) if \(\val^+(a) \equiv \val(a) \). In the IBR, action effects can only extend the set of possible values of a variable. To define the relaxed successor state, we need the convex union:

Definition 4. The convex union between two closed intervals \(x \) and \(y \) is \(x \cup y = [\min(x, y), \max(x, y)] \). The extension to open or mixed bounded intervals uses open/closed bounds according to those used for \(x \) and \(y \).

Definition 5 (Relaxed Action Effects). Let \(s^+ \) be a relaxed state and \(a \) an action such that \(s^+ \models \val(a) \). The successor state \(s^+_1 \) is such that \(\val^+(s^+, a) = \val^+(s^+_1, a) \) is defined in \(X \), \(\val^+(x, s^+_1) = \begin{cases} \val^+(x, s^+) \cup \val(a) & \text{if } x \equiv \val(a), e \in \text{const}_\text{assign}(a) \\ \val^+(x, s^+) \cup \val^+(\text{rhs}(a), e) & \text{if } x \equiv \val(a), e \in \text{assign}(a) \\ \val^+(x, s^+) \cup (\val^+(\text{rhs}(a), e) + \val^+(\text{rhs}(a), e)) & \text{if } x \equiv \val(a), e \in \text{incr}(a) \\ \val^+(x, s^+) \cup (\val^+(\text{rhs}(a), e) - \val^+(\text{rhs}(a), e)) & \text{if } x \equiv \val(a), e \in \text{decr}(a) \\ \val^+(x, s^+) & \text{otherwise} \end{cases} \).

Applying actions’ effects in the IBR can only monotonically increase the variables’ intervals, because the convex union of two intervals contains both. Hence, this relaxation, just like the classical delete relaxation, is also monotonic with respect to condition satisfaction: what is true before an action is applied is also true after its execution. This property ensures that the relaxation over-approximates the set of reachable conditions, and therefore that it is pruning-safe.

Given a numeric planning problem \(\Pi \), we denote its relaxation by \(\Pi^+ \). The initial state \(s^+_0 \) of \(\Pi^+ \) assigns to each variable \(x \in \mathcal{V} \) the unit interval \([\val(x, s^+_0), \val(x, s^+_0)] \), if \(x \) is defined in \(s^+_0 \).

3.1.2 Asymptotic Behavior of Additive Numeric Effects

In numeric planning, there may be no upper bound on the length of the action sequence needed to reach a state (or condition). Because of this, Aldinger et al. [1] considered asymptotic reachability in the interval-based relaxation, i.e., the variable intervals that are reachable in the limit of an infinite repetition of actions’ effects. The following proposition is slightly adapted from their work. (We present it for increase effects only; the result for decrease effects is analogous.)

Proposition 1. Let \(s^+ \) be a relaxed state, \(x \in X \) a numeric variable, \(a \in \mathcal{A} \) an action such that \(s^+ \models \val(a) \), and \(x \equiv \xi \) an effect of \(a \). Let \(s^+_{\text{lim}} \) be the relaxed state reached in the limit by applying \(a \) an unbounded number of times in \(s^+ \). Then the upper and lower open bounds of \(x \) in \(s^+_{\text{lim}} \) are as follows:

- if \(\exists y > 0 \in \val^+(\xi, s^+) \) then \(x = \infty \in s^+_{\text{lim}} \); and
- if \(\exists y < 0 \in \val^+(\xi, s^+) \) then \(x = -\infty \in s^+_{\text{lim}} \).

In other words, if the right-hand side of an increase effect affecting variable \(x \) can attain a positive value, no matter how small, then the value of \(x \) can be made arbitrarily large by repeated application of the action. This follows directly from the monotonicity of the interval-based relaxation, since if the interval of the right-hand side of the effect, \(\xi \), contains a positive value in \(s^+ \) then it contains that value in any successor state. The rate of increase is not constant in general, but always greater or equal to the rate in the first state.

The following notion of dependency between numeric variables was defined by Aldinger et al. We repeat it here because it is necessary for stating precisely how we generalise their work.

Definition 6 (Slightly adapted from Aldinger et al. [1]). A numeric variable \(x_1 \) is directly dependent on a numeric variable \(x_2 \) in task \(\Pi \) if there exists an action \(a \in \mathcal{A} \) with a numeric effect \((x_1 \equiv \xi) \) \((a \in \{=, +, -, =\}) \) such that \(x_2 \in \xi \).
A variable may depend on itself. However, formulating effects with increase and decrease operators can avoid certain cycles. For example, the assignment \(x = x + 1 \) causes \(x \) to self-depend, but the equivalent increase effect \(x += 1 \) does not.

Aldinger et al. [1] proved that asymptotic reachability in the interval-based relaxation is decidable for planning problems where the dependency relation over the numeric variables has no cycle. In this paper, we remove this restriction. Moreover, we also show that the IBR can support an extended set of mathematical functions in the planning language, such as exponentiation and square root, which have not been supported in previous work.

We approach the derivation of a heuristic based on the interval relaxation in two parts: First, we present a procedure to determine if a condition is asymptotically reachable in the relaxed problem; only if that is the case do we then compute an estimate of the number of actions required to achieve it. The second part treated in Section 5.3.

4 The Additive Effects Transformation

Our generalisation starts from the observation that one reason why Aldinger et al. [1] required the acyclic dependency assumption is the presence of state-dependent non-additive action effects. Non-additive effects can be transformed into additive ones by simple reformulation which preserves their semantic in the real (non-relaxed) problem. An assignment \(x = \xi \) can be rewritten as \(x = \xi - x \). The expressions \(x + \xi - x \) and \(\xi \) are equivalent in real arithmetic. Formally:

Definition 7 (Additive Effects Transformation). The additive transformation of an effect \(e \) is

\[
\begin{align*}
\tau(e) := & \quad \text{lhs}(e) + := \text{rhs}(e) - \text{lhs}(e) \text{ if op}(e) \text{ is an assignment and} \\
& \quad \text{rhs}(e) \text{ is non-constant;} \quad \text{and} \\
\tau(e) := & \quad \text{e otherwise.}
\end{align*}
\]

The additive effects transformation of a numeric planning problem \(\Pi \) is obtained by applying \(\tau \) to all effects of all actions in \(\Pi \), and is denoted by \(\tau(\Pi) \).

Note that this transformation does not change constant (numeric or propositional) assignments. We refer to the interval-based relaxation applied to the additive effects transformation of \(\Pi \) as the Additive Interval-Based Relaxation (AIBR) of \(\Pi \).

Definition 8. The additive interval-based relaxation of a numeric planning problem \(\Pi \) is the interval-based relaxation of \(\tau(\Pi) \), and is denoted by \(\Pi^{+} \).

A natural question is what is the relation between AIBR and IBR? AIBR is an over-approximation of IBR: The space of reachable states in \(\Pi^{+} \) includes that of \(\Pi^{+} \). This implies that heuristics based on the the AIBR are also pruning-safe. The inclusion is a simple consequence of how the interval arithmetic is defined: \(x \subseteq x + y - y \) for any intervals \(x, y \), and consequently \(z \cup x \subseteq z \cup (x + y - y) \), for any \(z \). To see how the AIBR can overestimate (asymptotic) reachability, consider a very simple planning example with two actions \(a = (\emptyset, x = y) \) and \(b = (\emptyset, y = 1) \) and a state \(s = (x = 0, y = 0) \). In the IBR, the (asymptotically) reachable variable is the interval \([0,1]\). Applying the additive effects transformation to \(a \) we get \(\tau(a) = (\emptyset, x += y - x) \). From Proposition 1 it is easy to see that the asymptotically reachable value of \(x \) is now \([0,\infty)\). Applying \(b \) we have \(\text{val}^{+}(y, \text{succ}(s^{+}, b)) = [0,1] \), and, since intervals can only grow, \(0 \in \text{val}^{+}(x, \text{succ}(s^{+}, \cdots)) \). Hence the right-hand side of the additive effect \((y - x) \) includes 1, and applying the action repeatedly achieves arbitrary large values of \(x \). Of course, if the task does not include any state-dependent assignment effects, the set of reachable states is exactly the same.

The transformation addresses only partially the problem, since cyclic dependencies can still occur. Crucially, however, those dependencies are only between additive effects.

5 From Numeric Actions to Supporters and the Asymptotic Relaxed Planning Graph

As observed in the previous section, we can identify the asymptotic implications of additive numeric effects on a variable by evaluating the sign of its right-hand side. The case of constant assignments (\(x = k \) where \(k \) is a constant) is simpler as these are idempotent; repeated application of such effects does not change their initial effect.

A difficulty arises when the possible value of the right-hand side of some numeric effect depends on the state in which the effect is applied, since this state depends on the sequence of actions that were executed before it. As noted by Aldinger et al. [1], this is particularly problematic when the planning problem has cyclic dependencies. In this case there is no a-priori ordering of actions that is guaranteed to produce the complete set of reachable values. If, on the other hand, the dependency relation is acyclic, it suffices to apply the asymptotic effect of each action once, in order of the dependency relation.

5.1 Supporters Set

State-dependent numeric effects can be interpreted as a compact way of expressing conditional effects. Each of these conditional effects depends on the specific value of the right hand side of the effect, which in turn depends on the sequence of actions done before. The main idea of our asymptotic reachability analysis is to make explicit the conditions for such indirect effects to occur through the use of auxiliary actions called “supporters”.

Each action \(a \) is split into a set of supporters, each modelling one possible asymptotic outcome of an effect of \(a \). As observed in Proposition 1, an additive numeric effect can extend the interval of the affected variable to \(\infty \) or \(-\infty \). The idea of supporters is to model explicitly the condition enabling these asymptotic behaviors. A supporter is similar to an action, with the difference that it can express a numeric interval effect \(x = (\xi, \infty) \) or \(x = (-\infty, \tau) \). As per Definition 5, this effect updates the state to the convex union of the interval \(x \) in the current state and \((\xi, \infty) \) or \((-\infty, \tau) \), respectively.

Definition 9 (Supporters of Action \(a \)). Each additive numeric effect \(e \in \text{ef}(a) \) generates two supporters \(e^{+} \) and \(e^{-} \): If \(\text{op}(e) \) is \(+= \), then \(e^{+} \) has the precondition \(\text{pre}(a) \cup \{ \text{rhs}(e), \geq, 0 \} \) and the effect \(\text{lhs}(e) = (\xi, +\infty) \); the precondition of \(e^{-} \) is \(\text{pre}(a) \cup \{ \text{rhs}(e), <, 0 \} \) and the effect \(\text{lhs}(e) = (-\infty, \tau) \). The supporters generated by a decrease effect are defined analogously, but with the left-hand sides of the effects swapped. A constant assignment effect \(x = k \) generates only one supporter, with precondition \(\text{pre}(a) \) and the effect unchanged.

Note that in actual numeric planning, assigning an interval is not possible. The supporters are used only in the AIBR to compactly represent application of an effect an arbitrary number of times.

From the set of actions \(A \) we generate a set of supporters \(\Omega \) using this mechanism. The size of \(\Omega \) is no more than \(2n|A| \), where \(n \) is the maximum number of effects per action. Supporters have no cyclic dependencies, according to Definition 6, because their effects are all constant assignments. The dependencies are instead captured by their
preconditions. We can therefore compute asymptotic relaxed reachability in a manner analogous to relaxed planning graph construction over \(\Omega \), as described in the next section.

5.2 Asymptotic Relaxed Planning Graph

This section describes the construction of the Asymptotic Relaxed Planning Graph (ARPG), \(G \), from the set of supporters. As in the classical relaxed plan graph construction, \(G \) is a digraph of alternating interval (corresponding to “fact”) and supporter (corresponding to “action”) layers. The construction of \(G \) starts with the unit intervals corresponding to the initial state of the planning task, and expands it with a supporter layer containing all supporters in \(\Omega \) whose preconditions are relaxed satisfied, followed by a new interval layer updated with the effects of the applied supporters. The process iterates until either the goal condition is relaxed satisfied in the last interval layer, or no new supporters can be added (in which case the goal is unreachable). Algorithm 1 formalises the process. With slight abuse of notation, we write \(\text{succ}^+(s^+, S) \) for the (relaxed) state that results from simultaneously applying all actions in supporter set \(S \). This is well-defined since all supporters are constant assignments and the successor state is defined by taking the convex union.

Algorithm 1: Asymptotic Relaxed Planning Graph (ARPG)

Input: \(\Pi^{++} \)

Output: Is \(G \) reachable?

1. \(\Omega = \) supporters of \(A \).
2. \(s^+ = s_0^+ \).
3. \(S = \{ a \in \Omega : s^+ \models \text{pre}(a) \} \).
4. While \(S \neq \emptyset \) and \(s^+ \not\models G \) do
5. \(s^+ = \text{succ}^+(s^+, S) \).
6. \(\Omega = \Omega \setminus S \).
7. \(S = \{ a \in \Omega : s^+ \models \text{pre}(a) \} \).
8. Return \(s^+ \models G \).

Figure 2 shows an example of the conversion from actions to supporters, and a sketch of the asymptotic reachability analysis.

Proposition 2 (Termination). The ARPG construction terminates.

Proof Sketch: The set of supporters is finite, so, since repetitions are not allowed, the number of layers that can be built is finite. In the worst case, the construction will terminate when all applicable supporters have been tried.

Proposition 3 (Safety). If ARPG(\(\Pi^{++} \)) returns False, then \(G \) is unreachable in \(\Pi \).

Proof Sketch: \(\Pi^{++} \) is a proper relaxation of \(\Pi \). Assume \(G \) is reachable, by a plan \(\pi = b_0, \ldots, b_m \) that takes \(s_0 \) to a state \(s' \) such that \(s' \models G \). The plan is executable in \(\Pi^{++} \) (by monotonicity) and the goal is relaxed satisfied in its final state. From the relaxed execution of \(\pi \), we can extract the corresponding supporters that are used; as these are relaxed applicable, the ARPG construction returns True.

5.3 Heuristic Estimation

The ARPG construction decides only whether \(G \) is reachable, in the relaxed problem, by application of some, arbitrarily large, number of actions. To compute an estimate of how many actions, we can proceed to build an RPG in the standard fashion, applying (sets of) relaxed applicable actions until the goal is reached and then counting how many were needed. Algorithm 2 shows the relaxed plan computation procedure, for the sake of completeness. Because the goal has already been determined to be relaxed reachable, this process is guaranteed to terminate in a finite number of steps.

Algorithm 2 simply counts the number of actions applied before the goal is achieved. This is the heuristic estimate used in our experiments. Although it can obviously overestimate the size of the relaxed plan substantially, it is very simple to implement and still provides effective heuristic guidance, as shown in Section 7. The heuristic could be made more accurate by removing from \(A' \) actions that do not contribute to achieving \(G \), in a way that is similar to relaxed plan extraction. How to do that efficiently and in a principled way, as well as how to find an admissible estimate, is a question for future work.

Algorithm 2: Compute AIBR Estimate

Input: \(\Pi^{++} \)

Output: Integer

1. \(A' = \emptyset \)
2. \(s = s_0^+ \)
3. Loop
4. Foreach \(a \in A' \) do
5. If \(a \) is relaxed applicable in \(s \) then
6. \(s = \text{succ}^+(s, a) \)
7. \(A' = A' \cup \{ a \} \)
8. If \(s \models G \) then
9. Return \(|A'| \)

6 Planning with Autonomous Processes in PDDL+

Sequential numeric planning is a crucial building block to supporting more expressive planning formalisms, such as planning with autonomous processes as captured in PDDL+ [12]. In the theory of waiting, proposed by McDermott [22] for planning with autonomous processes, instantaneous actions (the agent decisions) are interleaved with waiting (environment evolution). During a waiting action, the agent observes the evolution of the world for a potentially unbounded
amount of time. During this time, the state changes according to the accumulated, additive, effect of active processes. The activation of processes is determined by their conditions on the evolving state.

In principle, the amount of time an agent must wait in a given situation can be arbitrarily large or small. Waiting too long it may miss a window of opportunity to take some action whose precondition is only briefly satisfied, or the dynamics of the world may change as its evolution triggers a change in the set of active processes. Fixing the minimum waiting time to a constant δt results in a time-discretised approximation of the model, and a sequential numeric planning problem. The domain presented in Section 2 is an example of such a model. As shown by Löhr et al. [20, 21], this approximation is good enough to solve a number of challenging realistic hybrid control problems. The "discrete-and-validate" approach to planning with processes, exemplified by the UPMurphi planner [8], also has planning for a time-discretised model at its core, and embeds it into an iterative scheme in which the proposed plan is checked against the continuous-time model and the discretisation refined if it is found to be invalid. Importantly, the time-discretisation of a process model typically results in a sequential planning problem with complex numeric conditions and effects. UPMurphi solves this problem by blind search; a recently developed successor system, DiNo [24], uses a heuristic based on relaxed planning graphs.

We focus here on planning for time-discretised models with instantaneous actions, processes and global constraints. A global constraint is a boolean formula over propositional and numeric conditions that must be satisfied in every state along the plan trajectory, and they are equivalent to additive constraints of PDDL. We use the global constraint mainly to model the equivalent of PDDL+ events. In many PDDL+ domains, events restrict particular plan trajectories by leading to dead-end states (e.g., blowing up the engine in the CAR domain), playing a role similar to global constraints. Whether events do in fact make the language more expressive than global constraints alone can is an open question, but they are known to be the cause of significant modeling and computational complications (e.g., infinite cascades of events [10]).

We solve the sequential numeric planning problem with a best-first search using the AIBR heuristic. Because the AIBR is monotonic, applying the effect of processes in the relaxed problem becomes optional rather than mandatory (i.e., a "may" instead of a "must" semantic). Likewise global constraints, which are always satisfied in the state being evaluated, cannot be invalidated in the relaxed problem. In spite of these approximations, the heuristic provides effective guidance, as shown in the next section.

7 Experiments

To evaluate the effectiveness of the AIBR heuristic, we perform experiments on a set of time-discretised PDDL+ domains involving autonomous processes and global constraints. We did not consider IPC numeric planning benchmarks. These have only simple (linear or constant) conditions and effects, which are already known to be handled, in most cases quite effectively, by heuristics based on the interval relaxation. Next, we present the setting and domains used, then a summary of results, an in-depth analysis for selected domains, and a comparison with two state of the art numeric planners.

7.1 Setting

We implemented a numeric planner using best-first search on $f(n) = g(n) + h(n)$, where $h(n)$ is the AIBR heuristic. As in McDermott’s planner [22], branching is on both (sets of) instantaneous action(s) and waiting. The waiting time is fixed to a constant δt. The successor state of the waiting realises the cumulative effect of all processes active at that particular moment. The planner is correct and complete for the time-discretised problem; of course, like UPMurphi [8] without the validation, the approach is incomplete for the continuous-time PDDL+ semantics (e.g., we can miss opportunities during the δt), and can produce invalid plans as we do not check zero-crossings within the waiting time (e.g., there could be other processes triggered, or global constraints invalidated in that interval). Since our heuristic can overestimate the actual distance to the goal, it is inadmissible and can produce suboptimal plans.

The implementation is in JAVA 1.8, and experiments were run on Ubuntu 14.04 on an Intel 15-vPro with 8 GB of memory. The planner is called Expressive Numeric Heuristic Search Planner (ENHSP), and will be publicly available.

7.2 Planning Domains

The large majority of our test domains require reasoning about autonomous non-linear processes. They include the well-known PDDL+ domains CAR [12] and GENERATOR [3], in both their linear and non-linear versions, the CONVOYS domain introduced by McDermott [22], and two new domains INTERCEPT and HVAC. To these, we add a challenging pure sequential numeric planning domain called COMPLEXPOURING.

Both CAR domain versions involve instantaneous accelerate/decelerate actions and processes updating the distance driven and speed of the car. The non-linear version features a new process, which is active when the speed v is positive and additionally accounts for the drag k, according to $\frac{dv}{dt} = -k \cdot v^2$. Like Bryce et al. [3], we test the scalability of our approach by increasing the maximum acceleration/deceleration (from 1 to 8) to enlarge the branching factor.

GENERATOR describes power generation by an engine which consumes fuel and may need (concurrent) refuelling from various fuel tanks. The linear [12] and non-linear [3] versions both have turn-on/turn-off generator and start/stop refuelling actions but different refuelling dynamics. In the non-linear case, the rate of increase of the fuel level f caused by refuelling is given by $\frac{df}{dt} = \alpha t^2$, where α is a constant and t the refuelling time. Problem instances differ by increasing the number of tanks needed to achieve the goal of generating power for a given duration. Dead-ends appear whenever the planner delays refuelling for too long or when refuelling is impossible due to the lack of space in the generator’s tank. As in previous work [3], the largest instance has 8 tanks, all of which are needed.

CONVOYS features a set of convoys that must reach specific locations starting from their initial positions. The time needed by convoy c to move between two positions a and b on the map depends on the speed v_c of the convoy and on the inverse of the square of the traffic $T_{a,b}$ in that specific road segment. There is a process per convoy and road segment, which updates the distance travelled according to $\frac{dD_{c,a,b}}{dt} = -\frac{v_c}{T_{a,b}^2}$ as long as the segment end point is not reached.

Instances in this domain involve up to 8 locations and 4 convoys.

INTERCEPT involves a vampire v and a bird b in the two-dimensional space Q^2. Two processes describe their movement, given as a function of the speed in the two dimensions. The task is to launch the vampire (initially stationary) at the right time and with

2 As observed by Fox et al. [12], durative actions can be compiled away using two instantaneous actions modeling the start and the stop of a process, which in turns captures the continuous effects of the durative action.
the right speed for it to intercept the bird. This happens when the Euclidean distance between the two is lower than a given radius \(r \), which is encoded using the constraint \((x_t - x_b)^2 + (y_t - y_b)^2 \leq r^2\). Instances scale according to the initial distance between the vampire and the bird, and by the radius defining the goal condition.

HVAC is an abstraction of a ventilation, air-conditioning and cooling (HVAC) control problem [19]. For each zone \(l \) in a building, two HVAC control parameters, the supply air flow rate \(a_l^S \) and supply air temperature \(T_l^S \), must be adjusted from time to time so as to ensure that the zone temperature \(T_l \) meets given constraints. These constraints reflect the schedule of activities occurring at the zone. In our abstraction, there are instantaneous actions to increase/decrease \(T_l^S \) and \(a_l^S \) by a given amount. A single process updates the actual temperature and a process per zone computes the rate of temperature change in this zone as \(\frac{dT_l}{dt} = \beta_a a_l^S (T_l^S - T_l) \), where \(\beta \) is a constant.

Time in this representation is implicitly captured by the progress of the plan, in contrast to the MIP formulation presented in [19], where each variable is explicitly located on the timeline. Moreover, since nonlinear optimisation solvers struggle with this problem, the MIP formulation linearises the bilinear terms in the above equation. Instances in this domain are generated by increasing the number of scheduled activities from 1 to 16.

COMPLEXPOURING is the problem of filling buckets using water tanks arranged in a complex directed network. Each tank and bucket has a given capacity and initial volume of water. This is a purely sequential problem which has no processes but just an action that enables the transfer of water from one container to a connected one. The transfer is modelled by Toricelli’s law which states that the volume \(V \) of water left in a tank with an initial volume \(U \) of water after \(t \) seconds with an open tap is \(V = \sqrt{2gU} \), with \(t \in (0, \sqrt{\frac{U}{g}}) \), where \(k \) is a constant that depends on the cross-sectional area of the tank, the size of the tap, and gravity [18]. In our formulation this law is discretised to model the change happening after 1 second. In order to achieve the goal, we may have to transfer water from different tanks into intermediary ones, and so on. In this domain, we study the complexity arising from two different sources, leading to two different instance sets. In the first set, tanks arranged in a flat structure all feed into a single bucket and we vary the number of tanks from 2 to 10. In the second set, we vary the structure of the network of tanks, which includes from 3 to 10 tanks and 1 or 2 buckets to fill.

7.3 Summary of Results

Table 1 reports number of instances (I), coverage (C), run time (T), plan length (PL), and number of expanded nodes (Exp) for all the domains described in the previous section. The planner was able to solve all the instances provided.

<table>
<thead>
<tr>
<th>Domain</th>
<th>I</th>
<th>C</th>
<th>T</th>
<th>PL</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR (NL)</td>
<td>8</td>
<td>8</td>
<td>0.3</td>
<td>20.8</td>
<td>353.9</td>
</tr>
<tr>
<td>GENERATOR</td>
<td>8</td>
<td>3.7</td>
<td>1005.5</td>
<td>1006.5</td>
<td></td>
</tr>
<tr>
<td>CONVOYS</td>
<td>6</td>
<td>25.1</td>
<td>23</td>
<td>935</td>
<td></td>
</tr>
<tr>
<td>INTERCEPT</td>
<td>10</td>
<td>1.5</td>
<td>114.4</td>
<td>2750.9</td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td>16</td>
<td>16</td>
<td>16.5</td>
<td>110.6</td>
<td>9235.4</td>
</tr>
<tr>
<td>COMPLEXPOURING</td>
<td>17</td>
<td>17</td>
<td>14.1</td>
<td>1693</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Overall picture of the experimental results. PDDL+ domains ran with \(\delta_1 = 1 \) (apart from INTERCEPT, which requires \(\delta_1 = 0.1 \)) to make the instances solvable. Time-out is set to 1800 seconds. Plan Length includes both actions and waiting actions.

7.4 In-Depth Analysis

Next, we present a more in-depth analysis of heuristic guidance for a subset of domains. AIBR informativeness and impact on plan length is evaluated comparing it with blind search \(f(n) = g(n) \), i.e., uniform-cost search. We used uniform-cost search rather than uninformied depth-first search since the latter only solved a few instances of one domain (with plans 10–100 times longer). Since the search space is usually infinite, depth-first search often fails to terminate also for solvable instances.

Car domain. Table 2a shows the number of expanded (Exp) and evaluated nodes (Eval), plan length (PL) and run-time (T) for the non-linear instances. The increasing spectrum of possible accelerations in instances 1 to 8 only marginally affects ENHSP’s runtime. Blind search finds minimal-length plans, but is not able to scale up beyond instance 1. The plans produced using the heuristic, whilst suboptimal, are still of a good quality.

Non-linear Generator. Table 2b shows data for each instance. Here the number of necessary plan steps depends on the time the generator has to run, and on the number of tanks that must be used. With a

3 We only consider the control part of the problem and ignore external influences such as the temperature of adjacent rooms.
shortest plan length of about a 1000 actions and an average branching factor of 3 actions, even the smallest instance has a huge search space. Despite this, the AIBR heuristic solves all instances, whilst blind search solves none. Surprisingly, the heuristic overestimation favours states where fewer actions are possible (a tank can be used just once in this domain). This causes planner to favour refuelling over waiting, thus avoiding the generator running out of fuel. **Complex Pouring.** Table 2c reports the data for each instance. Instances 1-9 belong to the set of instances with a flat network structure (see Subsection 7.2). The largest instance (instance 9) has a larger volume of liquid to be poured so as to increase the length of plans. The depth of the network affects the length of plans. Blind search was able to produce plans within the timeout but only for a subset of these instances. This is because, except for the instances requiring more than 11 actions, the state space is small enough to be blindly explored. Interestingly, none of the plans produced with the heuristics is longer than the plan produced by blind search. It turns out that, despite its inadmissibility, our heuristic leads to optimal plans in this domain.

ENHSP outperforms blind search on the other domains. Blind search only solved instances from the linear version of CAR (expanding on the average 387605 nodes), and 3 instances of CONVOYS (average expanded nodes: 10621).

7.5 Comparative Analysis

We compared ENHSP with dReal [3] and UPMurphi [8], both of which follow the planning via model-checking paradigm. Neither of them is strictly designed for sequential numeric planning, but they were the closest comparable planners that we were aware of and that were available at the time of writing. Another planner with similar capabilities was proposed by Bajada et al. [2], and two more systems for planning with non-linear processes have only recently become available [4, 24]. Examining their comparative performance, and that of ENHSP on newly proposed benchmarks [24], is a question for future work.

Table 3 reports the planners’ runtimes on the CAR and GENERATOR domains. The UPMurphi runtimes were obtained by running the latest version of the planner in its standard configuration with a discretisation step of 1 sec, on the same PDDL+ formalisation the we use for ENHSP. The dReal runtimes are taken from Bryce et al.’s paper [3]. This is because dReal does not support PDDL with processes natively; a model-checking formulation of each instance has to be written manually, which includes a mode for each possible combination of processes (note that there could be an exponential number of modes to consider). We strived to make our PDDL+ formulations as close as possible to those in the dReal distribution.

dReal uses some heuristic guidance, but the heuristic is intended to estimate the number of jumps between different modes, and ignores the numeric part of the problem. UPMurphi automatically translates PDDL+ to the model-checking formulation, but unlike dReal, it uses blind search and is not guided by any heuristic. Table 3 shows that the AIBR heuristic provides better search guidance than the mechanisms employed by these two planners.

However, these results should only be considered as indicative, rather than as a fair comparison. There are several differences between the three planners which must be taken into account. For instance, dReal is an approximate planner where preconditions and goals are satisfied up to an approximation error. ENHSP and UPMurphi may also produce unsound plans, but for a different reason, due to discretisation of time and lack of zero-crossing check. To remedy this would require introducing a plan validation step, and subsequent refinement of the discretisation [8]. dReal only finds plan with a bounded number of steps, specified in advance, so in general must be run several times, with increasing step bounds. The CPU times in Table 3 are for a single run only, in which the planner is given the optimal number of steps for each problem. (CPU times for the whole process, on some instances, can be found in [4].) In contrast, ENHSP does not require any a priori bound.

8 Conclusions

The interval-based relaxation is the natural extension of the principle of monotonic (delete-free) relaxation to numeric planning [17], and the basis of most numeric planning heuristics [13, 6, 7, 5, 24]. However, these apply only to restricted problems, for example having linear conditions and effects. Up to now, it has not been clear if (asymptotically) reachability in the relaxation is even decidable for unrestricted problems, which may have cyclic dependencies [1]. We have shown that relaxed reachability is computable, through a novel asymptotic relaxed planning graph formulation, for problems with additive action effects, and moreover that non-additive state-dependent effects can be removed by a syntactic problem transformation, at the price of a further relaxation. The resulting additive interval-based relaxation (AIBR) and heuristics derived from it are pruning-safe.

Sequential numeric planning problems with complex non-linear effects arise naturally as time-discretisations of planning in the presence of autonomous continuous-time processes [8, 20], and efficient and general numeric planners are a key building block for supporting more expressive forms of planning. Evaluation of a planner using a heuristic obtained from the AIBR on various non-linear sequential planning problems and time-discretised PDDL+ problems with global constraints showed it to be competitive with some planners designed for such problems [3, 8].

In addition to extending the comparison to other recent planners, our future work is aimed at understanding how to make the heuristic more accurate and/or better integrated with the search engine used, for example through the extraction of helpful actions [17].

Acknowledgements This work is supported by ARC project DP140104219, “Robust AI Planning for Hybrid Systems”. NICTA is funded by the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.
REFERENCES

