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Abstract.
This paper considers the diagnosis of large discrete-event systems

consisting of many components. The problem is to determine, on-
line, all failures and states that explain a given sequence of obser-
vations. Several model-based diagnosis approaches deal with this
problem but they usually have either poor time performance or re-
sult in space explosion. Recent work has shown that both problems
can be tackled when encoding diagnosis approaches symbolically by
means of binary decision diagrams. This paper further improves upon
these results and presents a decentralised symbolic diagnosis method
that computes the diagnosis information for each component off-line
and then combines them on-line. Experimental results show that our
method provides significant improvements over existing approaches.

1 Introduction

This paper addresses the problem of diagnosing large component-
based event-driven systems. Specifically, we are concerned with the
on-line identification of all faults that explain the flow of observations
continuously received from the system.

To assist operators in charge of the supervision of large and com-
plex infrastructure networks in transport, energy, and telecommuni-
cation, there is a pressing need for model-based diagnosis methods
that scale up. However, existing model-based approaches suffer from
poor time performance or space explosion. This includes simulation-
based approaches, which, such as that of Baroni et al. [1], start from
a decentralised model of the system (a model of the individual com-
ponents and their interactions), and track the possible system be-
haviours on-line as observations become available; the reliance on
a decentralised model makes them space efficient, but the set of pos-
sible behaviours is so large that on-line computation can be time in-
efficient. At the other end of the spectrum, consider diagnoser based
approaches, which, such as that of Sampath et al. [8] compile, off-
line, a centralised system model into another finite state machine (the
diagnoser) which efficiently maps observations to possible failures;
here the space required by the centralised model, let alone that re-
quired by the diagnoser, constitutes a major problem.

Approaches with a better space-time tradeoff include the decen-
tralised diagnoser approach [6] which precomputes diagnosers for
small subsystems only, but needs to ensure consistency of the local
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diagnoses at run-time. Another line of work deals with the incre-
mental on-line compilation of diagnosis information and its reuse
[4]. Finally, symbolic representations, by means of binary decision
diagrams (BDDs) have been applied to increase time and space effi-
ciency of diagnosis methods [9, 11, 10, 5].

In this paper we present a symbolic decentralised diagnosis ap-
proach that further improves upon existing work. Instead of encod-
ing one of the known decentralised methods symbolically, we de-
fine a new approach that directly exploits the advantages of BDDs.
It is well known that BDDs can be used to efficiently encode and
manipulate large state and transition sets. However, as demonstrated
in [10], updating the set of possible faults upon reception of a new
observation involves operations that cannot be efficiently performed
by means of BDDs. Therefore, our decentralised diagnosis approach
precomputes the diagnosis information off-line for each component.
On-line we then only need to synchronise states and transitions to
obtain the global diagnosis information.

Our experimental evaluation demonstrates that our approach can
be much faster than symbolic simulation-based approaches. Perhaps
more surprisingly, we show that its efficiency is comparable to that
of centralised diagnosis approaches which have much higher space
requirements.

The paper is organised as follows. We start with a short intro-
duction to the diagnosis problem in discrete event systems and then
present our decentralised diagnosis approach in Sections 3 and 4.
Next, we present the symbolic encoding of our decentralised diag-
nosis model which we then use in Section 6 to retrieve the globally
consistent diagnosis information on-line. Section 7 provides the ex-
perimental evaluation of our approach and Section 8 concludes with
some words on related and future work.

2 Diagnosis Problem for Discrete Event Systems
The diagnosis problem for discrete-event systems consists in deter-
mining all system states and faults that are consistent with a sequence
of observations. The set of consistent states and faults is known as the
diagnosis information. As in [8], we assume that the diagnosed sys-
tem is composed of a set of n individual components (finite state ma-
chines) Gi = 〈Xi,Σi, x0i , Ti〉 where Xi is the set of states, Σi the
set of events, x0i the initial state, and Ti the transition set. The events
are partitioned into observable Σoi and unobservable Σui events, the
latter of which is further partitioned into faults Σfi and shared Σsi

events. The shared events are used to describe the communication be-
tween components. If a shared event is triggered in one component
it is simultaneously triggered in all other components that define it.
Figure 1 depicts simplified component models of a telecommunica-
tion application to which we will refer throughout the paper. The
global modelG = 〈X,Σ, x0, T 〉 of a system corresponds to the syn-
chronous product of its component models. In order to simplify the
definitions that follow, we introduce the concept of event paths.
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Figure 1. Simplified component models for a switch SW and two control
stations CS1 and CS2. Solid lines denote observable transitions, dashed

lines shared transitions and dotted lines failure transitions.

Definition 1 (Event Paths) Let FSM = 〈X,Σ, x0, T 〉 denote a fi-
nite state machine. An event path PΣ′ = x1

σ1→ x2 · · ·
σq−1→ xq with

Σ′ ⊆ Σ is a path in the FSM such that σi ∈ Σ′ ∀i ∈ {1, . . . q− 1}
(note that the path may consist of a single state only). The following
functions are defined for every event path:

• Start(PΣ′) returns the start state of path PΣ′

• Targ(PΣ′) returns the target state of path PΣ′

• EvSet(PΣ′ , Σ̇) returns the events in Σ̇ ⊆ Σ′ of path PΣ′ .

Determining the diagnosis information amounts to looking at ev-
ery path P in the global model from the initial state x0 to a state x
whose observable event sequence corresponds to the event sequence
S actually observed. A tuple (x, l) is part of the diagnosis, if the fault
label l corresponds to the faulty event set EvSet(P,Σf ) of path P .

Definition 2 (Diagnosis information) The diagnosis information

φS ∈ 2X×2
Σf

that is consistent with a global model G =
〈X,Σ, x0, T 〉 and a sequence of observable events S = [o1, . . . , ok]
is defined as follows:

φS = {(x, l) | P
1

Σu

o1−→ P
2

Σu
· · ·

ok−1−−−→ P
k

Σu

ok−→ x is a path in G
with l =

⋃k
j=1 EvSet(P

j

Σu
,Σf ) and Start(P

1

Σu
) = x0}.

The aim of on-line diagnosis approaches is to provide timely di-
agnosis information. This can be done most efficiently following the
classical diagnoser approach [8]. A diagnoser is a deterministic fi-
nite state machine whose transitions are all labelled with observable
events and whose states are directly labelled by the diagnosis infor-
mation that is consistent with the past observations. Hence it is a
means for efficiently retrieving the set of faults that have occured. It
does, however, no longer allow inferences about the order in which
the faults have occured. Figure 2 depicts a small part of the diagnoser
for the system shown in Figure 1. For instance, φ[CS1obs,SWobs] is

found by following the transition sequence q0
CS1obs−−−−−→ q1

SWobs−−−−→
q2 and by retrieving the state label of q2. Unfortunately, diagnosers
can be so large that they are not computable for all but the small-
est applications. In this paper we present a decentralised diagnosis
approach that only precomputes the diagnosis information for each
component. Since this computation is done locally only, these diag-
nosis models remain computable even for large applications.

3 The Local Diagnosis Model
The diagnosis model Gi is a sort of local diagnoser for the component
in which the fault behaviours are abstracted and accounted for in the
state labels of a FSM. To ensure that this model allows the retrieval
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Figure 2. (Part of the) diagnoser for the example shown in Figure 1.

of the global diagnosis information on the basis of the local one we
label the transitions of Gi with observable and shared events and use
two state labelling functions:

• the usual or “classical” labelling function Ri which retrieves the
diagnosis information that is consistent with any sequence of
events Si observed by component Gi, and

• the quiet labelling function R′i which retrieves the diagnosis in-
formation that is consistent with Si, followed by any sequence of
fault events of Gi.

Hence, to determine which system states and faults are possible im-
mediately after the last observation of Si, we use the classical func-
tion. In contrast, to determine the diagnosis information that is con-
sistent with Si and any future behaviour that does not involve other
components and that cannot be observed, we use the quiet labelling
function.

Definition 3 (Local diagnosis model) The local diagnosis model of
a component Gi = 〈Xi,Σi, x0i , Ti〉 is the deterministic finite
state machine Gi = 〈Xi,Ψi,Σ

′
i,Ri,R

′
i,x0i ,Ti〉 where Xi is the set

of states, Ψi = Xi × 2Σfi is the set of possible local diagnosis
candidates, Σ′i = Σsi ∪ Σoi is the set of events, x0i is the initial
state, Ti ⊆ Xi × Σ′i × Xi is the set of transitions, and Ri and R′i
are the classical and quiet state labelling function that associate a
state to its possible local diagnosis information (Ri : Xi 7→ 2Ψi and
R′i : Xi 7→ 2Ψi ). Ri, R′i and Ti satisfy:
Ri(x0i) = {(x0i , ∅)} and

xi
σ−→ x′i ∈ Ti iff

Ri(x
′
i) = {(x′i, li ∪ l′i) |

∃(xi, li) ∈ Ri(xi) such that PΣfi

σ−→ x′i
is a path in Gi with Start(PΣfi

) = xi
and l′i = EvSet(PΣfi

,Σfi)} and

R′i(xi) = Ri(xi) ∪ {(xj , li ∪ l′i) |
PΣfi

is a path in Gi with
Start(PΣfi

) = xi, Targ(PΣfi
) = xj ,

l′i = EvSet(PΣfi
,Σfi), (xi, li) ∈ Ri(xi)}.

Figure 3 shows the local diagnosis model for CS2. The states Zi
on the left hand side of the equalities are those of the local diagno-
sis model shown in the figure, whilst the states zi on the right hand
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Figure 3. Local diagnosis model of CS2 depicted in Figure 1.

side are those of the component CS2 in Figure 1. Note that the num-
ber of different states in Gi only depends on the number of different
classical state labels. Two local diagnosis states are identical iff their
classical labels are identical (see definition of Ti). In that case, the
quiet labels are necessarily identical (see definition of R′i). However
two different states can also have identical quiet labels (see for in-
stance states Z0 and Z3 in Figure 3).

4 Computation of Global Diagnosis Information
Computing the global diagnosis information on the basis of local
diagnosis models requires both: a synchronisation of the individual
transition sets and a synchronisation of the state labels. We now de-
fine these synchronisation rules by introducing a new model.

The centralised diagnosis model G = 〈X,Ψ,Σ′,R,x0, ψ0,T〉 is
defined as the synchronous composition of the local diagnosis mod-
els such that X =

∏n
i=1 Xi is the set of centralised model states,

Ψ =
∏n
i=1 Ψi is the set of possible global diagnosis information,

Σ′ = Σo∪Σs are the events (Σo =
⋃n
i=1 Σoi and Σs =

⋃n
i=1 Σsi ),

x0 =
∏n
i=1 x0i is the initial state, ψ0 = {(x0, ∅)} is the initial

global diagnosis information, T is the transition set, and R is the di-
agnosis labelling function (R : Σo × X 7→ 2Ψ). Let σ denote an
observation defined in component Gj and x =

∏
i xi a state in G.

Then R satisfies:

R(σ,x) = Rj(xj)×
∏
i,i 6=j

R′i(xi).

The transitions are defined as follows:

T = {(x1, . . . ,xn)
σ→ (x′1, . . . ,x

′
n) |

∀i ∈ 1 . . . n s.t. σ ∈ Σ′i,xi
σ→ x′i ∈ Ti and

∀i ∈ 1 . . . n s.t. σ /∈ Σ′i,xi = x′i}.

Thus the global diagnosis information is derived as composition of
the local diagnosis information. In general, it does not only depend
on the centralised state itself but also on the observation leading to
that state, or more precisely on the component Gj that observed the
last event. Only for this local diagnosis model Gj the information
is obtained using the classical labelling function Rj . The local diag-
nosis information of the other components is retrieved via the quiet
function R′i as stated in the following proposition:

Proposition 1 (Diagnosis Retrieval)
Let G = 〈X,Ψ,Σ′,R,x0, ψ0,T〉 denote the global diagnosis model
of a systemG and S = [o1, . . . , ok] a sequence of observable events.
Then
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Figure 4. (Part of) centralised diagnosis model for the component models
depicted in Figure 1.

φS = {R(ok,x) | P = P
1

Σs

o1−→ P
2

Σs
· · ·

ok−1−−−→ P
k

Σs

ok−→ x

is a path in G with Start(P
1

Σs
) = x0}.

Note, also the on-line diagnosis approach based on the local diagno-
sis models makes use of this proposition. It computes all the paths P
by triggering transitions in local models only (see Section 7).

Figure 4 shows a part of the centralised diagnosis model for
our example application. For instance, considering the sequence
S = [CS1obs] there are two paths that satisfy the condi-
tion of Proposition 1: (X0, Y0, Z0)

CS1obs−−−−−→ (X0, Y1, Z0) and
(X0, Y0, Z0)

NotifySWfail−−−−−−−−−−−→ (X1, Y2, Z3)
CS1obs−−−−−→ (X1, Y1, Z3).

Thus, the global diagnosis information that is consistent with S is:

φS = R(CS1obs, (X0, Y1, Z0)) ∪ R(CS1obs, (X1, Y1, Z3))

= (R′SW (X0)× RCS1(Y1)× R′CS2(Z0)) ∪
(R′SW (X1)× RCS1(Y1)× R′CS2(Z3))

=
({

(x0, ∅), (x1, {SWfail})
}
×
{

(y3, {CS1fail})
}
×{

(z0, ∅), (z2, {CS2fail})
})
∪({

(x2, {SWfail})
}
×
{

(y3, {CS1fail})
}
×{

(z0, ∅), (z2, {CS2fail})
})

=
{

(x0, ∅), (x1, {SWfail}), (x2, {SWfail})
}
×{

(y3, {CS1fail})
}
×
{

(z0, ∅), (z2, {CS2fail})
}
.

It corresponds exactly to the label of diagnoser state q1 shown in
Figure 2 and was determined without the expensive and often infea-
sible diagnoser computation. Moreover, in contrast to the diagnosis
computation based on the global model (see Definition 2) it is no
longer necessary to determine the fault events of a path and to update
this fault set with the arrival of a new observation. Instead we only
need to synchronise state sets to retrieve the global diagnosis infor-
mation based on the local ones. Unlike the update of fault labels, this
operation is very efficient when performed symbolically (see Sec-
tion 7). Thus, we can exploit the advantages of symbolic represen-
tations and computations more exhaustively than existing symbolic
diagnosis approaches.

5 Symbolic Local Diagnosis Model Representation
Before we describe the encoding of our symbolic models we briefly
review binary decision diagrams. Ordered binary decision diagrams
(OBDDs, or BDDs for short) [2] are a form of reduced decision graph
that provide a compact canonical representation of boolean functions
Bn 7→ B. While the BDD representation still requires exponential
space in the number of boolean variables in the worst case, the re-
ductions often make the BDD of a function much smaller than its
disjunctive normal form (DNF). Any boolean operation f ? g on two
BDDs f and g, can be carried out in O(|f ||g|) at most, where |f |
denotes the number of nodes in the BDD f . BDDs are particularly
suitable to represent and manipulate large state and transition sets.



Following the general procedure for encoding states and events of
FSMs with BDDs we have introduced at least Nr(Q) = dlog2 |Q|e
boolean variables for each set Q which allows us to write state and
event numbers in binary. Furthermore, the symbolic representation
of transitions requires the introduction of two sets of state variables
in order to distinguish between the start and target state of a transi-
tion. Each transition is then given as a conjunction involving the state
variables, event variables, and primed, i.e. target state, variables. To
encode the shared transitions Tsi of our local diagnosis models we
have introduced the following three variable sets:

• bXi = {bX1i
, . . . , bXNr(Xi)i

} are the state variables used to represent
start states of transitions;

• bX’i = {bX’1i
, . . . , bX’Nr(Xi)i

} are the primed variables used to repre-
sent target states of transitions; and

• bS = {bS1 , . . . , bSNr(Σs)} are the shared event variables of the sys-
tem.

For instance, state Z2 of the local diagnoser model depicted in
Figure 3 is given by the conjunction ¬bZ3 ∧ bZ2 ∧ ¬bZ1 , and the set of
states {Z2, Z5} by the DNF (¬bZ3 ∧ bZ2 ∧¬bZ1 )∨ (bZ3 ∧¬bZ2 ∧ bZ1 ).

The transition t = Z2
NotifySWfail−−−−−−−−−−→ Z5 is given by t = (¬bZ3 ∧

bZ2 ∧¬bZ1 )∧ (¬bS1 )∧ (bZ
′

3 ∧¬bZ
′

2 ∧ bZ
′

1 ) and the transition relation
Tsi is then encoded as a DNF.

The encoding of the shared events of all models over the same set
of variables bS allows the efficient on-line synchronisation of all lo-
cal diagnosis models. In contrast, observable events bOi = bC ∪ bOloc
are encoded by a set of local variables bOloc that represent Gi’s ob-
servable events, together with an identifier of model Gi encoded by
a set of global variables bC . The local variables are reused across
different models and hence the identifier is necessary to make the
observable events globally distinguishable. Furthermore the latter al-
lows the direct retrieval of the component that emitted an observable
event which is an important information for the on-line diagnosis ap-
proach based on the local diagnosis models (see next section).

The FSM of the symbolic local diagnosis model
Gi = 〈bXi , bX

′
i , b

X
i , b

O
i , b

F
i , b

S ,Φi,Φ
′
i,x0i ,Toi ,Tsi〉 is thus de-

scribed via the three BDDs x0i , Toi and Tsi that represent the initial
state, and the observable and shared transitions respectively. The
state labelling functions of Gi are represented by the two BDDs Φi
and Φ′i that are encoded over the variables bXi ∪ bXi ∪ bFi , where
bXi = {bX1i

, . . . , bXNr(Xi)i
} and bFi = {bF1i

, . . . , bF|Σfi
|i} encode the

component states and faults of the diagnosis information. Note since
multiple faults can occur simultaneously we have introduced one
fault variable for each fault event.

For instance, the state labelling functions for Z2 of the local di-
agnoser model depicted in Figure 3, i.e. Ri(Z2) = R′i(Z2) =
{(z1, ∅), (z2, {CS2fail})}, is encoded as:

((¬bz3 ∧ bz2 ∧ ¬bz1) ∧ (¬bZ3 ∧ ¬bZ2 ∧ bZ1 ) ∧ (¬bFCS2fail))
∨ ((¬bz3 ∧ bz2 ∧ ¬bz1) ∧ (¬bZ3 ∧ bZ2 ∧ ¬bZ1 ) ∧ (bFCS2fail)).

The symbolic representation of our local diagnosis models is now
the basis for the efficient on-line diagnosis approach described next.

6 Symbolic On-line Diagnosis
On-line diagnosis aims to detect faults while the system is working.
Given a sequence of observations, it identifies all the faults and sys-
tem states that are consistent with the occurrence of these events. We
now show how we can exploit the symbolic representations of our lo-
cal diagnosis models to efficiently retrieve this diagnosis information

Algorithm 1 DiagOnline(Gi, XDiag, σ)

1: INPUT: XDiag : states whose labels contain the current
diagnosis information

σ : new observation

Initialise
2: comp← GetComp(σ)

Trigger shared events
3: Xnew ← XDiag
4: while there are new states (i.e. as long as IsDef(Xnew)) do
5: Tnew ← Xnew ∧

∧
i∈{1,...,n}(Tsi ∨ Tsteadyi)

6: XTarg ← SwapV ar(ExtractV ar(Tnew, b
X′), bX, bX

′
)

7: Xnew ← XTarg ∧ ¬XDiag
8: XDiag ← XDiag ∨ Xnew

Trigger new observation σ
9: XTarg ← SwapV ar(σ ∧ XDiag ∧ Tocomp , b

X
comp, b

X′
comp)

10: XTarg ← ExtractV ar(XTarg, b
X
comp)

11: XnewDiag ← XTarg

Look up diagnosis information
12: diagInfo← AbstractV ar(XTarg ∧ Φcomp, b

X
comp)

13: for all components j 6= comp do
14: diagInfo← AbstractV ar(diagInfo ∧ Φ′j , b

X
j)

15: OUTPUT:
states XnewDiag whose labels contain the new global diagnosis
information diagInfo

diagInfo. More precisely, we describe how the set of states XDiag
can be derived from which we can determine the diagnosis informa-
tion using our two local state labelling functions. Initially it consists
of the initial state x0 =

∧
i∈{1,...,n} x0i . Then, after each new obser-

vation, it is updated symbolically using the basic boolean operations
and the following ones:

• IsDef(bdd) returns true iff bdd does not represent false,
• Extract(bdd,B)

deletes from bdd all occurrences of variables not in B,
• Abstract(bdd,B)

deletes from bdd all occurrences of variables in B,
• Swap(bdd, {a1, . . . , ak}, {b1, . . . , bk})

renames, in bdd, variable ai with bi, i = 1 . . . k, and vice versa.

Algorithm 1 describes how the diagnosis information is updated
based on our local diagnosis models following a new observable
event σ. In order to retrieve this information, we need to consider the
classical label Φcomp of the local diagnosis model Gcomp in which
σ is defined and the quiet state labels Φ′j of the remaining models.
Hence we need to determine the component in which σ is defined.
We do this using function GetComp (line 2) that returns the corre-
sponding identifier of the component by considering the bC variables
used to encode σ (see Section 5).

Now, to update the diagnosis information, we first consider all pos-
sible interactions among components that could have taken place af-
ter the last event was observed and before the new observation σ
(lines 3–8). This requires the triggering of all shared transitions from
states in XDiag . In order to perform this operation we have to deal
with the fact that different shared events are defined for different sets
of components5. This gives us two options for triggering shared tran-
sitions:
5 For instance, in our example the event NotifySWfail is defined for all

components while the event NotifyCS1fail is only defined for the two
control stations CS1 and CS2.



• We can determine for each shared event σs the set of models that
define it, i.e. for which IsDef(σs∧Tsi) holds and then trigger the
transition in these models only. Hence we would need to trigger
shared transition for each event separately.

• For every model Gi for which σs is not defined we can add a steady
transition xi

σs−→ xi for all states in Gi. This ensures that all shared
events are defined in all models. If such a model is in state xi and
a shared event σs is triggered in another component, the transition
x

σs−→ x is triggered at the same time. Thus we can trigger all
shared transitions at once.

Since the triggering of transition sets is symbolically very efficient,
we have chosen the latter option and have added the set of steady
transitions Tsteadyi to each local diagnosis model. Now we can trig-
ger all shared transitions from all states XDiag at once (see line 5). In
order to determine all sequences of shared events starting in a state
in XDiag we need to repeat the latter operation.

Until a fixed point is reached, all transitions starting in newly re-
trieved states Xnew are triggered and the targets states that have not
yet been encountered are added to XDiag (line 8). To obtain the tar-
get states Xtarg of the transitions Tnew, we abstract the latter from
its start states and events using function ExtractV ar (line 6). Orig-
inally the targets Xtarg are defined over the variables bX

′
. In order

to compute the transitions starting in states of Xtarg in the next loop
iteration, we swap the state variables to represent Xtarg over the
variables bX (line 6). Finally, to guarantee the termination of the al-
gorithm, we only consider those targets from which transitions have
not yet been triggered. Hence we subtract all previously encountered
states XDiag from Xtarg (line 7).

In order to retrieve the states that refer to the diagnosis information
that is also consistent with observing σ, we trigger this transition
from the previously computed states (lines 9–11). Note that we need
to consider only the local observable transition and swap local state
variables of the model Gcomp in which σ is defined (line 9).

Finally, the diagnosis information is obtained by combining the
labels of the states computed above which is done according to the
synchronisation rules defined in Section 4. Symbolically this is im-
plemented using the ∧ operator (lines 12–14).

In order to compare the performance of our decentralised
diagnosis approach also with a diagnosis method based on
the centralised diagnosis model we have implemented such an
approach as well. The symbolic centralised diagnosis model
G = 〈bX, bX

′
, bX , bO, bS , bF ,Φ1, . . . ,Φn,Φ

′
1, . . . ,Φ

′
n,x0,To,Ts〉

is described by the three additional BDDs x0,To, and Ts that are
defined over the state variables bX = ∪ni=1b

X
i and bX

′
= ∪ni=1b

X′
i .

Note that we did not synchronise the state labelling functions since it
can be efficiently retrieved on-line (lines 12–14) and thus would only
increase the space required for the model representation. The on-line
diagnosis based on G is analogue to the computation described in
Algorithm 1. Instead of triggering local transitions in lines 5 and 9
we now need to trigger transitions in the centralised model.

7 Experimental Evaluation
We implemented our approach on top of the CUDD BDD package
(http://vlsi.colorado.edu/˜fabio/CUDD) and run our
experiments on a 3.2 GHz Pentium IV with 1 Gbyte of memory. For
conducting our evaluation we used a system derived from our exam-
ple application as a case study [7]. It consists of 3 components (a
switch with 12 states and 18 transitions, a primary control station of
13 states and 15 transitions, and a backup control station of 19 states
and 28 transitions), 9 observable events, 11 fault types, and 8 other
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Figure 5. At the top: average diagnosis times for our models (left) and for
the symbolic models presented in [10] (right), based on 100 scenarios
consisting each of a sequence of 10,000 observations. At the bottom:

corresponding model sizes.

unobservable events. We generated by simulation 100 arbitrary sce-
narios (possible sequences of observations) of 10,000 observations6

each, and used them as input to all models.
We have compared our approach with the closest work to ours

namely the symbolic diagnosis methods described in [10]. These
were based on the component, global, and diagnoser model which
are all introduced in Section 2. The component based diagnosis ap-
proach computes first all paths that satisfy the condition stated in
Definition 2. From them it then extracts the labels of fault transitions
and determines the set of faults that are consistent with the observed
events. This diagnosis method can best be compared to the one based
on our local diagnosers where we also perform local computations to
obtain on-line all paths satisfying a similar condition, namely the one
stated in Proposition 1. However, in contrast to the component based
approach we do not need to determine the fault events of a path and
to update the fault sets. The latter is symbolically very inefficient
since it requires the isolation and manipulation of individual boolean
variables. In our approach this was done off-line. The diagnosis ap-
proach using the global model is comparable to our method based on
the centralised diagnosis model (see Section 4 and the end of Sec-
tion 6). Both approaches can resort to a synchronised representation
of the system for computing on-line all paths that are consistent with
Definition 2 and Proposition 1 respectively. The retrieval of the fault
information for the global model based approach is the same as for
the component based approach described above and hence very inef-
ficient.

Figure 5 shows how our results compare to the above existing
methods. Here we see that apart from the diagnoser approach our
diagnosis methods are much faster. This results from the fact that our
approach avoids the costly update of fault labels which requires the
isolation and manipulation of individual boolean variables.

6 Unlike the components in Figure 1 which have final states without outgoing
transitions, the components of the case study have observable loops (and
so does the diagnoser) which is why it was possible to track sequences of
10,000 observable events.
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Furthermore the diagnosis times show that our decentralised diag-
nosis approach is not much slower than the one based on the cen-
tralised diagnosis model. This might seem surprising since the on-
line synchronisation implies that much more transition sets need to
be triggered in the local diagnosis models than in the centralised one.
It can be explained by the fact that the efficiency of triggering tran-
sition sets depends on the size of the BDD that represents the tran-
sitions. Since our local diagnosis models are smaller they therefore
allow for a faster triggering of transition sets.

To consider the time/space complexity tradeoff we now also look
at the space requirements for representing the diagnosis models.
These were determined by counting the nodes of their BDDs and
by multiplying this number with the space requirements to represent
one BDD node. The bottom of Figure 5 depicts these results on a
logarithmic scale. They show that the small diagnosis time of the di-
agnoser based approach was achieved at the expense of high space
requirements that were more than two orders of magnitude higher
than that of our decentralised approach. In contrast, our diagnosis
approach took only three times longer.

The results also show that compared to the existing approaches
based on the global model and the abstracted one our diagnosis ap-
proaches are not only faster but require also less space. In order to
see whether our approaches can also be used for updating a continu-
ous flow of observations we need to ensure that our diagnosis times
increase only linearly in the number of observations. As Figure 6
shows, this is the case for both of our methods.

8 Conclusion, Related & Future Work

We have presented a decentralised symbolic diagnosis approach that
is efficient in terms of both time and space. Run time efficiency
was achieved by exploiting the advantages of BDD based represen-
tations and computations. The slow computation of the local diag-
nosis information was performed off-line while the fast BDD oper-
ations of synchronising state and transition sets were performed on-
line. Space efficiency, was obtained by performing all computations
(whether off-line or on-line) based on local models only. Compared
to the spectrum of symbolic approaches presented in [10], which is
the closest work to ours, only the symbolic diagnoser approach was
faster. However, our diagnosis time had only tripled while the space
requirements were reduced by more than two orders of magnitude.
Additionally we have shown that our diagnosis time can be further
reduced by synchronising the local models off-line. This is at the ex-
pense of a larger model representation.

Other work on symbolic discrete-event system diagnosis include
that of Micalizio [5]. It describes a simulation-based BDD method

for the recovery in which all diagnostic reasoning is performed on-
line. Therefore it is rather comparable to the component based ap-
proach described in [10]. In [11] the authors show how BDDs can
help to diagnose distributed discrete-event systems modelled as Petri
nets. In their approach, which is limited to two components whose
interactions can be observed, BDDs are used to encode the diagnosis
information. However, the model itself is represented in an nonsym-
bolic way and the computation of diagnosis information is also non-
symbolic. Hence a continual conversion from nonsymbolic to sym-
bolic representation is required.

Among the nonsymbolic decentralised on-line diagnosis methods
the work introduced in [3] is the closest to ours. This approach con-
sists of a set of diagnosers, that each explain the observations from a
site, i.e. from a set of components. The states of these diagnosers are
labelled by sets of global states and fault labels and the global diag-
nosis information is obtained based on these state labels and the un-
observable reach. The latter is similar to our quiet state labels but can
not be determined based on local models only. Since this approach
does require the computation of the global model it is unlikely to
scale to large systems.

The perspectives of this paper are numerous. We now plan to ex-
tend our decentralised diagnosis approach also to subsystems, i.e. in-
stead of computing a local diagnoser for each component we plan to
compute one for sets of components. Then we would like to work on
methods for optimally decomposing the overall system into subsys-
tems for which the diagnosers are to be computed. Such a decision
might not only be based on the available computational resources but
also on the number of observations, faults, components and their in-
teractions, since these parameters might impact the efficiency of the
diagnosis approach and thus the computational resources required
to perform it. Moreover, it would be interesting to combine our ap-
proach with symbolic planning and testing techniques in order to de-
velop efficient methods for the autonomous repair of systems.
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