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Foreword

Model checking is currently one of the hottest topics in computer science. It consists
in comparing a model of a system against a logical requirement to discover inconsis-
tencies. Traditionally, this idea has been used to verify the correctness of hardware
circuits and network protocols. More recently, the same idea has been applied to plan-
ning with remarkable success, and has led to powerful planning systems such as MBP,
MIPS, TALPLANNER, TLPLAN, and UMOP.

The 10 papers accepted for presentation at this workshop are representative of both
the volume and diversity of the expansion of research on planning via model-checking.
Their topics include extending the basic planning via model checking framework to
handling partial observability, concurrency and resources, increasingly complex goals,
as well as adversarial and multi-agent domains. It will be evident from this volume that
planning via model checking largely intersects with other model-theoretic approaches
to planning such as decision-theoretic planning, Markov decision processes, or con-
troller synthesis, and relates to some recent frameworks for scheduling, model-based
prediction, diagnosis, repair, and reconfiguration. Another important theme is sym-
bolic heuristic search, using representations inherited from the verification commu-
nity, such as binary or algebraic decision diagrams. It was the goal of this workshop to
bring together these many strands of research, with a view to identifying not only their
diversity but also the substantial unity of the emerging field.

We would like to thank the members of the program committee who worked hard in
reviewing the papers on a very tight schedule. We are grateful to the AIPS workshop
and local arrangement chairs, for their help with the organisation. Finally we are
happy to acknowledge the contribution made by our sponsor PLANET, the European
Network of Excellence in AI Planning.

Froduald Kabanza and Sylvie Thiébaux
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Preemptive Job-Shop Scheduling
using Stopwatch Automata∗

Yasmina Abdeddäım and Oded Maler
Verimag,Centre Equation, 2, av. de Vignate 38610 Gières, France

Yasmina.Abdeddaim@imag.fr Oded.Maler@imag.fr

Abstract

In this paper we show how the problem of job-shop schedul-
ing where the jobs are preemptible can be modeled natu-
rally as a shortest path problem defined on an extension of
timed automata, namely stopwatch automata where some of
the clocks might be freezed at certain states. Although gen-
eral verification problems on stopwatch automata are known
to be undecidable, we show that due to particular properties
of optimal schedules, the shortest path in the automaton be-
longs to a finite subset of the set of acyclic paths and hence
the problem is solvable. We present several algorithms and
heuristics for finding the shortest paths in such automata and
test their implementation on numerous benchmark examples.

Introduction
In (AM01) we have described a first step in a research pro-
gramme intended to re-formulate scheduling problems using
(timed) automata-based formalisms. Apart from the undeni-
able joy of re-inventing the wheel, this work is motivated by
the belief that such automata provide timing problems with
faithful state-based dynamic models on which a systematic
study of semantic and computational problems can be done
— the reader is referred to (AM01) for some of the mo-
tivation and background and to (AM99; AGP99; NTY00;
NY01; BFH+01) for other recent results in this spirit. In
this framework the runs of the timed automaton correspond
to feasible schedules and finding a time-optimal schedule
amounts to finding the shortest path (in terms of elapsed
time) in the automaton. In (AM01) we have shown how this
works nicely for the job-shop scheduling problem which can
be modeled by a certain class of acyclic timed automata,
having finitely many qualitative1 runs. Each such qualita-
tive run is an equivalence class of a non-countable number
of quantitative runs, but as we have shown, one of those (a
“non-lazy” run which makes transitions as soon as possible)
is sufficient to find the optimum over the whole class. These
observations allowed us to apply efficient search algorithms
over single configurations of clocks rather than work with
zones.

∗This work was partially supported by the Euro-
pean Community Project IST-2001-35304 AMETIST
http://ametist.cs.utwente.nl

1By a qualitative run of a timed automaton we mean a sequence
of states and transitions without metric timing information.

In this work we extend these results to preemptible jobs,
i.e. jobs that can use a machine for some time, stop for a
while and then resume from where they stopped. Such sit-
uations are common, for example, when the machines are
computers. While extending the framework of (AM01) to
treat this situation we encounter two problems:

1. The corresponding class of automata goes beyond timed
automata because clocks are stopped but not reset to zero
when a job is preempted. General reachability problems
for such stopwatch automata (also known as integration
graphs) are known to be undecidable (C92; KPSY99).

2. Due to preemption and resumption, which corresponds to
a loop in the underlying transition graph, the obtained au-
tomata are cyclic (unlike the non-preemptive case) and
they have an infinite number of qualitative runs.

We will show however that these problems can be overcome
for the class of stopwatch automata that correspond to pre-
emtible job shop problems, and that efficient algorithms can
be constructed.

The rest of the paper is organized as follows. In sec-
tion 2 we give a short introduction to the preemptive job-
shop scheduling problem including a fundamental property
of optimal schedules. In section 3 we recall the definition
of stopwatch automata and show how to transform a job-
shop specification into such an automaton whose runs cor-
respond to feasible schedules. In section 4 we describe ef-
ficient algorithms for solving the shortest-path problem for
these automata (either exactly or approximately) and report
the performance results of their prototype implementation
on numerous benchmark examples.

Preemptive Job-Shop Scheduling
The Job-shop scheduling problem is a generic resource al-
location problem in which common resources (“machines”)
are required at various time points (and for given durations)
by different tasks. The goal is to find a way to allocate the
resources such that all the tasks terminate as soon as pos-
sible. We consider throughout the paper a fixed set M of
resources. A step is a pair (m, d) where m ∈M and d ∈ N,
indicating the required utilization of resourcem for time du-
ration d. A job specification is a finite sequence

J = (m1, d1), (m2, d2), . . . , (mk, dk) (1)
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of steps, stating that in order to accomplish job J , one needs
to use machine m1 for d1 time, then use machine m2 for d2

time, etc.

Definition 1 (Job-Shop Specification)Let M be a finite
set of resources (machines). A job specification over M is a
triple J = (k, µ, d) where k ∈ N is the number of steps in
J , µ : {1..k} →M indicates which resource is used at each
step, and d : {1..k} → N specifies the length of each step.
A job-shop specification is a set J = {J1, . . . , Jn} of jobs
with J i = (ki, µi, di).
In order to simplify notations we assume that each machine
is used exactly once by every job. We denote R+ by T , abuse
J for {1, . . . , n} and let K = {1, . . . , k}.

Definition 2 (Feasible Schedules)Let J = {J1, . . . , Jn}
be a job-shop specification. A feasible schedule for J is
a relation S ⊆ J × K × T so that (i, j, t) ∈ S indi-
cates that job J i is busy doing its jth step at time t and,
hence, occupies machine µi(j). We let T i

j be the set of
time instants where job i ∈ J is executing its jth step, i.e.
T i

j = {t : (i, j, t) ∈ S}.2 A feasible schedule should satisfy
the following conditions:

1. Ordering: if (i, j, t) ∈ S and (i, j′, t′) ∈ S then j <
j′ implies t < t′ (steps of the same job are executed in
order).

2. Covering: For every i ∈ J and j ∈ K∫
t∈T i

j

dt ≥ di(j)

(every step is executed).
3. Mutual Exclusion: For every i 
= i′ ∈ J , j, j′ ∈ K and
t ∈ T , if (i, j, t) ∈ S and (i′, j′, t) ∈ S then µi(j) 
=
µi′(j′) (two steps of different jobs which execute at the
same time do not use the same machine).

Note that we allow a job to occupy the machine after the step
has terminated. The length |S| of a schedule is the supremal
t over all (i, j, t) ∈ S. We say that a step j of job i is
enabled in time t if t ∈ E i

j = (maxT i
j−1,maxT i

j ]. The
optimal job-shop scheduling problem is to find a schedule
of a minimal length. This problem is known to be NP-hard
(GJ79). From the relational definition of schedules one can
derive the following commonly used definitions:

1. The machine allocation function α : M × T → J stat-
ing which job occupies a machine at any time, defined as
α(m, t) = i if (i, j, t) ∈ S and µi(j) = m.

2. The task progress function β : J × T → M stating what
machine is used by a job is at a given time, defined as
β(i, t) = m if (i, j, t) ∈ S and µi(j) = m.

These functions are partial — a machine or a job might be
idle at certain times.
Example 1: Consider M = {m1,m2,m3} and two jobs
J1 = (m1, 3), (m2, 2), (m3, 4) and J2 = (m2, 5). Two
schedules S1 and S2 appear in Figure 1. The length of S1 is
9 and it is the optimal schedule. As one can see, at t = 3,
J1 preempts J2 and takes machine m2.

2We may assume further that T i
j is can be decomposed into a

countable number of left-closed right-open intervals.

m1

m2

J1

J2

m3

m1

m2

J1

J2

m3

J1

m3m2m1

m2 m2

J1

J2 J1 J2 J2

J1

J1

J1

m1 m3m2

m2

9 11

S1 S2

α

β

Figure 1: Two schedule S1 and S2 visualized as the machine
allocation function α and the task progress function β.

We conclude this section with a reformulation of a
well-known result concerning optimal preemptive schedules
which will be used later. In essence this result formalizes
the following two intuitive observations: 1) When jobs can
be preempted and resumed at no cost, there is no reason to
delay a step not being in a conflict with another. 2) Two jobs
that keep on preempting each other do not contribute to the
general progress.

Definition 3 (Conflicts and Priorities) Let S be a feasible
schedule. We say that job i is in conflict with job i′ on ma-
chine m in S (denoted by i ∦m i′) when there are two re-
spective steps j and j′ such that µi(j) = µi′(j′) = m and
E i

j ∩E i′
j′ 
= ∅. We say that i has priority onm over a conflict-

ing job i′ (denoted by i ≺m i′) if it finishes using m before
i′ does, i.e. supT i

j < supT i′
j′ .

Note that conflicts and priorities are always induced by a
schedule S although S is omitted from the notation.

Definition 4 (Efficient Schedules)A schedule S is efficient
if for every job i and a step j such that µi(j) = m, job i
uses m during all the time interval E i

j except for times when
another job i′ such that i′ ≺m i uses it.

The following is a folk theorem, whose roots go back at least
to (J55) with some reformulation and proofs in, for example,
(CP90; PB96).

Theorem 0.1 (Efficiency is Good)Every preemptive job-
shop specification admits an efficient optimal schedule.

Sketch of Proof: The proof is by showing that every ineffi-
cient schedule S can be transformed into an efficient sched-
ule S′ with |S′| ≤ |S|. Let I be the first interval when
inefficiency occurs for job i and machine m. We modify the
schedule by shifting some of the later use of m by i into
I . If m was occupied during I by another job i′ such that
i ≺m i′, we give it the time slot liberated by i. The termi-
nation of the step by i′ is not delayed by this modification
because it happens anyway after i terminates its step.

As an illustration consider the schedules appearing in Fig-
ure 2 with J1 ≺m J2 ≺m J3 and where J2 is enabled in the
interval [t1, t2]. The first inefficiency in S1 is eliminated in
S2 by letting J2 use the free time slot before the arrival of
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J1 J3 J2 J3

J3J2J3J1J2

J2 J1 J2 J3

t1 t2

J2 J1 J2 J3 J3

S1

S2

S3

S4

Figure 2: Removal of inefficiency, J1 ≺ J2 ≺ J3.

J1. The second inefficiency occurs when J3 uses the ma-
chine while J2 is waiting, and it is removed in S3. The last
inefficiency where J3 is waiting while m is idle is removed
in S4.

This result reduces the set of candidates for optimality
from the non-countable set of feasible schedules to the fi-
nite set of efficient schedules, each of which corresponds to
a fixed priority relation.3 There are potentially kn! priority
relations but only a fraction of those needs to be considered
because when i and i′ are never in conflict concerning m,
the priority i ≺m i′ has no influence on the schedule.

Stopwatch Automata
Timed automata (AD94) are automata augmented with con-
tinuous clock variables whose values grow uniformly at ev-
ery state. Clocks are reset to zero at certain transitions and
tests on their values are used as pre-conditions for transi-
tions. Hence they are ideal for describing concurrent time-
dependent behaviors. There are however situations, preemp-
tive scheduling being among those, in which we need to
measure the overall accumulated time that a systems spends
in some state. This motivated the extension of the model
to have clocks with derivative zero at certain states. Unlike
timed automata, the reachability problem for these automata
is undecidable (C92). Some sub-classes, integration graphs,
were investigated in (KPSY99), where a decision procedure
based on reducing the problem into linear constraint sat-
isfaction was reported. Similar automata were studied in
(MV94) and in (CL00) where an implementation of an ap-
proximate verification algorithm was described.

Definition 5 (Stopwatch Automaton)
A stopwatch automaton is a tuple A = (Q,C, s, f,u,∆)
where Q is a finite set of states, C is a finite set of n clocks,
u : Q→ {0, 1}n assigns a constant slope to every state and
∆ is a transition relation consisting of elements of the form
(q, φ, ρ, q′) where q and q′ are states, ρ ⊆ C and φ (the
transition guard) is a boolean combination of formulae of
the form (c ∈ I) for some clock c and some integer-bounded
interval I . States s and f are the initial and final states,
respectively.

3This might explain the popularity of priority-based approach
in computer scheduling.

A clock valuation is a function v : C → R+ ∪ {0}, or
equivalently a |C|-dimensional vector over R+. We denote
the set of all clock valuations by H. A configuration of the
automaton is hence a pair (q, v) ∈ Q × H consisting of
a discrete state (sometimes called “location”) and a clock
valuation. Every subset ρ ⊆ C induces a reset function
Resetρ : H → H defined for every clock valuation v and
every clock variable c ∈ C as

Resetρ v(c) =
{

0 if c ∈ ρ
v(c) if c 
∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves
the others unchanged. We use 1 to denote the unit vector
(1, . . . , 1), 0 for the zero vector and uq for u(q), the deriva-
tive of the clocks at q.

A step of the automaton is one of the following:

• A discrete step: (q, v) 0−→ (q′, v′), where there exists
δ = (q, φ, ρ, q′) ∈ ∆, such that v satisfies φ and v′ =
Resetρ(v).

• A time step: (q, v) t−→ (q, v + tuq), t ∈ R+.
A run of the automaton starting from (q0, v0) is a finite se-
quence of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · · tl−→ (ql, vl).
The logical length of such a run is l and its metric length is
|ξ| = t1 + t2 + · · · + tl. Note that discrete transitions take
no time.

Next we construct for every job J = (k, µ, d) a timed
automaton with one clock such that for every step j with
µ(j) = m there are three states: a state m which indicates
that the job is waiting to start the step, a state m indicating
that the job is executing the step and a state m̃ indicating
that the job is preempted after having started. Upon entering
m the clock is reset to zero, and measures the time spent in
m. Preemption and resumption are modeled by transitions
to and from state m̃ in which the clock does not progress.
When the clock value reaches d(j) the automaton can leave
m to the next waiting state. Let M = {m : m ∈ M},
M̃ = {m̃ : m ∈ M} and let µ : K → M and µ̃ : K → M̃
be auxiliary functions such that µ(j) = m and µ̃(j) = m̃
whenever µ(j) = m.
Definition 6 (Stopwatch Automaton for a Job) Let J =
(k, µ, d) be a job. Its associated automaton is A =
(Q, {c}, u,∆, s, f) with Q = P ∪ P ∪ P̃ ∪ {f} where
P = {µ(1), . . . µ(k)},P = {µ(1), . . . , µ(n)} and P̃ =
{µ̃(1), . . . , µ̃(n)}. The slope is defined as uq = 1 when
q ∈ P and uq = 0 otherwise.4 The transition relation ∆
consists of the following types of tuples

type q φ ρ q′
1) begin µ(j) true {c} µ(j) j = 1..k
2) pause µ(j) true ∅ µ̃(j) j = 1..k
3) resume µ̃(j) true ∅ µ(j) j = 1..k
4) end µ(j) c ≥ d(j) ∅ µ(j + 1) j = 1..k − 1

end µ(k) c ≥ d(k) ∅ f
4Note that the slope at state m can be arbitrary because clock c

is inactive in this state: it is reset to zero without being tested upon
leaving m.
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c1 := 0

c1 = 3

c1 := 0

c1 = 4

c1 := 0

c1 = 2 c2 = 5

c2 := 0

m1

m̃1 m1

m2

m2m̃2

f

m2

m2m̃2

m3

m3m̃3

f

Figure 3: The automata corresponding to the jobs J1 =
(m1, 3), (m2, 2), (m3, 4) and J2 = (m2, 5).

The initial state is µ(1).

The automata for the two jobs in Example 1 are depicted in
Figure 3.

For every automaton A we define a ranking function g :
Q × R+ → R+ such that g(q, v) is a lower-bound on the
time remaining until f is reached from (q, v):

g(f, v) = 0
g(µ(j), v) =

∑k
l=j d(l)

g(µ(j), v) = g(µ(j), v) − min{v, d(j)}
g(µ̃(j), v) = g(µ(j), v) − min{v, d(j)}

In order to obtain the timed automaton representing the
whole job-shop specification we need to compose the au-
tomata for the individual tasks. The composition is rather
standard, the only particular feature is the enforcement of
mutual exclusion constraints by forbidding global states in
which two or more automata are in a state corresponding to
the same resource m. An n-tuple q = (q1, . . . , qn) ∈ (M ∪
M ∪ M̃ ∪ {f})n is said to be conflicting if it contains two
distinct components qi and qi′ such that qi = qi′ = m ∈M .

Definition 7 (Mutual Exclusion Composition) Let J =
{J1, . . . , Jn} be a job-shop specification and let Ai =
(Qi, Ci, ui,∆i, si, f i) be the automaton corresponding to
each J i. Their mutual exclusion composition is the automa-
ton A = (Q,C,u,∆, s, f) such that Q is the restriction of
Q1 × . . . Qn to non-conflicting states, C = C1 ∪ . . . ∪ Cn,
s = (s1, . . . , sn), f = (f1, . . . , fn). The slope uq for a

global state q = (q1, . . . qn) is (uq1 , . . . , uqn) and the tran-
sition relation ∆ contains all the tuples of the form

((q1, . . . , qi, . . . , qn), φ, ρ, (q1, . . . , pi, . . . , qn))

such that (qi, φ, ρ, pi) ∈ ∆i for some i and the global
states (q1, . . . , qi, . . . , qn) and (q1, . . . , pi, . . . , qn) are non-
conflicting.

Part of the automaton obtained by composing the two au-
tomata of Figure 3 appears in Figure 4. We have omitted
the pause/resume transitions for m1 and m3 as well as some
other non-interesting paths.

A run of A is complete if it starts at (s,0) and the last
step is a transition to f . From every complete run ξ one can
derive in an obvious way a schedule Sξ such that (i, j, t) ∈
Sξ if at time t the ith component of the automaton is at state
µ(j). The length of Sξ coincides with the metric length of
ξ.

Claim 1 (Runs and Schedules)Let A be the automaton
generated for the preemptive job-shop specification J ac-
cording to Definitions 6 and 7. Then:

1. For every complete run ξ of A, its associated schedule Sξ

is feasible for J .
2. For every feasible schedule S for J there is a run ξ of A

such that Sξ = S.

Corollary 1 (Preemptive Scheduling and Stopwatch Automata)

The optimal preemptive job-shop scheduling problem
can be reduced to the problem of finding the shortest path
in a stopwatch automaton.

The two schedules of Figure 1 correspond to the following
two runs (we use the notation ⊥ to indicate inactive clocks):

S1 :

(m1, m2,⊥,⊥)
0−→ (m1, m2, 0,⊥)

0−→ (m1, m2, 0, 0)
3−→

(m1, m2, 3, 3)
0−→ (m2, m2,⊥, 3)

0−→ (m2, m̃2,⊥, 3)
0−→

(m2, m̃2, 0, 3)
2−→ (m2, m̃2, 2, 3)

0−→ (m3, m̃2,⊥, 3)
0−→

(m3, m2,⊥, 3)
0−→ (m3, m2, 0, 3)

2−→ (m3, m2, 2, 5)
0−→

(m3, f, 2,⊥)
2−→ (m3, f, 4,⊥)

0−→ (f, f,⊥,⊥)

S2 :

(m1, m2,⊥,⊥)
0−→ (m1, m2, 0,⊥)

0−→ (m1, m2, 0, 0)
3−→

(m1, m2, 3, 3)
0−→ (m2, m2,⊥, 3)

2−→ (m2, m2,⊥, 5)
0−→

(m2, f,⊥,⊥)
0−→ (m2, f, 0,⊥)

2−→ (m2, f, 2,⊥)
0−→

(m3, f,⊥,⊥)
0−→ (m3, f, 0,⊥)

4−→ (m3, f, 4,⊥)
0−→

(f, f,⊥,⊥)

The job-shop automaton admits a special structure: ig-
noring the pause and resume transitions, the automaton is
acyclic and its state-space admits a natural partial-order. It
can be partitioned into levels according to the number of be-
gin and end transitions from s to the state. There are no
staying conditions (invariants) and the automaton can stay
forever in any given state. Recall that in any automaton ex-
tended with auxiliary variables the transition graph might
be misleading, because two or more transitions entering the

10
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Figure 4: The global stopwatch automaton for the two jobs.

state action new state remark
1 (m,m) start 1 (m,m)
2 (m, m̃) start 1 (m, m̃)
3 (m,m) preempt 2 (m, m̃)
4 (m̃,m) resume 1 (m,m)
5 (m̃, m̃) resume 1 (m, m̃)
6 (m̃,m) (impossible)
7 (m,m) (continue) (m,m)
8 (m, m̃) (continue) (m, m̃)
9 (m,m) (impossible)

Table 1: Resolving conflicts when J1 �m J2.

same discrete state, e.g. transitions to (m3, f) in Figure 4,
might enter it with different clock valuations, and hence lead
to different continuations. Consequently, algorithms for ver-
ification and quantitative analysis might need to explore all
the nodes in the unfolding of the automaton into a tree. Two
transitions outgoing from the same state might represent a
choice of the scheduler, for example, the two transitions out-
going from (m2,m2) represent the choice of whether or not
to preempt J2 and give machine m2 to J1. On the other
hand some duplication of paths are just artifacts due to inter-
leaving, for example, the two paths leading from (m1,m2)
to (m1,m2) are practically equivalent.

Another useful observation is that from every (preemptive
or non-preemptive) job-shop specification J one can con-
struct its reverse problem J ′ where the order of every indi-
vidual job is reversed. Every feasible schedule for J ′ can
be transformed easily into a feasible schedule for J having
the same length. Doing a forward search on the automaton
for J ′ is thus equivalent to doing a backward search on the
automaton for J .

Shortest Paths in Stopwatch Automata
In order to find shortest paths in stopwatch automata we will
take advantage of Theorem 0.1 to restrict the search to runs
whose corresponding schedules are efficient.

Definition 8 (Efficient Runs) A run of a stopwatch au-
tomaton constructed according to Definitions 6 and 7 is effi-
cient if all discrete transitions are taken as soon as they are
enabled, and all conflicts are resolved according to a fixed
priority relation.

To be more precise, let J1 and J2 be two jobs which are in
conflict concerning machine m and let J1 be the one with
the highest priority on m. Table depicts all the potential
conflict situations and how they are resolved.

In situations 1, 2, 4, and 5 J1 is waiting for the machine
which is not occupied and so it takes it. Such situations
could have been reached, for example, by a third job of
higher priority releasing m or by J1 finishing its prior step
and entering m. Situation 3 is similar but with J2 occupy-
ing m and hence has to be preempted to reach situation 2.
Situation 6, where J1 is preempted and J1 is executing, con-
tradicts the priority and is not reachable. In situations 7 and
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8, J1 is executing and no preemption action is taken. Finally
situation 9 violates mutual exclusion.

The restriction to efficient runs makes the problem de-
cidable: we can just enumerate all priority relations, derive
the schedules implied by each of them and compare their
lengths. The search algorithm that we employ on the un-
folding of the automaton generates priorities on the fly when-
ever two jobs come into conflict. In the example of Figure
the first conflict is encountered in state (m2,m2) and from
there we may choose between two options, either to con-
tinue with time passage or preempt J2. in the first case we
fix the priority J2 ≺ J1 and let J2 finish without considering
preemption anymore while in the second case the priority is
J1 ≺ J2, we move to (m2, m̃2) and the transition back to
(m2,m2) becomes forbidden. From there we can only con-
tinue to (m2, m̃2) and let the time pass until J1 releases m2.

To formalize this we define a valid successors relation
over tuples of the form (q, x,Π, θ) where (q, x) is a global
configuration of the automaton, Π is a (partial) priority rela-
tion and θ is the total elapsed time for reaching (q, x) from
the initial state. When there are no immediate transitions
enabled in (q, x) we have

Succ(q, x,Π, θ) = {(q, x + t · uq,Π, θ + t)}
where t is the minimal time until a transition becomes en-
abled, that is, the least t such that a guard on a transition
from q is satisfied at x + t · uq.

When there are immediate transition enabled in (q, x) we
have

Succ(q, x,Π, θ) = L1 ∪ L2 ∪ L3

where

L1 = {(q′, x′,Π, θ) : (q, x) τ−→ (q′, x′)}
for every immediate transition τ such that τ is non-
conflicting or belongs to the job whose priority on the re-
spective machine is higher than those of all competing jobs.
In addition, if there is a conflict on m involving a new job i
whose priority compared to job i∗, having the highest prior-
ity so far, has not yet been determined, we have

L2 = {(q, x,Π ∪ {i∗ ≺ i}, θ)}
and

L3 = {(q, x,Π ∪
⋃

{i′:i′∦mi}
{i ≺ i′}, θ)}.

The successor in L2 represent the choice to prefer i∗ over
i (the priority of i relative to other waiting jobs will be de-
termined only after i∗ terminates), while S3 represents the
choice of preferring i over all other jobs.

Using this definition we can construct a search algorithm
that explores all the efficient runs of A.

Algorithm 1 (Forward Reachability for Stopwatch Automata)

Waiting:={(s,0, ∅, 0)};
while Waiting 
= ∅; do

Pick (q, x,Π, θ) ∈ Waiting;
For every (q′, x′,Π′, θ′) ∈ Succ(q, x,Π, θ);
Insert (q′, x′,Π′, θ′) into Waiting;

Remove (q, x,Π, θ) from Waiting
end

The length of the shortest path is the least θ such that
(f, x,Π, θ) is explored by the algorithm.

This exhaustive search algorithm can be improved into a
best-first search as follows (similar ideas were investigated
in (BFH+01)). We define an evaluation function for estimat-
ing the quality of configurations.

E((q1, . . . , qn), (v1, . . . , vn),Π, θ) = θ+max{gi(qi, vi)}n
i=1

where gi is the previously-defined ranking function asso-
ciated with each automaton Ai. Note that max{gi} gives
the most optimistic estimation of the remaining time, as-
suming that no job will have to wait. It is not hard to see
that E(q, x,Π, θ) gives a lower bound on the length of every
complete run which passes through (q, x) at time θ.

The following algorithm orders the waiting list of con-
figurations according to their evaluation. It is guaranteed
to produce the optimal path because it stops the exploration
only when it is clear that the unexplored states cannot lead
to schedules better than those found so far.

Algorithm 2 (Best-first Forward Reachability)
Waiting:={(s,0, ∅, 0)};
Best:=∞
(q, x, F, θ):= first in Waiting;
while Best > E(q, x, F, θ)
do
(q, x,Π, θ):= first in Waiting;
For every (q′, x′,Π′, θ′) ∈ Succ(q, x,Π, θ);
if q′ = f then
Best:=min{Best,E((q′, x′,Π′, θ′))}

else
Insert (q′, x′,Π′, θ′) into Waiting;

Remove (q, x,Π, θ) from Waiting
end

Using this algorithm we were able the find optimal sched-
ules of systems with up to 8 jobs and 4 machines (128 dis-
crete states and 8 clocks). In order to treat larger problems
we abandon optimality and use a heuristic algorithm which
can quickly generate sub-optimal solutions. The algorithm
is a mixture of breadth-first and best-first search with a fixed
number w of explored nodes at any level of the automaton.
For every level we take the w best (according to E) nodes,
generate their successors but explore only the best w among
them, and so on.

In order to test this heuristics we took 16 problems among
the most notorious job-shop scheduling problems.5 For each
of these problems we have applied our algorithms for dif-
ferent choices of w, both forward and backward (it takes,
on the average few minutes for each problem). In Ta-
ble we compare our best results on these problems to the
most recent results reported by Le Pape and Baptiste (PB96;
PB97) where the problem was solved using state-of-the-art
constraint satisfaction techniques. As the table shows, the
results our first prototype are very close to the optimum.

5The problems are taken from
ftp://mscmga.ms.ic.ac.uk/pub/jobshop1.txt
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problem non preempt preemptive
name #j #m optimum optimum (PB96; PB97) stopwatch deviation
LA02 10 5 655 655 655 655 0.00 %
FT10 10 10 930 900 900 911 1.21 %
ABZ5 10 10 1234 1203 1206 1250 3.76 %
ABZ6 10 10 943 924 924 936 1.28 %
ORB1 10 10 1059 1035 1035 1093 5.31 %
ORB2 10 10 888 864 864 884 2.26 %
ORB3 10 10 1005 973 994 1013 3.95 %
ORB4 10 10 1005 980 980 1004 2.39 %
ORB5 10 10 887 849 849 887 4.28 %
LA19 10 10 842 812 812 843 3.68 %
LA20 10 15 902 871 871 904 3.65 %
LA21 10 15 1046 1033 1033 1086 4.88 %
LA24 10 15 936 909 915 972 6.48 %
LA27 10 20 1235 1235 1235 1312 5.87 %
LA37 15 15 1397 1397 1397 1466 4.71 %
LA39 15 15 1233 1221 1221 1283 4.83 %

Table 2: The results of our implementation on the bench-
marks. Columns #j and #m indicated the number of jobs
and machines, followed by the best known results for non-
preemptive scheduling, the known optimum for the preemp-
tive case, the results of Le Pape and Baptiste, followed by
our results and their deviation from the optimum.

Conclusion
We have demonstrated that the automata-theoretic approach
to scheduling can be extended to preemptive scheduling and
can be applied successfully to very large systems. Future
work will investigate the applicability of this approach to
scheduling of periodic tasks in real-time systems. In retro-
spect, it looks as if the undecidability results for arbitrary
stopwatch automata have been taken too seriously. Timed
and stopwatch automata arising from specific application
domains have additional structure and their analysis might
turn out to be feasible (see also recent results in (FPY02)).
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Abstract

The increasing interest in planning in nondeterministic do-
mains by model checking has seen the recent development
of two complementary research lines. In the first, planning
is carried out considering extended goals, expressed in the
CTL temporal logic, but has been developed under the sim-
plifying hypothesis of full observability. In the second, sim-
ple reachability goals have been tackled under the more gen-
eral hypothesis of partial observability. The combination of
extended goals and partial observability for nondeterministic
domains is, to the best of our knowledge, an open problem,
whose solution turns out to be by no means trivial.
This paper is a first step towards a full, principled merging of
the two research lines, in order to be able to describe complex
and significant goals over realistic domains. We make the fol-
lowing contributions. First, we define a general framework,
encompassing both partial observability and temporally ex-
tended goals. Second, we define the K-CTL goal language,
that extends CTL with a knowledge operator that allows to
reason about the information that can be acquired at run-time.
This is necessary to deal with partially observable domains,
where limited “knowledge” about the domain state is a key
issue. Then, we define a general mechanism for plan valida-
tion for K-CTL goals, based on the idea of monitor. A moni-
tor plays the role of evaluating the truth of knowledge predi-
cates, and allows us to fully exploit the CTL model checking
machinery. This paper restricts to plan validation of K-CTL
goals. However, it provides a solid basis for tackling the prob-
lem of planning for K-CTL goals under partial observability.

Introduction
Planning in nondeterministic domains has been devoted in-
creasing interest, and different research lines have been de-
veloped. On one side, planning algorithms for tackling
complex, temporally extended goals have been proposed
in (Kabanza, Barbeau, & St-Denis 1997; Pistore & Traverso
2001). This research line is motivated by the fact that many
real-life problems require temporal operators for express-
ing complex goals. For instance, it may be required, al-
ways avoiding a dangerous condition P, to achieve a certain
condition G, and from there on to try to maintain a desir-
able condition H. This research activity is carried out un-
der the assumption that the planning domain is fully observ-
able. On the other side, in the works (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Bonet & Geffner 2000;

Rintanen 1999) the hypothesis of full observability is re-
laxed in order to deal with realistic situations, where the
whole status of the domain is by no means accessible to
the plan executor. The key difficulty is in dealing with the
uncertainty arising from the inability to determine precisely
what the status of the domain will be at run-time. These
approaches are however limited to the case of simple reach-
ability goals.

Tackling the problem of planning for temporally extended
goals under the assumption of partial observability is not
trivial. The goal of this paper is to settle a basic but gen-
eral framework that encompasses all the aspects that are rel-
evant to deal with real-world domains and problems, which
feature partial observability and extended goals, and gives a
precise definition of the problem. This framework will be a
basis for solving the problem in its full complexity.

We first provide a framework based on the Planning as
Model Checking paradigm. We give a general notion of
planning domain, in terms of finite state machine, where ac-
tions can be nondeterministic, and different forms of sens-
ing can be captured. We define a general notion of plan,
that is also seen as a finite state machine, with internal con-
trol points that allow to encode sequential, conditional, and
iterative behaviors. The conditional behavior is based on
sensed information, i.e., information that becomes available
during plan execution. By connecting a plan and a domain,
we obtain a closed system, that induces a (possibly infinite)
computation tree, representing all the possible executions.
Temporally extended goals are defined as CTL formulae. In
this frameworks, the standard machinery of model checking
for CTL temporal logic defines when a plan satisfies a tem-
porally extended goal under partial observability. As a side
result, this shows that a standard model checking tool can
be applied as a black box to the validation of complex plans
even in the presence of limited observability.

Unfortunately, this is by no means the end of the story:
CTL is inadequate to express goals in presence of partial
observability. Even in the simple case of conformant plan-
ning, i.e., when a reachability goal has to be achieved with
no information available at run-time, CTL is not expressive
enough. This is due to the fact that the basic propositions
in CTL only refer to the status of the world, but do not take
into account the aspects related to “knowledge”, i.e., what
is known at run-time. In fact, conformant planning is the
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Figure 1: The general framework.

problem of finding a plan after which we know that a certain
condition is achieved. In order to overcome this limitation,
we define the K-CTL goal language, obtained by extend-
ing CTL with a knowledge operator, that allows to express
knowledge atoms, i.e., what is known at a certain point in the
execution. Then, we provide a first practical solution to the
problem of checking if a plan satisfies a K-CTL goal. This
is done by associating a given K-CTL goal with a suitable
monitor, i.e., an observer system that is able to recognize the
truth of knowledge atoms. Standard model checking tech-
niques can be then applied to the domain-plan system en-
riched with the monitor.

The work presented in this paper focuses on setting the
framework and defining plan validation procedures, and
does not tackle the problem of plan synthesis. Still, the basic
concepts presented in this paper formally distinguish what
is known at planning time versus what is known at run time,
and provide a solid basis for tackling the problem of plan
synthesis for extended goals under partial observability.

The paper is structured as follows. First we provide a
formal framework for partially observable, nondeterminis-
tic domains, and for plans over them. Then we incremen-
tally define CTL goals and K-CTL goals; for each of those
classes of goals, we describe a plan validation procedure.
We wrap up with some concluding remarks and future and
related work.

The Framework

The intuition underlying our framework is outlined in Fig-
ure 1. A domain is a generic system, possibly with its own
dynamics, such as a power plant or an aircraft. The plan can
control the evolutions of the domain by triggering actions.
We assume that, at execution time, the state of the domain is
only partially visible to the plan; the part of a domain state
that is visible to the plan is called the observation of the
state. In essence, planning is building a suitable plan that
can guide the evolutions of the domain in order to achieve
the specified goals.

state

action

observation

DOMAIN

Χ

Τ

Figure 2: The model of the domain.

Planning Domains
A planning domain is defined in terms of its states, of the
actions it accepts, and of the possible observations that the
domain can exhibit. Some of the states are marked as valid
initial states for the domain. A transition function describes
how (the execution of) an action leads from one state to pos-
sibly many different states. Finally, an observation function
defines what observations are associated to each state of the
domain.

Definition 1 (planning domain) A nondeterministic plan-
ning domain with partial observability is a tuple D =
〈S,A,U , I, T ,X〉, where:

• S is the set of states.
• A is the set of actions.
• U is the set of observations.
• I ⊆ S is the set of initial states; we require I �= ∅.
• T : S × A → 2S is the transition function; it associates

to each current state s ∈ S and to each action a ∈ A the
set T (s, a) ⊆ S of next states; we require that for each
s ∈ S there is some a ∈ A such that T (s, a) �= ∅.
• X : S → 2U is the observation function; it associates to

each state s the set of possible observations X (s) ⊆ U;
we require that for each s ∈ S, X (s) �= ∅.

A picture of the model of the domain corresponding to this
Definition is given in Figure 2. Technically, a domain is
described as a nondeterministic Moore machine, whose out-
puts (i.e., the observations) depend only on the current state
of the machine, not on the input action. Uncertainty is al-
lowed in the initial state and in the outcome of action exe-
cution. Also, the observation associated to a given state is
not unique. This allows modeling noisy sensing and lack of
information.

Notice that the definition tries to provide a general notion
of domain, abstracting away from the language that is used
to describe the domain. For instance, a planning domain
is usually defined in terms of a set of fluents (or state vari-
ables), and each state corresponds to an assignment to the
fluents. Similarly, the possible observations of the domain,
that are primitive entities in the definition, can be presented
by means of a set of observation variables, as in (Bertoli
et al. 2001): each observation variable can be seen as an
input port in the plan, while an observation is defined as a
valuation to all the observation variables. The definition of
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Figure 3: A simple domain.

planning domain does not allow for a direct representation
of action-dependent observations, that is, observations that
depend on the last executed action. However, these obser-
vations can be easily modeled by representing explicitly in
the state of the domain (the relevant information on) the last
executed action.

In the following example, that will be used throughout
the paper, we will outline the different aspects of the defined
framework.

Example 2 Consider the domain represented in Figure 3.
It consists of a ring of N rooms. Each room contains a
light that can be on or off, and a button that, when pressed,
switches the status of the light. A robot may move between
adjacent rooms (actions go-right and go-left) and switch the
lights (action switch-light).

Uncertainty in the domain is due to an unknown initial
room and initial status of the lights. Moreover, the lights in
the rooms not occupied by the robot may be nondetermin-
istically switched on without the direct intervention of the
robot.

The domain is only partially observable: the rooms are
indistinguishable, and, in order to know the current status
of the light in the current room, the robot must perform a
sense action.

A state of the domain is defined in terms of the following
fluents:

• fluent room, that ranges from 1 to N , describes in which
room the robot is currently in;
• boolean fluents light-on[i], for i ∈ {1, ...N}, describe

whether the light in room i is on;
• boolean fluent sensed, describes whether last action was

a sense action.

Any state with fluent sensed false is a possible initial state.
The actions are go-left, go-right, switch-light, sense,

and wait. Action wait corresponds to the robot doing noth-
ing during a transition (the state of the domain may change
only due to the lights that may be turned on without the in-
tervention of the robot). The effects of the other actions have
been already described.

The observation is defined in terms of observation vari-
able light. If fluent sense is true, then observation variable
light is true if and only if the light is on in the current room.
If fluent sense is false (no sensing has been done in the last
action), then observation light may be nondeterministically
true or false.

The mechanism of observations allowed by the model
presented in Definition 1 is rather general. It can model no
observability and full observability as special cases. No ob-
servability (conformant planning) is represented by defining
U = {•} and X (s) = {•} for each s ∈ S. That is, obser-
vation • is associated to all states, thus conveying no infor-
mation. Full observability is represented by defining U = S
and X (s) = {s}. That is, the observation carries all the
information contained in the state of the domain.

Plans and plan executions

Now we present a very general definition of plans, that en-
code sequential, conditional and iterative behaviors, and are
expressive enough for dealing with partial observability and
with extended goals. In particular, we need plans where the
selection of the action to be executed depends on the ob-
servations, and on an “internal state” of the executor, that
can take into account, e.g., the knowledge gathered during
the previous execution steps. A plan is defined in terms of
an action function that, given an observation and a context
encoding the internal state of the executor, specifies the ac-
tion to be executed, and in terms of a context function that
evolves the context.

Definition 3 (plan) A plan for domain D =
〈S,A,U , I, T ,X〉 is a tuple Π = 〈Σ, σ0, α, ε〉, where:

• Σ is the set of plan contexts.

• σ0 ∈ Σ is the initial context.

• α : Σ × U ⇀ A is the action function; it associates to a
plan context c and an observation o an action α(c, o) to
be executed.

• ε : Σ × U ⇀ Σ is the context evolutions function; it
associates to a plan context c and an observation o a new
plan context ε(c, o).

A picture of the model of plans is given in Figure 4. Tech-
nically, a plan is described as a Mealy machine, whose out-
puts (the action) may depend on the inputs (the observation).
Functions α and ε are deterministic (we do not consider non-
deterministic plans), and can be partial, since a plan may
be undefined on the context-observation pairs that are never
reached during execution.

Example 4 We consider two plans for the domain of Fig-
ure 3. According to plan Π1, the robot moves cyclically
trough the rooms, and turns off the lights whenever they are
on. The plan is cyclic, that is, it never ends. The plan has
three contexts E, S, and L, corresponding to the robot hav-
ing just entered a room (E), the robot having sensed the light
(S), and the robot being about to leave the room after having
turned off the light (L) . The initial context is E. Functions
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Figure 4: The model of the plan.

α and ε for Π1 are defined by the following table:

c o α(c, o) ε(c, o)
E any sense S
S light = � switch-light L
S light = ⊥ go-right E
L any go-right E

In plan Π2, the robot traverses all the rooms and turns
on the lights; the robot stops once all the rooms have been
visited. The plan has contexts of the form (E, i), (S, i), and
(L, i), where i represents the number of rooms to be visited.
The initial context is (E,N−1), where N is the number of
rooms. Functions α and ε for Π2 are defined by the following
table:

c o α(c, o) ε(c, o)
(E, i) any sense (S, i)
(S, i) light = ⊥ switch-light (L, i)
(S, 0) light = � wait (L, 0)

(S, i+1) light = � go-right (E, i)
(L, 0) any wait (L, 0)

(L, i+1) any go-right (E, i)

Since both the plan and the domain are finite state ma-
chines, we can use the standard techniques for model check-
ing synchronous compositions. We can describe the execu-
tion of a plan over a domain in terms of transitions between
configurations that describe the state of the domain and of
the plan. These concepts are formalized in the following
definition.

Definition 5 (configuration) A configuration for domain
D = 〈S,A,U , I, T ,X〉 and plan Π = 〈Σ, σ0, α, ε〉 is a
pair (s, o, c) such that s ∈ S, o ∈ X (s), and c ∈ Σ.
Configuration (s, o, c) may evolve into configuration
(s′, o′, c′), written (s, o, c)→ (s′, o′, c′), if:

• s′ ∈ T (s, α(c, o)),
• o′ ∈ X (s′), and
• c′ = ε(c, o).
Configuration (s, o, c) is initial if s ∈ I and c = σ0.
The reachable configurations for domain D and plan Π are
defined by the following inductive rules:

• if (s, o, σ0) is initial, then it is reachable;
• if (s, o, c) is reachable and (s, o, c) → (s′, o′, c′), then

(s′, o′, c′) is also reachable.

PLAN

context

state

DOMAIN
observation action

α

ε

Τ

Χ

Figure 5: Plan execution.

Notice that we include the observations in the configura-
tions. This is necessary in order to take into account the
fact that more than one observation may correspond to the
same state. On the other hand, we do not represent explicitly
the action in the configuration, since it is a function of the
context and of the observation.

We are interested in plans that define an action to be ex-
ecuted for each reachable configuration. These plans are
called executable.
Definition 6 (executable plan) Plan Π is executable on
Domain D if the following condition holds for all the reach-
able configurations (s, o, c):
• α(c, o) and ε(c, o) are defined;
• T (s, α(c, o)) �= ∅.

The executions of a plan on a domain correspond to the
synchronous executions of the two machines corresponding
to the domain and the plan, as shown in Figure 5. At each
time step, the flow of execution proceeds as follows. The
execution starts from a configuration that defines the current
domain state, observation, and context. First, based on the
current context and observation, the plan determines the ac-
tion to be executed (function α) and the next context (func-
tion ε). Then, the new state of the domain is determined by
function T from the current state and action. Finally, the
new observation is determined by applying nondeterminis-
tic function X to the new state. At the end of the cycle, the
newly computed values for the domain state, the observa-
tion, and the context define the value of the new configu-
ration. An execution of the plan is basically a sequence of
subsequent configurations. Due to the nondeterminism in
the domain, we may have an infinite number of different ex-
ecutions of a plan. We provide a finite presentation of these
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executions with an execution structure, i.e, a Kripke Struc-
ture (Emerson 1990) whose set of states is the set of reach-
able configurations of the plan, and whose transition relation
corresponds to the transitions between configurations.

Definition 7 (execution structure) The execution structure
corresponding to domain D and plan Π is the Kripke struc-
ture K = 〈Q,Q0, R〉, where:

• Q is the set of reachable configurations;
• Q0 = {(s, o, σ0) ∈ Q : s ∈ I ∧ o ∈ X (s)} are the initial

configurations;
• R =

{(
(s, o, c), (s′, o′, c′)

)
∈ Q2 : (s, o, c) →

(s′, o′, c′)
}

.

Temporally extended goals: CTL
Extended goals are expressed with CTL formulas. CTL al-
lows for temporal operators that state temporal conditions on
plan executions. Moreover, CTL universal and existential
path quantifiers allow us to specify requirements that take
into account the fact that a plan may nondeterministically
result in many different executions.

We assume that a set B of basic propositions is defined
on domain D. Moreover, we assume that for each b ∈ B
and s ∈ S, predicate s |=0 b holds if and only if basic
proposition b is true on state s.

Definition 8 (CTL) The goal language CTL is defined by
the grammar:

g ::= p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)
p ::= b | ¬p | p ∧ p

where b is a basic proposition.

CTL combines temporal operators and path quantifiers. “X”,
“U”, and “W” are the “next time”, “(strong) until”, and
“weak until” temporal operators, respectively. “A” and “E”
are the universal and existential path quantifiers, where a
path is an infinite sequence of states. They allow us to
specify requirements that take into account nondetermin-
ism. Intuitively, the formula AX g (EX g) means that g
holds in every (in some) immediate successor of the current
state. A(g1 U g2) (E(g1 U g2)) means that for every path (for
some path) there exists an initial prefix of the path such that
g2 holds at the last state of the prefix and g1 holds at all
the other states along the prefix. The formula A(g1 W g2)
(E(g1 W g2)) is similar to A(g1 U g2) (E(g1 U g2)) but al-
lows for paths where g1 holds in all the states and g2 never
holds. Formulas AF g and EF g (where the temporal opera-
tor “F” stands for “future” or “eventually”) are abbreviations
of A(�U g) and E(�U g), respectively. AG g and EG g
(where “G” stands for “globally” or “always”) are abbrevi-
ations of A(g W⊥) and E(g W⊥), respectively. A remark
is in order: even if ¬ is allowed only in front of basic propo-
sitions, it is easy to define ¬g for a generic CTL formula
g, by “pushing down” the negations: for instance ¬AX g ≡
EX¬g and ¬A(g1 W g2) ≡ E(¬g2 U(¬g1 ∧ ¬g2)).

Goals as CTL formulas allow us to specify different in-
teresting requirements on plans. Let us consider first some

examples of reachability goals. AF g (“reach g”) states that
a condition should be guaranteed to be reached by the plan,
in spite of nondeterminism. EF g (“try to reach g”) states
that a condition might possibly be reached, i.e., there ex-
ists at least one execution that achieves the goal. A reason-
able reachability requirement that is stronger than EF g is
A(EF g W g): it allows for those execution loops that have
always a possibility of terminating, and when they do, the
goal g is guaranteed to be achieved.

We can distinguish among different kinds of maintain-
ability goals, e.g., AG g (“maintain g”), AG¬g (“avoid g”),
EG g (“try to maintain g”), and EG¬g (“try to avoid g”).
For instance, a robot should never harm people and should
always avoid dangerous areas. Weaker requirements might
be needed for less critical properties, like the fact that the
robot should try to avoid to run out of battery.

We can compose reachability and maintainability goals.
AF AG g states that a plan should guarantee that all execu-
tions reach eventually a set of states where g can be main-
tained. For instance, an air-conditioner controller is required
to reach eventually a state such that the temperature can then
be maintained in a given range. Alternatively, if you con-
sider the case in which a pump might fail to turn on when
it is selected, you might require that “there exists a possi-
bility” to reach the condition to maintain the temperature
in a desired range (EF AG g). As a further example, the
goal AGEF g intuitively means “maintain the possibility of
reaching g”.

Reachability-preserving goals make use of the “until op-
erators” (A(g1 U g2) and E(g1 U g2)) to express reachability
goals while some property must be preserved. For instance,
an air-conditioner might be required to reach a desired tem-
perature while leaving at least n of its m pumps off.

Notice that in all examples above, the ability of compos-
ing formulas with universal and existential path quantifiers
is essential. Logics that do not provide this ability, like LTL
(Emerson 1990), cannot express these kinds of goals1.

Given an execution structure K and an extended goal g,
we now define when a goal g is true in (s, o, c), written
K, (s, o, c) |= g by using the standard semantics for CTL
formulas over the Kripke Structure K.

Definition 9 (semantics of CTL) Let K be a Kripke struc-
tures with configurations as states. We extend |=0 to propo-
sitions as follows:

• s |=0 ¬p iff not s |=0 p;

• s |=0 p ∧ p′ iff s |=0 p and s |=0 p′.

We define K, q |= g as follows:

• K, q |= p iff q = (s, o, c) and s |=0 p.

• K, q |= g ∧ g′ iff K, q |= g and K, q |= g′.
• K, q |= g ∨ g′ iff K, q |= g or K, q |= g′.
• K, q |= AX g iff for all q′, if q → q′ then K, q′ |= g.

1In general, CTL and LTL have incomparable expressive power
(see (Emerson 1990) for a comparison). We focus on CTL since
it provides the ability of expressing goals that take into account
nondeterminism.
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• K, q |= EX g iff there is some q′ such that q → q′ and
K, q′ |= g.

• K, q |= A(g U g′) iff for all q = q0 → q1 → q2 → · · ·
there is some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= E(g U g′) iff there is some q = q0 → q1 → q2 →
· · · and some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= A(g W g′) iff for all q = q0 → q1 → q2 → · · · ,
either K, qj |= g for all j ≥ 0, or there is some i ≥ 0
such that K, qi |= g′ and K, qj |= g for all 0 ≤ j < i.

• K, q |= E(g W g′) iff there is some q = q0 → q1 → q2 →
· · · such that either K, qj |= g for all j ≥ 0, or there is
some i ≥ 0 such that K, qi |= g′ and K, qj |= g for all
0 ≤ j < i.

We define K |= g iff K, q0 |= g for all the initial configura-
tions q0 ∈ Q0 of K.

Plan validation
The definition of when a plan satisfies a goal follows.

Definition 10 (plan validation for CTL goals) Plan Π
satisfies CTL goal g on domain D, written Π |=D g, if
K |= g, where K is the execution structure corresponding
to D and Π.

In the case of CTL goals, the plan validation task amounts
to CTL model checking. Given a domain D and a plan
Π, the corresponding execution structure K is built as de-
scribed in Definition 7 and standard model checking algo-
rithms are run on K in order to check whether it satisfies
goal g. This simple consideration has an important conse-
quence: the problem of plan validation under partial observ-
ability can be tackled with standard model checking machin-
ery, and, more importantly, with model checking tools.

We describe now some goals for the domain of Figure 3.
We recall that the initial room of the robot is uncertain, and
that light can be turned on (but not off) without the interven-
tion of the robot.

Example 11 The first goal we consider is

AF (¬light-on[3]),

which requires that the light of room 3 is eventually off. Plan
Π1 satisfies this goal: eventually, the robot will be in room
3 and will turn out the light if it is on.

There is no plan that satisfies to following goal:

AF AG (¬light-on[3]),

which requires that the light in room 3 is turned off and stays
then off forever. This can be only guaranteed if the robot
stays in room 3 forever, and it is impossible to guarantee this
condition in this domain: due to the partial observability of
the domain, the robot does never know he is in room 3.

Plan Π1 satisfies the following goal
∧

i∈1,...,N

AGAF (¬light-on[i]),

which requires that the light in every room is turned off in-
finitely often. On the other hand, it does not satisfy the fol-
lowing goal

AGAF
∧

i∈1,...,N

(¬light-on[i]),

which requires that the lights in all the rooms are off at the
same time infinitely often. Indeed, the nondeterminism in the
domain may cause light to turn on at any time.

While plan Π1 does not guarantee that all the lights will
be eventually off, it always leaves open the possibility that
such a configuration will be eventually reached. That is,
plan Π1 satisfies the following goal

AG EF
∧

i∈1,...,N

(¬light-on[i]),

which asserts that in each moment (AG ) there is the possi-
bility of reaching (EF ) the desired configuration.

Finally, consider the goal

AGAF
∧

i∈1,...,N

(light-on[i]),

which requires that the lights in all the rooms are on at the
same time infinitely often. It is satisfied by plan Π2: once
all the rooms have been explored, and the lights have been
turned on, they will stay on forever.

Goals over knowledge: K-CTL
Unfortunately, under the hypothesis of partial observability,
CTL is not adequate to express many interesting goals. Con-
sider for instance the first goal in Example 11. Notice that
the robot will never “know” when condition ¬light-on[3]
holds. In fact, the robot cannot detect when it is in room 3,
and once that room is left, the light can be turned on again.
The inadequacy of CTL is related with the limited knowl-
edge that the plan execution has to face at run-time, because
of different forms of uncertainty (e.g., in the initial condi-
tion, and in the execution of actions) that can not be ruled out
by the partial observability. In order to tackle this problem,
in this section we extend CTL with a knowledge operator
K p. Goal K p expresses the fact that the executor knows,
or believes, that all the possible current states of the domain,
that are compatible with the past history and the past obser-
vations, satisfy condition p. This allows, for instance, for
expressing reachability under partial observability, by stat-
ing a goal of the kind AFK g.

Definition 12 (K-CTL) The goal language K-CTL is de-
fined by the grammar:

g ::= p | K p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)
p ::= b | ¬p | p ∧ p

where b is a basic proposition.

In order to define when a plan satisfies a given K-CTL
goal, we have to extend the execution structure with an ad-
ditional piece of information, called belief state. A belief
state is a set of possible candidate states of the domain that
we cannot distinguish given the past actions and the obser-
vations collected so far.
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Definition 13 (bs-configuration) A bs-configuration for
domain D = 〈S,A,U , I, T ,X〉 and plan Π = 〈Σ, σ0, α, ε〉
is a pair (s, o, c, bs) such that s ∈ S, o ∈ X (s), c ∈ Σ, and
bs ∈ 2S . We require:

• s ∈ bs (the current state must belong to the belief state);

• if s̄ ∈ bs then o ∈ X (s̄) (the states in the belief state must
be compatible with the observed output).

Bs-configuration (s, o, c, bs) may evolve into bs-
configuration (s′, o′c′, bs′), written (s, o, c, bs) →
(s′, o′c′, bs′), if:

• s′ ∈ T (s, α(c, o)),
• o′ ∈ X (s′),
• c′ = ε(c, o), and

• bs′ = {s̄′ : ∃s̄ ∈ bs. s̄′ ∈ T (s̄, a) ∧ o′ ∈ X (s̄′)}.
Bs-configuration (s, o, c, bs) is initial if s ∈ I, c = σ0, and
bs = {s̄ ∈ I : o ∈ X (s̄)}.
The reachable bs-configurations are defined by trivially ex-
tending Definition 5.

Definition 14 (semantics of K-CTL) Let K be a Kripke
structures with bs-configurations as states. We define
K, q |= g by extending Definition 9 as follows:

• K, q |= K p iff q = (s, o, c, bs) and s̄ |=0 p for all s̄ ∈ bs.

We define K |= g iff K, q0 |= g for all the initial configura-
tions q0 of K.

Plan validation for K-CTL goals
Also in the case of K-CTL, the definition of when a plan
satisfies a goal is reduced to model checking.

Definition 15 (plan validation for K-CTL goals) Plan Π
satisfies K-CTL goal g on domain D, written Π |=D g, if
K |= g, where K is the bs-execution structure correspond-
ing to D and Π.

We consider now an additional set of K-CTL goals for the
example.

Example 16 In Example 11 we have seen that plan Π1 sat-
isfies goal AF (¬light-on[3]). However, it does not satisfy
goal

AFK (¬light-on[3]).

In fact, this goal cannot be satisfied by any plan: due to the
uncertainty on the room occupied by the robot, there is no
way to “know” when the light in room 3 is turned off.

Goal
AFK (light-on[3]),

instead, is satisfied by Π2. Even if it is not possible to know
when the robot is turning on the light in room 3, we “know”
for sure that the light is on once the robot has visited all the
rooms. Plan Π2 satisfies also the more complex goal

∧

i∈1,...,N

AFK (light-on[i]).

According to Definition 15, the problem of checking
whether a plan satisfies a K-CTL goal g is reduced to model
checking formula g on the bs-execution structure corre-
sponding to the plan. While theoretically sound, this ap-
proach is not practical, since the number of possible be-
lief states for a given planning domain is exponential in the
number of its states. This makes the exploration of a bs-
execution structure infeasible for non-trivial domains.

In order to overcome this limitation, in this section we
introduce a different approach for plan validation. This ap-
proach is based on the concept of monitor. A monitor is a
machine that observes the execution of the plan on the do-
main and reports a belief state, i.e., a set of possible current
states of the domain. Differently from the belief states that
appear in a bs-configuration, the belief states reported by the
monitor may be a super-set of the states that are compatible
with the past history. As we will see, it is this possibility of
approximating the possible current states that makes moni-
tors usable in practice for validating plans.

Definition 17 (monitor) A monitor for a domain D =
〈S,A,U , I, T ,X〉 is a tupleM = 〈MS,m0,MT ,MO〉,
where:

• MS is the set of states of the monitor.
• m0 ∈MS is the initial state of the monitor.
• MT : MS × U × A ⇀ MS is the transition function

of the monitor; it associates to state m of the monitor, ob-
servation o, and action a, an updated state of the monitor
m′ =MT (m, o, a).
• MO :MS × U → 2S is the output function of the mon-

itor; it associates to each state m of the monitor and ob-
servation o the corresponding belief stateMO(m, o).

Definition 18 (m-configuration) A m-configuration for do-
main D, plan Π and monitorM is a tuple (s, o, c,m) such
that s ∈ S, o ∈ X (s), c ∈ Σ, and m ∈MS.
M-configuration (s, o, c,m) may evolve into m-
configuration (s′, o′, c′,m′), written (s, o, c,m) →
(s′, o′, c′,m′), if:

• s′ ∈ T (s, α(c, o)),
• o′ ∈ X (s′),
• c′ = ε(c, o), and
• m′ =MT (m, o, α(c, o)).
M-configuration (s, o, c,m) is initial if s ∈ I, c = σ0, and
m = m0.
The reachable m-configurations are defined by trivially ex-
tending Definition 5.

We say that a monitor is correct for a given domain and
plan if the belief state reported by the monitor after a certain
evolution contains all the states that are compatible with the
observation gathered during the evolution. In the following
definition, this property is expressed by requiring that there
are no computations along which a state of the domain is
reached that is not contained in the belief state reported by
the monitor.

Definition 19 (correct monitor) MonitorM is correct for
domain D and plan Π if the following conditions holds for
all the reachable m-configurations (s, o, c,m):
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• s ∈MO(m, o);
• MT (m, o, α(c, o)) is defined.

From now on we consider only correct monitors.
We now define when a triple domain-plan-monitor satis-

fies a given K-CTL goal g. We start by defining the Kripke
structure corresponding by the synchronous execution of the
machines corresponding to domain, plan, and monitor.

Definition 20 (m-execution structure) The m-execution
structure corresponding to domain D, plan Π, and monitor
M is the Kripke structure K = 〈Q,Q0, R〉, where:

• Q is the set of reachable m-configurations;
• Q0 are the initial m-configurations;
• R =

{(
(s, o, c,m), (s′, o, c′,m′)

)
∈ Q2 : (s, o, c,m) →

(s′, o′, c′,m′)
}

.

The validity of a K-CTL formula on a m-execution structure
K is defined as in Definition 14, with the exception of the
case of goals K p, where:

• K, q |= K p iff q = (s, o, c,m) and s̄ |=0 p for all s̄ ∈
MO(m, o).

Definition 21 (plan validation using monitors) Plan Π
satisfies K-CTL goal g on domain D according to monitor
M, written Π |=D,M g, if K |= g, where K is the
m-execution structure corresponding to D, Π, andM.

The possibility of using monitors for plan validation is
guaranteed by the following Theorem.

Theorem 22 Plan Π satisfies K-CTL goal g on domain D if
and only if there is a correct monitorM for D and Π such
that Π |=D,M g.

The proof of this theorem is simple. For the if implication, it
is sufficient to notice that, for any reachable m-configuration
(s, o, c,m), the outputMO(m, o) of a correct monitor is a
super-set of the belief states that are compatible with the
evolutions leading to the m-configuration. The condition
for the validity of knowledge goals given in Definition 20
is stronger than the condition given in Definition 14. There-
fore, if Π |=D,M g, then Π |=D g.

In order to prove the only if implication, we introduce
universal monitors.

Definition 23 (universal monitor) The universal monitor
MD for domain D is defined as follows:

• MS = 2S are the belief states of D.
• m0 = I.
• MT (bs, o, a) = {s̄′ : ∃s̄ ∈ bs. o = X (s̄) ∧ s̄′ =
T (s̄, a)}.
• MO(bs, o) = {s̄ ∈ bs : o ∈ X (s̄)}.
The universal monitor of a domain traces the precise evo-
lution of the belief states, that is, it does not lose any in-
formation. One can check that the belief state reported
by this monitor for a given m-configuration coincides with
the belief state of the bs-configuration corresponding to the
same computation. Therefore, Π |=D g if and only if
Π |=D,MD g. Since the universal monitor is correct, this
is sufficient to prove the only if implication of Theorem 22.

The possibility of losing some of the information on the
current belief state makes monitors very convenient for plan
validation. In many practical cases, monitors are able to rep-
resent in a very compact way the aspects of the evolution
of belief states that are relevant to the goal being analyzed.
Consider for instance the extreme case of a K-CTL goal g
that does not contain any K p sub-goal — so it is in fact a
CTL goal. In order to apply Definition 15, we should trace
the exact evolution of belief states, which may lead to an ex-
ponential blowup w.r.t. the size of the domain. Theorem 22,
on the other hand, allows us to prove a plan correct against
a very simple monitor: the monitor with a single state that
is associated to the belief state bs = S, independently from
the observation. This monitor traces no information at all on
the belief states, which is possible since no knowledge goal
appears in g (compare with Definition 9).

Another, less extreme example of the advantages of using
monitors for plan validation is the following.

Example 24 Consider the execution of Π2 on the domain
of Figure 3. The belief states corresponding to the differ-
ent steps of the execution are rather complex. They have to
take into account that, after i rooms have been visited by the
robot, we know that there are i consecutive rooms with the
light on, but that we do not know which are these rooms. For
instance, after two rooms have been visited, the belief state
is the following:

(room = 1 ∧ light-on[1] ∧ light-on[N ]) ∨
(room = 2 ∧ light-on[2] ∧ light-on[1]) ∨
(room = 3 ∧ light-on[3] ∧ light-on[2]) ∨ · · ·

Most of the information of these belief states is useless for
most of the goals. Consider for instance goals

AFK (light-on[3])

or ∧

i∈1,...,N

AFK (light-on[i]).

The only relevant information for proving that these goals
are satisfied by plan Π2 is that, once the robot has visited all
the rooms, all the lights are on. A suitable monitor for these
goals is the following. It has two states, m0 and m1, with m0

the initial state, and m1 corresponding to the termination of
the exploration. The transition function and the output of the
monitor are defined by the following table:

m o a MT (m, o, a) MO(m, o)
m0 any wait m1 �
m0 any �= wait m0 �
m1 any wait m1

∧
i∈1,...,N

(light-on[i])

According to Definition 21, the problem of proving that
plan Π satisfies K-CTL goal g on domain D according to
monitorM is reduced to model checking goal g on the m-
execution structure corresponding to the synchronous exe-
cution of D, Π, andM. In order to conclude that Π satisfies
goal g, however, we have to prove that monitorM is correct.
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The correctness of a monitor can also be proved using model
checking techniques. Indeed, it corresponds to prove that the
following formula is true on the m-execution structure:

AG (s ∈MO(m, o)).

We conclude the section by remarking that in this paper
we have not yet addressed the problem of defining a suitable
monitor for checking plan validation. In practice, it may be
very difficult to decide what information on the belief states
has to be traced by the monitor. Intuitively, the problem
amounts to identifying an abstraction of the universal moni-
tor that is sufficient for proving that the plan satisfies a given
the goal. Although the use of incremental abstraction refine-
ment techniques can be envisaged, this is currently an open
problem. In the specific case the plan is synthesized by an
algorithm, however, a proof of the correctness of the plan
is built implicitly during the search. In this case, a monitor
could be produced by the algorithm itself, by generating a
sort of proof-carrying plan.

Concluding remarks
This paper is a first step towards planning for temporally ex-
tended goals under the hypothesis of partial observability.
We defined the basic framework and introduced the K-CTL
language, that combines the ability of expressing temporally
extended constraints with the ability to predicate over uncer-
tainty aspects. Then, we introduced the notion of monitor,
and defined correctness criteria that can be used in practice
to validate plans against K-CTL goals.

The issue of “temporally extended goals”, within the sim-
plified assumption of full observability, is certainly not new.
However, most of the works in this direction restrict to de-
terministic domains, see for instance (de Giacomo & Vardi
1999; Bacchus & Kabanza 2000). A work that consid-
ers extended goals in nondeterministic domains is described
in (Kabanza, Barbeau, & St-Denis 1997). Extended goals
make the planning problem close to that of automatic syn-
thesis of controllers (see, e.g., (Kupferman, Vardi, & Wolper
1997)). However, most of the work in this area focuses on
the theoretical foundations, without providing practical im-
plementations. Moreover, it is based on rather different tech-
nical assumptions on actions and on the interaction with the
environment.

On the other side, partially observable domains has been
tackled either using a probabilistic Markov-based approach
(see (Bonet & Geffner 2000)), or within a framework of
possible-world semantics (see, e.g., (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Rintanen 1999)). These
works do not go beyond the possibility of expressing more
than simple reachability goals. An exception is (Karlsson
2001), where a linear-time temporal logics with a knowl-
edge operator is used to define search control strategies in
a progressive probabilistic planner. The usage of a linear-
time temporal logics and of a progressive planning algo-
rithm makes the approach of (Karlsson 2001) quite different
in aims and techniques from the one discussed in this paper.

Future steps of this work will include the definition of
a procedure for synthesizing monitors from K-CTL goals,
and the investigation of planning procedures for planning

for extended goals under partial observability. The syn-
thesis of monitors appears to be related to the problem
of generating supervisory controllers for the diagnosis of
failures. We are investigating whether the techniques de-
veloped by the diagnosis community (see, e.g., (Sampath
et al. 1996)) can be applied to the synthesis of moni-
tors. The main challenge for obtaining a planning proce-
dure appears to be the effective integration of the techniques
in (Bertoli, Cimatti, & Roveri 2001; Bertoli et al. 2001;
Pistore & Traverso 2001) that make effective use of (ex-
tensions of) symbolic model checking techniques, thus ob-
taining a practical implementation based on symbolic model
checking techniques.
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Abstract

The past few years have seen a flurry of new approaches
for planning under uncertainty, but their applicability to real-
world problems is yet to be established since they have been
tested only on toy benchmark problems. To fill this gap, the
challenge of solving power supply restoration problems with
existing planning tools has recently been issued. This re-
quires the ability to deal with incompletely specified initial
conditions, fault conditions, unpredictable action effects, and
partial observability in real-time. This paper reports a first
response to this nontrivial challenge, using the approach of
planning via symbolic model-checking as implemented in the
MBP planner. We show how the problem can be encoded in
MBP’s input language, and report very promising experimen-
tal results on a number of significant test cases.

Introduction
It has long been recognized that real-world planning requires
coping with uncertainty arising from exogenous events, non-
deterministic actions, and partial observability. Accord-
ingly, a wide range of approaches for planning under un-
certainty have been proposed; see (Bertoliet al. 2001b;
Bonet & Geffner 2000; Hansen & Feng 2000; Kabanza, Bar-
beau, & St-Denis 1997; Majercik & Littman 1999) for re-
cent examples. While theoretically well-founded, these ap-
proaches have only been tested on very artificial examples,
and, at a practical level, there is no evidence that they will
scale up to address interesting problems. Therefore, one
of the most significant outstanding tasks for the field is to
demonstrate the applicability of these approaches to realistic
problems, identify their bottlenecks, and suggest improve-
ments.

Recently, Thíebaux and Cordier made a concrete proposal
in this direction (Thíebaux & Cordier 2001). They recast the
problem of power supply restoration (PSR) as a benchmark
for planning under uncertainty, and issued the challenge of
solvingPSRproblems with existing planning tools.PSRcon-
sists in planning actions to reconfigure a faulty power distri-
bution network, with a view to resupplying the customers
affected by the faults. Due to sensor and actuator uncer-
tainty, the location of the faulty areas and the current net-
work configuration are only partially observable. This re-
sults in a tradeoff between acting to achieve a suitable con-
figuration, and acting (intrusively) for the purpose of ac-

quiring additional information. This tradeoff is typical not
only of problems arising in planning for partially observ-
able domains, but also of diagnosis, repair, and reconfigura-
tion problems (Friedrich & Nejdl 1992; Sun & Weld 1993;
Baral, McIlraith, & Son 2000).

In this paper, we examine the applicability of the frame-
work of Planning via Symbolic Model Checking to thePSR
problem. We focus on the approach implemented in the
MBP planner (Bertoliet al. 2001b), which makes aggressive
use of Binary Decision Diagrams, and generates conditional
plans which are guaranteed to achieve the goal. We show
how thePSR problem can be encoded inMBP’s input lan-
guageAR (Giunchiglia, Kartha, & Lifshitz 1997), and dis-
cuss the bottlenecks induced by alternative encoding styles.
Using our preferred encoding, we experiment with the rural
network described in (Thiébaux & Cordier 2001), as well as
with artificial networks with simple topologies. For the ru-
ral network, we show thatMBP solves problems involving a
realistic degree of uncertainty in better than real-time. With
the simpler topologies, we study the effects of the network
size and of the degree of uncertainty onMBP’s run time. The
results show thatMBP is able to successfully exploit the net-
work topology. They also highlight that the degree of uncer-
tainty induces an easy-hard-easy pattern when the number of
faults is known, and an easy-hard pattern when the number
of faults is unknown.

This paper is organized as follows. First we outline the
PSR benchmark, then we introduce the planning as model
checking paradigm and discuss the modeling ofPSRin AR.
We step on reporting the experimental results, and conclude
with some remarks about related and future work.

The PSR Benchmark
We start with a short statement of the power supply restora-
tion problem given in (Thíebaux & Cordier 2001), to which
we refer for a more detailed description. As shown in Fig-
ure 1, a power distribution system is a network of electric
lines connected by switching devices (the small squares in
the figure) and fed by circuit-breakers (represented by large
squares). Switching devices and circuit-breakers are con-
nected to at most two lines, and have two possible positions:
closed or open (open devices, e.g. SD8, are white in the fig-
ure). When a circuit-breaker is closed, it supplies power to
the network, and this power propagates downstream until an
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Figure 1: Rural Power Distribution System (from (Thiébaux
& Cordier 2001))

open switching device stops the propagation. The positions
of the devices are initially set so that each circuit-breaker
feeds a given area of the network (e.g. the area fed by CB4
is boxed in the figure), with no line being fed by more than
one circuit-breaker. In the figure, gray and dark are used to
distinguish adjacent areas.

Permanent faults can affect one or more lines of the net-
work. When a line is faulty, the circuit-breaker feeding this
line opens in order to protect the rest of its area from over-
loads. As a result, not just the faulty line but the entire area is
left without power. The supply restoration problem consists
in reconfiguring the network by opening and closing devices
so as to electrically isolate the faulty lines and resupply a
maximum of non-faulty lines on the lost areas. This must
be done within minutes. For instance, suppose that l20 be-
comes faulty. This leads CB4 to open and the boxed area
to be without power. Assuming that the location of the fault
and the current network configuration are known, an ade-
quate restoration plan would be to open SD16 and SD17 to
isolate the faulty line, to close SD15 to have CB7 resupply
l19, and to re-close CB4 to resupply the others.

Opening and closing operations are the only available ac-
tions in the benchmark. A first source of uncertainty is that
these actions can fail and that failures are not always observ-
able. More specifically, in normal operation the actuator of
the prescribed switching device executes the requested ac-
tion and sends a positive notification. However, the actuator
sometimes fails to alter the device’s position and sends a
negative notification – this is called the “out of order” mode
– or fails to alter the position but still sends a positive no-
tification – this is called the “liar” mode. Both abnormal
modes are permanent. Clearly, only the out of order mode is
directly observable via the notification.

In addition to action-triggered notifications, two types
of action-independent sensing information are continuously
provided. Firstly, each device is equipped with a position
detector which, when in normal mode, indicates the device’s
current position. Unfortunately, the position detector can be
“out of order” for an indeterminate time, during which it
does not return any information. Because of the liar actuator

mode, the position of an operated device cannot be known
with certainty while its position detector remains out of or-
der. It is then difficult to know whether faults have been
correctly isolated.

Secondly, each switching device is equipped with a fault
detector which senses the presence of faults. In normal oper-
ation, as long as the device is fed, its fault detector indicates
whether there exists a fault downstream of it on the area. If
the device is not fed, its fault detector keeps the status it had
when last fed. For example, if l20 is faulty, only the fault
detectors of SD17 and SD18 should indicate a fault down-
stream. Then CB4 should open and the fault information re-
turned by the devices on its area should remain the same un-
til they are fed again. If position detectors were reliable, this
scheme would be sufficient to locate single faults, as well as
multiple faults on different areas. Unfortunately, fault de-
tectors sometimes do not return any information at all (“out
of order mode”), or can lie and return the negation of the
correct status (“liar mode”). Both modes are permanent and
again only the out of order mode is directly observable.

It follows that several fault location hypotheses are con-
sistent with the observations, and that each of them corre-
sponds to an assumption about the modes (normal or liar) of
the detectors. The same applies to positions. The only hope
of gaining sufficient information to invalidate a hypothesis
is to change the network configuration and compare the new
sensing information with the predicted one. This results in a
tradeoff between acting to resupply and acting to reduce un-
certainty, which is typical of partially observable domains.

Planning via Symbolic Model Checking
In this section we briefly outline the Planning via Symbolic
Model Checking (PSMC) approach, which we use to solve
PSR problems. In PSMC, planning domains are represented
as nondeterministic finite state automata (see (Bertoliet al.
2001b) for formal definitions). Modeling a domain involves
the two following steps. Firstly, the state and dynamics of
the system (e.g. in the PSR, the plant to be restored) are
specified. A state of the domain is an assignment to a set
of variables (e.g. whether a switch is open or closed, or
whether a line is faulty or not). The effects of (possibly non-
deterministic) actions are modeled by relating a starting state
and an action with one or more target states. Secondly, the
information actually available at execution is characterized
by means of observation variables that are assigned values
depending on the state of the system. For instance, in the
PSR it is impossible to directly observe whether a line is fed
or faulty, but it is possible to observe the status of devices
via (possibly untrustworthy) detectors.

In planning under uncertainty and with partial observabil-
ity, the problem is to reach a given goal condition (e.g. feed
every non-faulty line that can be fed) starting from a given,
possibly uncertain, initial condition. A solution to the prob-
lem is astrong planthat, when executed, guarantees that all
possible executions starting from any initial state will reach
a goal state. In general, the search space of planning under
partial observability can be seen as an AND-OR graph in the
space of belief states, i.e. sets of states that represent uncer-
tain situations. OR nodes represent alternate choices among
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possible actions and observations, and AND nodes represent
the effect of observations. While an action maps a belief
state into a belief state, an observation conveys information
by splitting the belief state into smaller belief states, one
per each possible observation value; since every possible re-
sult of observing must be taken into account, this originates
and AND branching. Plan formation amounts to finding an
AND-OR subtree within the search space.

MBP (Bertoli et al. 2001a) is a general purpose planner
that provides for different styles of planning, e.g. confor-
mant, strong and strong cyclic planning, and extended goals,
allowing for partial observability and uncertainty. One of
its strengths lies in the use of Binary Decision Diagrams
(BDDs) to represent and manipulate belief states. BDDs are
compact data structures for the representation and manipu-
lation of propositional formulae. In particular, inMBP the
effect of actions is efficiently computed by means of sym-
bolic relational operations on BDDs.

Formalizing the PSR in MBP
We model the PSR domain usingMBP’s input language,
an extension of theAR language (Giunchiglia, Kartha, &
Lifshitz 1997). AR allows for describing domains where
fluents may be inertial or not, where actions may feature
preconditions, conditional effects and uncertain effects, and
where observations may or may not be triggered by an ac-
tion. We take the problem description in stages: network
topology, network states, problem dynamics, and observa-
tions.

Network topology. The basic elements of the network are
circuit-breakers, switching devices and lines. By device, we
intend either a breaker or a switch. A deviced has two sides
d+, d−. By convention, a breakerb has sideb− attached to
the power supply, andb+ attached to the network. Ifds is
a device side, we indicate byds its complementary side. A
connection either links two device sides via a line, or con-
sists of a “hanging” line from a device side to earth (see e.g.
l15 in Figure 1). Thus, a side-to-side connection is a triple
〈δ; l; δ′〉, and a hanging connection is a pair〈δ; l〉, whereδ
andδ′ are device sides,δ �= δ′, andl is a line.

A supply network is a 4-tupleN = 〈B,S, L,C〉 whereB
is a set of breakers,S is a set of switches,L is a set of lines
andC is a set of connections overB, S andL, satisfying the
conditions:

1. Each side of a switch inS occurs in some connection in
C.

2. For each breakerb ∈ B, b+ occurs in some connection in
C andb− in no connection inC.

3. Every line inL occurs in some connection inC.

4. No device side is incident on more than one line:
if 〈δ; l[; δ′]〉 and〈δ; l′[; δ′′]〉 occur inC thenl = l′.

5. The connection relation is transitive and symmetric:
〈δ; l; δ′〉 ∈ C =⇒ 〈δ′; l; δ〉 ∈ C
{〈δ; l; δ′〉, 〈δ′; l; δ′′〉} ⊆ C, δ �= δ′′ =⇒ 〈δ; l; δ′′〉 ∈ C

To describe the phenomena of power propagation we
use the notion of apath: a sequence of connected devices
and lines in the network, starting from a breaker and end-
ing with a line. Formally, a pathP of N is a sequence
b−, b+, l1[, dsi

i , dsi
i , li]∗ where each subsequence[δ, l, δ′] ∈

P corresponds to a side-to-side connection〈δ; l; δ′〉 ∈ C,
and the tail[δ, l] of P corresponds either to a hanging con-
nection〈δ; l〉 of C, or to a side-to-side connection〈δ, l, δ′〉 in
C. We indicate withdev(P ) the set of devices inP , and with
lin(P ) the set of lines inP . A path is acyclic iff it does not
contain duplicate lines, cyclic otherwise. A cyclic path P is
minimal iff no prefix of P is a cyclic path. We defineAP(N)
as the set of all acyclic paths of networkN , andCP(N) as
the set of all minimal cyclic paths ofN . Reasoning aboutN
amounts to determining the properties ofAP(N) ∪ CP(N).

Network state. The state of a supply network is described
by:

• The position of each device, modeled by a dynamic pred-
icateclosed(d), defined onB∪S. We say that a pathP
is active iff it brings power to every line inlin(P ), which
it does when every device in P is closed:active(P ) =
∀d ∈ dev(P ) : closed(d).
We say thatP is active upon closingd iff closing d leads
to P being active:active upon closing(P, d) =
∀d′ ∈ dev(P ) : ((d′ = d) ∨ closed(d′)).

• The permanent modes of the lines (faulty or not), modeled
by a predicatefaulty(l), statically defined onL.

• The fault-status of each device, i.e., whether there
was a fault downstream of the device when it was
last fed. It is modeled by a dynamic predicate
affected when last fed(d) which is set every time
d is part of an active path whose last line is faulty, and is
reset whend is fed with no fault downstream.

• The permanent modes of the devices’ actuators, fault
detectors and position detectors. These are mod-
eled by predicatesAC correct(d), AC liar(d),
FD liar(d), PD correct(d), FD correct(d), stat-
ically defined onB ∪ S.

In MBP, statically defined predicates whose value is known
in the given problem can be compiled away as DEFINEs.
Dynamic predicates, and static predicates whose value is not
known, are fluents and build the actual state of the domain.
Under the current assumptions, every such fluent is inertial.

Dynamics and observations. Two kinds of phenomena
may affect the state of the network: (a) user-induced ac-
tions on a deviced may affectd’s position, and (b) faults
and power propagation may affect the fault-status of various
devices and the positions of breakers. Their effects can be
described as follows:

a1 When opening[closing] a deviced, if the actuator ofd
is correct,d opens[resp. closes]. Otherwise, it keeps its
current position.
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b1 If there exists an active pathP whose last line is faulty and
d ∈ P , then the fault-status ofd is set. Ifd is a breaker, it
opens; otherwise, it keeps its current position.

b2 If d is in an active path, but in no active path ending in a
faulty line, then the fault-status ofd is reset.d keeps its
current position.

b3 If no active pathP exists such thatd ∈ P , then position
and fault-status ofd are unchanged.

Several options are possible for modeling the above dynam-
ics. We identified two main classes of modeling styles. In
the first class, the combined effects of (a) and (b) are com-
puted as a “one-step” consequence of each user-triggered
action. In the second class, the effects of (a) and (b) are
considered in turn. Thus, the model execution interleaves
the effects of actions with those of fault propagation, rep-
resented by adding a fictitouspropagate action. Exper-
imental evaluation of the two classes of modelings showed
the “one-step” models to be more efficient on average, so we
focus on their description.

In the “one-step” modeling class, the description of an
action upon a deviced0 must consider the effects on every
deviced as follows:

1. as a consequence of closingd0, a non-active pathP ,
whose last line is faulty, becomes active, andd belongs
to P . In this case the fault-status ofd is set. If d is a
breaker, it opens; otherwise it keeps its current position.
We say that closingd0 has affectedd.

2. d0 does not affectd and, as a consequence of closingd0, a
non-active pathP , whose last device isd, becomes active.
The deviced0 is said to have fedd. In this case, the fault-
status ofd is reset.d’s position is unchanged.

3. as a consequence of closingd0, neither case (1) nor case
(2) applies. In this case, closingd0 has no effect ond.

4. As a consequence of openingd0, an active path becomes
inactive. This does not change the position or fault-status
of any deviced other thand0 itself.

5. As a consequence of opening[closing] d0, d0 opens[resp.
closes] if its actuator is correct, unlessd0 is a breaker
whose closing affects itself (in which case it reopens, see
(1)).

The definitions above are directly translated into con-
ditional CAUSE statements inAR. For instance,
given an appropriate propositionalAR definition for
closing SD17 affects CB4, the effect of closing
switch SD17 upon breaker CB4’s position (see b1) is de-
scribed as follows:

CAUSES act = close_SD17
next(closed_CB4) := 0
IF

AC_correct_SD17 &
closing_SD17_affects_CB4;

In addition, we must take into account the possibility of
situations where breakers feed cyclic paths, or in which de-
vices are fed both ways. In these situations, the direction
of the electricity flow cannot uniquely be established (un-
less additional physical data are modeled); thus, the status

of fault sensors is not uniquely determined. Although a
deployed system would have to be extended somewhat to
model these eventualities, in the benchmark, they must be
prevented from arising. This is easily achieved by determin-
ing “cycle-causing” and “multiple-feed-causing” conditions
for any device, and preconditioning the action of closing of
a device to the absence of such conditions. We omit details,
for reasons of space.

Modeling sensing is straightforward, and independent of
the modeling of actions. The observation returned by the
sensors and actuators of a device depend on their mode and
on the actual fault-status and position of the device. For
instance, the position detector of CB1 signalling that CB1
is open is captured by the boolean observation:

OBSERVE says_open_CB1:
PD_correct_CB1 & !closed_CB1;

We designed a tool to automatically generateMBP models
following the ideas above, starting from a description of the
network topology. Both “one-step” models and interleaved
models can be generated via this tool.

Solving PSR Problems in MBP
We usedMBP to test our approach against different topolo-
gies, experimenting with different modeling styles, and con-
sidering some different search strategies. We discuss these
aspects in turn.

In terms of modeling styles, we experimented with the
“one-step” style, and two interleaved models: a “strictly
interleaved” model wherepropagate takes place after
any user-induced action, and a “loosely interleaved” model
wherepropagate takes place only after an action affects
a device. Textual descriptions of interleaved models are
more compact and convenient for a human reader, since
the effects of fault propagation are described locally to the
propagate action. However, this advantage has no par-
allel in the construction of the automaton representing the
domain, nor in the search times. In fact, in preliminary
experiments the “one-step” model performed considerably
better. We used interleaved models for testing our model-
ing ideas, since they facilitate debugging, but we adopted he
“one-step” modelings for the tests described below.

We adopted a forward heuristic search algorithm inMBP
see (P.Bertoli, A.Cimatti, & Roveri ), which makes it possi-
ble to encode search strategies either by incorporating con-
trol knowledge into the action descriptions, or by adding ad-
hoc heuristics. We used the following simple ideas which
appear to be generic to the benchmark rather than specific
to the topologies we considered: (a) do not open a device
which is fed or which has previously been fed, (b) favor clos-
ing actions over opening actions. Idea (a) is obvious, given
that a fed device cannot be incident on a faulty line. Idea
(b) comes from the fact thatopen actions are only useful to
isolate faults. whileclose actions either lead towards the
goal by feeding more lines or give the planner information
by unexpectedly refeeding a fault.

The first topology we considered was a simple linear one,
making it easy to test scalability by varying the network size
and the reliability of lines, sensors and actuators. Then we
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considered a still “simple” but slightly more complex net-
work allowing for a greater variety of configurations, and
experimented by varying the reliability of the lines. Finally,
we considered a realistic problem taken from ((Thiébaux &
Cordier 2001)), based on the topology of Figure 1. Every
experiment has been run on a 700 Mhz Pentium III Linux
machine with 6 GBytes of RAM, but in no case more than
140 MBytes of RAM have been used byMBP.

Linear topology. For the linear topology, we first consid-
ered the problem of restoring supply given that (a)exactlyn,
and (b)at mostn of the lines are faulty, starting from a state
where all devices are open and all sensors and actuators are
reliable, but the locations of the faults are unknown. Fig-
ure 3 shows the results for problem (a), considering linear
topologies of size varying from 5 to 20 lines, plotted against
the exact percentage of faulty lines.

An easy-hard-easy pattern emerges. It is not too hard to
see why this might happen: if there is no fault the problem
is trivial; if there are faults, the lines between the first and
last faults are essentially irrelevant because they can never
be fed, so the more faults there are the smaller the number
of lines causing work. Problem (b), by contrast, showed no
such cost peak: when only the maximum number of faults
is known, the problem difficulty is roughly constant for any
maximum number of faults greater than zero (search times
are always below 7 seconds). This is because the difficulty
of problems with up ton faults is roughly the sum of those
with exactlyk for k ≤ n, so it does not depend much on
n because this sum is dominated by the first few values.
In summary, the results of the experiments with the linear
topology are intuitively explicable, but it is important to note
that MBP achieves these results, as it shows that the planner
is able to exploit the structure of the problem.

To experiment with varying reliability of the actuators and
sensors, we selected one of the problems above: a linear
network of 9 lines, with at most 6 faults. We independently
considered that:

1. at least (exactly) n fault detectors are reliable;

2. at least (exactly) n actuators are reliable;

3. at least (exactly) n position detectors are reliable;

4. at most (exactly) n fault detectors are liars;

5. at most (exactly) actuators are liars.

Again, in the initial situation all devices are open; we try to
feed lines that are reachable through reliable devices. Fig.4
shows the results; FDc(=), ACc(=), PDc(=), FDl(=), ACl(=)

refer to problem 1,2,3,4,5 respectively, in both their ver-
sions. As in the case of faulty lines, problems become
more constrained and therefore easier if it is known that
most devices are unreliable. Of course, the combination of
faults upon lines and “issues” upon sensors/actuators origi-
nate more complex problems, leading to higher search times
than the previous ones.

SD3
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Simple. Here we considered the topology above and an
experimental setting similar to those we used upon the lin-
ear topology, varying the (maximum/exact) fault percentage
F of lines. The results appear very similar to those for lines,
and show thatMBP is able to exploit more complex struc-
tures. Considering exactlyn faults, the easy-hard-easy pat-
tern reaches its top whenF ≈ 40%, with 1.2 seconds of
search time. Considering up ton faults, problems are in-
creasingly hard up toF ≈ 50%; the higher search times are
around 13 seconds. Of course, higher times are expected due
to the fact that the topology is more complex than a simple
line. The results are presented in Fig.5.

Rural. Here we consider an example taken from
(Thiébaux & Cordier 2001), see fig. 1. The initial situa-
tion is that in the figure, except that CB1 is open; no fault
sensors signal a fault, and every line/device/sensor is known
to be correct apart from: lines l3 and l15, the fault sensors
of SD1, SD2, SD3, SD26, the actuator of SD26, the position
detector of SD26. For these devices, no hypothesis is made.
Supply restoration must feed every feedable line. Here, this
means that, if the actuator of SD26 is correct, then every
non-faulty line must be fed; if the actuator of SD26 is not
working and l15 is faulty, then neither l15 nor l1 can be fed.

The textual description of the one-step model is 8.5
megabytes; however, it takesMBP only 2 seconds to parse,
and 28 seconds to construct the automata for the machine.
Once this is done, a plan is found in 1.2 seconds, using
approximately 140 megabytes of RAM. Vital to this is the
fact that a “good” ordering for the variables is automatically
established byMBP; this is achieved by a reusable off-line
pre-computing which depends on the model (but not on the
problem), and thus has to be performed only once for a given
topology. In this case, precomputing takes approximately 33
minutes. The plan is presented in fig. 2, and seems a proof
of the feasibility of the model-based planning approach to
this kind of problems, given the fact that the network and
problem are not far from real-life networks.

Conclusion, Related and Future Work
This paper demonstrates that the planning via symbolic
model checking paradigm, as implemented in theMBP plan-
ner, is able to solve realistic supply restoration problems.
We have developed a systematic representation of the dy-
namics of the plant as a finite state automaton inMBP’s input
language, modeled fault conditions, and reformulated power
supply restoration as a problem of planning under partial ob-
servability. A key difficulty of the planning task is the need
to intertwine diagnosis (identifying the causes of the prob-
lem) with the search for corrective actions. An experimen-
tal evaluation shows thatMBP is able to manage some ba-
sic plant configurations, and to automatically produce strong
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Fig.3: Linear Topology (5 to 20 lines)
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Fig.4: Line Topology (9 lines, max. 6 faulty lines)
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Fig.5: Simple Topology

<=
=

close_SD4; -- feed every line
if says_fault_SD4 then -- l3 and/or l15 faulty

open_SD3; -- MBP assumes
-- l15 ok and

open_SD2; -- isolates l3
close_CB5; -- refeed...
close_SD26;
close_SD6;
if says_fault_SD6 then -- l15 faulty

open_SD1; -- MBP assumes
-- l3 ok and

close_SD2; -- isolates l15
close_CB6; -- refeed...
if says_fault_SD6 then -- l3 and l15

-- faulty
open_SD26; -- try isolate

-- l15
open_SD2; -- isolate l3
close_CB1; -- ...refeed.
close_SD8;

else
open_SD26; -- l3 ok: try

-- isolate l15
close_CB1; -- ...refeed.

Figure 2: Plan for Rural Network problem

plans for problems when different degrees of information are
available. The underlying symbolic machinery of Binary
Decision Diagrams confirms its ability to compactly store
and efficiently traverse the automaton.

Although the model-based diagnosis community has in-
vestigated similar power supply restoration problems in the
context of distribution and transport networks, to our knowl-
edge,MBP is the first general-purpose system able to cope
with the presence of uncertainty in such problems. For in-
stance, SyDRe, the supply restoration system in (Thiébaux
et al. 1996) is able to handle the fullPSRbenchmark includ-
ing sensor and actuator uncertainty, but is entirely domain-
specific. Supply restoration of power transmission systems
using a general-purpose diagnosis and planning engine has
been studied e.g. in (Friedrich & Nejdl 1992), but a crucial
difference with thePSRbenchmark is that observations and
actions are assumed to be reliable. Another work related
to ours is the application of the model-based reactive plan-
ner Burton to spacecraft engine reconfiguration (Williams &
Nayak 1997). Noticeably, Burton’s compilation of a transi-

tion system into prime implicants is related to the compila-
tion into BDDs performed byMBP, but again Burton does
not handle partial observability nor actions with uncertain
effects.

This work is the first step towards the integration ofMBP
into a complex real-world domain such asPSR. In the future,
we will investigate the potential for an on-line integration as
in (Thiébauxet al. 1996), interleaving probability-based di-
agnosis, planning and execution modules. Indeed, for real-
world problems trying to construct strong plans considering
every possible contingency is overkill (even when feasible).
Interleaving planning with action might have a dramatic im-
pact on the search times, by restricting the search to only
that part of the belief space which is admissible given the
current observations.

In the future, we will also investigate ways to extend and
improve MBP. On one side, we would like to be able to
express temporally extended goals (M.Pistore & P.Traverso
2001), that can be more realistic than reachability goals, for
partially observable domains. On the other side, we intend
to identify ways to cut the search space (e.g. by means of
user-defined strategies (Bacchus & Kabanza 2000), or by
automatically-detected heuristics, where promising results
have been shown in (P.Bertoli & A.Cimatti 2001) for con-
formant planning.
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Thiébaux, S., and Cordier, M.-O. 2001. Supply restoration
in power distribution systems — a benchmark for planning
under uncertainty. InProc. ECP, 85–95.
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Abstract

We present a translation for the variant PDDL 3 of
PDDL (Planning Domain Definition Language) into
Timed Automata. The advantage of having such a
translation is the availability of tool support by model-
checkers. We present a case study in which we apply
a version of UPPAAL that has been extended for the
search of cost-optimal solutions.

Introduction
Scheduling and planning are subjects traditionally stud-
ied from different perspectives by the Operation Research
(OR) and the Artificial Intellingence (AI) communitities.
Typically, OR models tend to reduce these problem to
well-defined static optimisation problems to be solved by
mathematical programming techniques. AI models empha-
sise complex logical structure and dynamic interactions be-
tween actions and has paid less attention to quantitative
aspects. Recently, model-checking techniques developed
within the area of computer aided verification have been ap-
plied succesfully to the planning (e.g. (Traverso, Veloso, &
Giunchiglia 2000; Edelkamp & Helmert 2000)): planning
domains are formalized as finite-state automata, goals are
expressed as temporal logical formula, and planning is per-
formed with model checking techniques, in particular sym-
bolic model checking using ROBDDs1.

For planning problems with explicit constraints on ac-
tion durations, formal verification tools for real-time and
hybrid systems, such as UPPAAL (Larsen, Petterson, &
Wang Yi 1997) and KRONOS (Yovine 1997), have been ap-
plied to solve realistic scheduling problems (Fehnker 1999).
The basic common idea of these works is to reformulate
the scheduling problem as a reachability problem for so-
called timed automata (Alur & Dill 1994) which may then
be solved by the verification tools. In particular, the effi-
cient symbolic data structures (BDDs (Bryant 1986), DBMs
(Dill 1989), NDD (Asarin, Maler, & Pnueli 1997), CDDs
(Behrmann et al. 1999), DDDs (Wang 2000)) developed for

∗BRICS: Basic Research in Computer Science, Centre of the
Danish National Research Foundation

1In 2000, the BDD-based tool MIPS by Stefan Edelkamp
and Malte Helmert, Freiburg University, was awarded for “distin-
guished Performance” at AIPS.

representing and manipulating the continuous (and infinite)
state-space of timed automata are crucial to the success of
this approach. In addition, the verification engines of the
tools have been extended with guiding and pruning heuris-
tics in order that (time-) optimal or near-optimal solutions
(plans) may be found without necessarily exhaustive explo-
ration of the state-space.

PDDL (Planning Domain Definition Language) has been
introduced in (McDermott & the AIPS-98 Planning Compe-
tition Committee 1998) as common problem-specification
language for the AIPS-98 planning competition. The pur-
pose of PDDL is to describe the nature of a domain by spec-
ifying its entities and actions that may have effects on the
domain. These effects can change the state of the domain.

In order to handle domains with time and numbers PDDL
has been extended hierarchically (Fox & Long 2001b;
2001a): The original PDDL is called PDDL level 1; the first
extension by numeric effects represents level 2. That means
in PDDL at level 2 it is possible to handle functional expres-
sions and effects may change the values of those. The next
extension (level 3) allows to specify durations for actions.
Further extensions introduce duration-dependent effects for
durative actions (level 4) and continuous effects for durative
actions (level 5).

In this paper we will concentrate on PDDL at level 3
(PDDL3). In particular, we will offer an automatic trans-
lation from PDDL3 domain specifications into networks of
timed automata suited for the real-time verification tool UP-
PAAL. Thus, the entire collection of data structures and
heuristic search-algorithms developed within the framework
of UPPAAL become available to any planning problem de-
scribable within PDDL3. Beyond PDDL3 such a translation
cannot be done because of the restricted expressiveness of
timed automata. The reason is that by duration-dependent
effects we can sum up durations. Thus, we need “stop-
watches” and it is known that timed automata with stop-
watches are more expressive than timed automata (Cassez
& Larsen 2000). Moreover, reachability is undecidable for
this class of automata.

PDDL
In Fig. 1 an example of a domain description in PDDL at
level 3 is given. It describes a variation of a classical plan-
ning problem. We have some jugs and we are able to fill
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them, to empty them or to pour the contents of one jug into
another one. To do so we need one hand for filling or emp-
tying a jug and two hands for pouring. The goal is to reach
certain amounts of water within in the jugs by these opera-
tions. The PDDL3 code in Fig. 1 contains the specification
of the domain.

It starts with the name “Timed Jugs” of the domain and
some requirements. These requirements specify the syntac-
tical features that will be used within the domain descrip-
tion. For example, the requirement “durative-actions” in-
dicates that the domain will specify actions with durations.
The “types” requirements allows for typing the entities. In
the next line we specify the types that are in use within the
domain: “jug”. Then we specify a predicate “(used ?j -
jug)” that signals whether a given jug is already in use by
an operation. This avoids simultaneous filling and emptying
of the same jug, etc.

After that we specify functional expressions:

• “(hands)” declares a nullary function representing the
number of hands that are currently available for opera-
tions.

• “(capacity ?j -jug)” declares a function that as-
signs to each jug a numerical value representing the max-
imum capacity of the jug.

• “(contents ?j -jug)” declares a function that as-
signs to each jug a numerical value representing the cur-
rent contents of water in the jug.

• In our variation of the jug problem we assume that we
have to pay a price for water. “(price)” declares a
nullary function representing the price we have paid at
the moment.

The specification of the domain finally declares the ac-
tions that may take place:

• The first action “fill” shall fill a given jug to its max-
imum capacity. Hence, it has one parameter namely
the jug to be filled. The “:duration” field specifies
the duration of the action to be the difference between
the maximum capacity and the current content. By the
“:condition” field we can define conditions for the
action to happen. In this case we require that at least one
hand is free for this action and that the jug is not filled
already. Finally, we specify in the “:effect” field what
will happen. At the beginning of the filling we occupy
a hand. At the end of the filling we stop occupying the
hand. Moreover, we want the jug to be filled and the price
we have to pay for the water is added to “price”.

• The next durative actions “empty” empties a given jug.
The duration of this action corresponds directly to the cur-
rent contents of the jug. We require that the jug is not
empty when the action starts and one hand is free for this
operation. The effect of “empty” occupies a hand from
the start until the end of the action. It also sets the con-
tents of the jug to 0. Note that we do not pay a price for
emptying a jug. We only consume time.

• Action “pour” represents the pouring of the contents in
a jug j1 into another jug j2 provided that j1 contains

(define (domain Timed_Jugs)
(:requirements :typing :fluents

:conditional-effects
:durative-actions)

(:types jug)
(:predicates (used ?j - jug))
(:functions

(hands)
(capacity ?j - jug)
(contents ?j - jug)
(price) ; we have to pay a price for water

)

; Note that all actions take time
; corresponding to the amount of water
; that is moved.

(:durative-action fill
:parameters (?j - jug)
:duration (= ?duration (- (capacity ?j) (contents ?j)))
:condition (at start (and (not (used ?j))

(>= hands 1)
(< (contents ?j) (capacity ?j))))

:effect
(and (at start (used ?j))

(at start (decrease hands 1))
(at end (not (used ?j)))
(at end (increase hands 1))
(at end (assign (contents ?j) (capacity ?j)))
(at end (increase (price) (- (capacity ?j)

(contents ?j)))))
; water is expensive!

)

; all other actions do not increase the price
; they only take time (which might be expensive,too)

(:durative-action empty
:parameters (?j - jug)
:duration (= ?duration (contents ?j))
:condition (at start (and (not (used ?j))

(>= hands 1)
(> (contents ?j) 0)))

:effect (and (at start (used ?j))
(at start (decrease hands 1))
(at end (not (used ?j)))
(at end (increase hands 1))
(at end (assign (contents ?j) 0)))

)

(:durative-action pour
:parameters (?j1 ?j2 - jug)
:duration (= ?duration (- (capacity ?j2) (contents ?j2)))
:condition

(at start (and (not (used ?j1))
(not (used ?j2))
(>= hands 2)
(> (capacity ?j2) (contents ?j2))
(> (contents ?j1)

(- (capacity ?j2) (contents ?j2)))))
:effect

(and (at start (used ?j1))
(at start (used ?j2))
(at start (decrease hands 2))
(at end (not (used ?j1)))
(at end (not (used ?j2)))
(at end (increase hands 2))
(at end (decrease (contents ?j1)

(- (capacity ?j2) (contents ?j2))))
(at end (assign (contents ?j2) (capacity ?j2))))

)

(:durative-action pour2
:parameters (?j1 ?j2 - jug)
:duration (= ?duration (contents ?j1))
:condition

(at start (and (not (used ?j1))
(not (used ?j2))
(>= hands 2)
(> (contents ?j1) 0)
(<= (contents ?j1)

(- (capacity ?j2) (contents ?j2)))))
:effect

(and (at start (used ?j1))
(at start (used ?j2))
(at start (decrease hands 2))
(at end (not (used ?j1)))
(at end (not (used ?j2)))
(at end (increase hands 2))
(at end (assign (contents ?j1) 0))
(at end (increase (contents ?j2) (contents ?j1))))

))

Figure 1: Jug domain
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enough water to fill j2 completely. Therefore the con-
dition requires that j1 contains more water than the dif-
ference between capacity and contents of j2. Since we
need two hands for this operation the condition checks
whether those are available. The effect of the action is
that we pour water from j1 into j2 such that j2 gets filled
completely. The contents of both jugs is adjusted appro-
priately. Moreover, two hands are occupied during the
operation. The time that this action takes depends on the
amount of water that is moved.

• Action “pour2” represents the pouring of the whole con-
tents of a jug j1 into another jug j2 provided that j1 con-
tains not more water than the remaining capacity of jug
j2. Hence, the condition of this actions requires that j1
contains not more water than the difference between ca-
pacity and contents of j2. If the action is finished, j1 will
be empty and j2 will contain the contents of both jugs
before the action. Again, two hands are needed and the
duration of “pour2” corresponds directly to the amount
of water that changes the jug.

The “used” flags are set appropriately.

The description is not complete since no concrete problem
is given so far. This is done by a problem specification like
the following:

(define (problem jugs1)
(:domain Timed_Jugs)
(:objects jug1 jug2 - jug
)

; the classic problem

(:init (= hands 2)
(not (used jug1))
(not (used jug2))
(= (capacity jug1) 5)
(= (capacity jug2) 3)
(= (contents jug1) 0)
(= (contents jug2) 0)

)

(:goal (and (= hands 2)
(= (contents jug1) 1)))

; we have to pay for time AND water!

(:metric
minimize (+ total-time price))

)

In the specification of a problem we have to define the
domain of the problem and the static set of objects of the
problem. In this case we declare two jugs named “jug1”
and “jug2”. Afterwards initialisation of functional expres-
sions may happen. Here we set the capacity of “jug1” to 5
and the capacity of “jug2” to 3. Moreover, we define that
both jugs are empty initially. Finally, we declare the goal, a
formula speaking about the state space. In this case we sim-
ply want to have 1 unit of water in the first jug. We can also
specify in which way the solution should be optimal. In our
example we are looking for the minimal solution regarding
the sum of time and price for water.

The optimal solution is the following plan:

action time units cost units
fill(jug2) 3 3
pour2(jug2,jug1) 3 0
fill(jug2) 3 3
pour(jug2,jug1) 2 0
empty(jug1) 5 0
pour2(jug2,jug1) 1 0

Note that the plan executes the actions subsequently. How-
ever, it is possible that several actions are executed in par-
allel. This is allowed when the effects of the actions do not
interfere.

UPPAAL

UPPAAL2 is a modeling, simulation, and verification tool
for real-time systems modeled as networks of timed au-
tomata (Alur & Dill 1994) extended with data types such
as bounded integer variables, arrays etc. For a thorough de-
scription of UPPAAL see (Larsen, Petterson, & Wang Yi
1997).

Figure 2 shows an UPPAAL model consisting of two par-
allel timed automata P and Q with two and three locations
respectively (i.e. S0 to S2 and T0 to T1). They use the two
clocks x and y, an action channel a, and an integer variable
i. Initially all clocks and integer variable values are zero.

When automaton P takes the transition from S0 to S1 the
integer variable i is incremented by one. For P to go from
location S1 to S2 the clock x is required to be exactly 5 (by
the guard x==5). On the same transition, the automaton
must also synchronize on channel a with automata Q, as the
edge is labeled with the action a!. Furthermore, automaton
Q can not delay in location T0 for more than 42 time units
because of the location invariant y<=42.

In general, the edges of component timed automata are
decorated with guards and resets. The guards express con-
ditions on the values of clocks, integer and array variables
that must be satisfied in order for the edge to be taken. Here
— for reasons of decidability — the constraints on clock
values are restricted to bounds on individual clock variables
and bounds on differences between clock variables. When
taking an edge clock and data variables may be subject to
simple manipulations in terms of resets and updates of the
form w := e. If w is a clock variable e is — again for
reasons of decidability — restricted to non-negative integer
expressions over bounded data variables. If w is a data vari-
able, e can be any expression of the proper type.

As already indicated automata components may commu-
nicate either via global data variables, or using communica-

2See the web site http://www.uppaal.com/.

S0 S1 S2

T0

y<=42

T1

P:
i:=i+1 x==5

a!

Q:
a?

Figure 2: A simple UPPAAL model.
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tion channels, which offer a method for two-process syn-
chronization. Now, communication channels may be de-
clared as being urgent in which case delay is prevented in
situations where two components are already able to syn-
chronize on the given (urgent) channel. Also, locations may
be declared as either urgent or committed. Whenever some
component automaton is in an urgent location no further de-
lay is permitted, and some enabled edge of some component
must be taken. For committed locations, the edge taken must
furthermore be from the component itself. All three notions
(urgent channel, urgent locations and committed locations)
provide means for ensuring that behaviour progresses before
given upper time bounds.

UPPAAL can check reachability and invariance properties
of boolean combination of automata locations, and clocks
and integers constraints. In UPPAAL, E<>φ expresses that
it is possible to reach a state satisfying φ. Dually, A[]φ ex-
presses invariance of φ. For example, property E<>Q.T1
specifies that automata Q can reach location T1. The prop-
erty A[](y>42 imply Q.T1) states that automata Q is al-
ways operating in location T1 when clock y is greater than
42. The two properties are both satisfied in the model.

In more recent work (Behrmann et al. 2001; Larsen et
al. 2001) the timed automata model as well as the under-
lying verification engine of UPPAAL have been extended to
support computation of optimal reachability with respect to
various cost criteria. The optimal plans that we will com-
pute in this paper will be based on the work in (Behrmann
et al. 2001). Here the timed automata model has been ex-
tended with discrete costs on edges and the optimality crite-
ria consist in minimizing either the total accumulated time
(for reaching a goal state) or the total accumulated discrete
cost or the sum of these two. In the model of 2 the mini-
mum time of reaching the location T1 is clearly 5. Assum-
ing that the edge from S0 to S1 has cost 3, and the edge
from S1 to S2 has cost 4, the minimum discrete cost for
reaching T1 is 7. The minimum combined time and dis-
crete cost for reaching T1 is clearly 12. Note, that in this
simple example the three optimality criteria were met by
the same trace(s). In general this will not be the case. The
version of UPPAAL reported on in (Behrmann et al. 2001;
Larsen et al. 2001) offer various mechanisms for guiding
and pruning the search for optimal reachability and has ap-
plied succesfully on a number of scheduling problems (e.g.
jobshop scheduling, air-craft landing).

Translation
In this section we construct a system of Timed Automata that
represent a semantics for PDDL3 in the following sense:

Theorem 1 If S is a PDDL3 problem specification, then
T A(S) satisfies the following properties:

• Each finite trace of T A(S) that reaches the state
planner .goal describes a valid plan for S.

• For each valid plan for S there exists a finite trace of
T A(S) that reaches the state planner .goal

For the PDDL3 specification S we need the following
variables and automata for the TA semantics T A(S):

• We introduce a Timed Automaton planner with states
start , work , goal and dead . State start is the initial state.

• We introduce an auxiliary Timed Automaton grabber
with the initial state idle. There is only one transition in
grabber from idle to idle with guard true and synchroni-
sation violation? on the urgent channel violation .

• We introduce an auxiliary clock c0.

• For each initialised ground instance expr of a functional
expression we add two global variables: expr and expr ′.

• For each ground instance expr of a relational expression
we add a global variable: expr.

• For each ground instance of a durative action da we add:

– A clock cda to measure the duration of the action.
– Variables lbda and ubda to remember lower and upper

time bounds if given by the specification.
– A boolean flag activeda that signals whether the action

is currently executed.

The rest of the construction adds transitions for the au-
tomata.

Initialisation

First we add a transition that initialises all variables that are
introduced. The problem specification of S describes initial
values by this grammar:

< init >::=(:init < init − el >+ )

< init − el >::=(not ( < grnd rexpr > ))

|( < grnd rexpr > )

|(= ( < grnd fexpr > ) < value > )

Hence, we add a transition from state start to state work
of planner with guard true and a set of assignments that is
constructed from the < init − el > parts of the initialisation
in S:

• A (not ( < grnd rexpr > )) term induces an assign-
ment of the form grnd rexpr := 0

• A ( < grnd rexpr > ) term induces an assignment of
the form grnd rexpr := 1

• A (= ( < grnd fexpr > ) < value > ) term induces
an assignment of the form grnd fexpr := value

In the jug example we would get the following set of assign-
ments:

hands := 2,
used(jug1 ) := 0,
used(jug2 ) := 0,

capacity(jug1 ) := 5,
capacity(jug2 ) := 3,
contents(jug1 ) := 0,
contents(jug2 ) := 0
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Goal

The goal is given in the problem specification of S. It is ba-
sically a formula over the functional and relational expres-
sions with a usual syntax. Quantifiers over objects are al-
lowed and they can be converted into equivalent formulas
without quantifiers since the number of objects is finite. The
details how to translate formulas in PDDL3 syntax to guards
for Timed Automata are straightforward and omitted here.
We denote this translation of a formula φ into a guard for
Timed Automata as g(φ).

For T A(S) we add a transition from state work to state
goal of the planner with the guard g(φ) where φ is the goal
of S. In the jug example we would get this transition:

work contents(hands)==2∧contents(jug1)==1−−−−−−−−−−−−−−−−−−−−−−−−−−−→ goal

Actions

PDDL3 distinguishes between actions and durative actions.
The latter may take time where actions happen instanta-
neously. In the jug example it would make sense to spec-
ify the empty action as non-durative action since emptying
a jug could be done very quickly. In this case the specifica-
tion of empty without hands and used could look like the
following:

(:action empty
:parameters (?j - jug)
:precondition

(and (> (contents ?j) 0))
:effect

(and (assign (contents ?j) 0))
)

A non-durative action may have parameters and carries a
precondition and an effect. The precondition is a formula φ
whereas the effect is a conjunction of terms with the follow-
ing form:3

(grnd rexpr),
(not(grnd rexpr)) or

(op grnd fexpr term)

where op can be assign, increase, decrease,
scale-up or scale-down.

The meaning of the two first kinds of terms is to set a rela-
tional expression to true or false, respectively. The meaning

3Note that PDDL3 allows quantification in preconditions and
all-quantification in effects. As stated above this can be translated
into equivalent formulas resp. effects since the number of objects
is finite. Within effects so-called “conditional effects” are allowed,
too. The syntax is (when φ eff ). It is clear that an action with
a conditional effect can be translated into two actions: The first
has the additional precondition φ and executes eff , the second has
the additional precondition ¬φ and does not execute eff . Hence, it
suffices for our translation into Timed Automata to consider only
actions without these syntatical features.

of the third kind of such a term is

grnd fexpr ′ = term

grnd fexpr ′ = grnd fexpr + term

grnd fexpr ′ = grnd fexpr − term

grnd fexpr ′ = grnd fexpr ∗ term

grnd fexpr ′ = grnd fexpr/term

respectively. That means that the new values are determined
by the old values. The effect

(and (done obj1)
(assign x y)
(assign y x)
(increase z (+ x y))

)

exchanges the values for the nullary functional expressions
x and y and increases the value of z by the sum of x and
y. Moreover, the value of the predicate done(obj1 ) is set to
true.

The values of expressions that do not appear as
grnd fexpr or grnd rexpr are unchanged. Note that effects
are not always well-defined. For example,

(and (assign x 3)
(assign x y)
(increase x 2)

)

is only well-defined if y = 3 and x = 1 holds before.

(and (not (done obj1))
(done obj1)

)

is not well-defined.
A non-durative action is executable iff the precondition

holds and the effect is well-defined.
We define for auxiliary function a for effects:

a(grnd rexpr)
df= grnd rexpr := 1

a(not(grnd rexpr))
df= grnd rexpr := 0

a(assign grnd fexpr term)
df= grnd fexpr ′ := b(term)

a(increase grnd fexpr term)
df= grnd fexpr ′ := grnd fexpr + b(term)

a(decrease grnd fexpr term)
df= grnd fexpr ′ := grnd fexpr − b(term)

a(scale-up grnd fexpr term)
df= grnd fexpr ′ := grnd fexpr ∗ b(term)

a(scale-down grnd fexpr term)
df= grnd fexpr ′ := grnd fexpr/b(term)
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where b(term) is the straightforward translation from terms
in PDDL3 syntax into terms in Timed Automata syntax. The
auxiliary function c is given as:

c(grnd rexpr) df= ε

c(not(grnd rexpr)) df= ε

c(op grnd fexpr term) df= grnd fexpr := grnd fexpr ′

We translate a non-durative action with precondition φ
and effect (and (t1 . . . tn)) as follows:
• If there are i 	= j such that

ti = (grnd rexpr) and

tj = (not(grnd rexpr)),
then the effect is not well-defined. In this case we do noth-
ing.

• Otherwise, we introduce a transition from state work to
itself with guard

g(φ) ∧
∧

1≤i<j≤n

wdc(ti, tj)

where wdc(i, j) is a well-definedness condition:

wdc(ti, tj)
df= true if lhs(a(ti)) 	= lhs(a(tj))

wdc(ti, tj)
df= (rhs(a(ti)) = rhs(a(tj)) otherwise

That means that if there are two different tk assigning to
the same functional expression, then we introduce a test
that the result is equal. This must be done to ensure that
only well-defined effects are executed.
The assignments of the new transitions are given as:

a(t1), . . . , a(tn), c(t1), . . . , c(tn)

The translation of the modified empty action for jug1
would be

work
contents(jug1)>0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

contents(jug1)′:=0,contents(jug1):=contents(jug1)′
work

The action
(:action example
:parameters () ; no parameters
:precondition (and (done)

(not (finished)))
:effect

(and (finished)
(assign x 7)
(assign y 0)
(increase x (+ y 2))

)
)

would introduce a transition

work
done∧¬finished∧7==x+(y+2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

finished:=1,x′:=7,y′:=0,x′:=x+(y+2),x:=x′,y:=y′,x:=x′ work

which can be obviously simplified to

work
done∧¬finished∧7==x+y+2−−−−−−−−−−−−−−−−−−−−−−−→

finished:=1,x′:=7,y′:=0,x:=x′,y:=y′ work

Durative Actions
Durative actions are actions where the execution may take
time. Like non-durative actions they have conditions for ex-
ecution and effects. Moreover, constraints on the duration of
the execution are specifiable.

Conditions have to be conjunctions of the following for-
mulas:

(at start (φ1))

(over all (φ2))

(at end (φ3))

where φi are formulas as in the case of non-durative actions.
Effects are also splitted into effects at the start of the action
and at the end of the action:

(at start (eff ))
(at end (eff ))

The meaning of the time-specifiers for the condition are:

at start The formula has to hold when the execution of
the durative action starts.

over all The formula has to hold after execution of the
effects at the start of the action. It has to be valid as long
as the execution of the actions takes place.

at end The formula has to hold at the time where the ex-
ecution of the action finishes.

Effects are executed according to their time specification.4

Duration constraints are conjunctions of the following
formulas:

(at start dc)
(at end dc)

where dc is

(= ?duration fexp)
(<= ?duration fexp)
(>= ?duration fexp)

fexp is a functional expression. Note that the time specifi-
cation is necessary since the evaluation of fexp may lead to
different results at the beginning and the end of the action.5

Let us assume that a ground instance da of a durative ac-
tion has the following condition:

(and (at start (φ1))

(over all (φ2))

(at end (φ3)))

The effects are

(and (at start ts1 . . . tsk)

(at end te1 . . . tem)

4As in the case of non-durative actions PDDL3 accepts durative
actions with extended formulas and effects which can be reduced
similarly to durative actions as described in this paper.

5In Fig. 1 duration constraints appear without time specification
because the default time specifier is at start.
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and duration constraints are given by

(and (ts1(op1 ?duration grnd fexp1)) . . .

(tsn(opn ?duration grnd fexpn))

where grnd fexpi are grounded functional expressions,
opi ∈ {=,<=,>=}, and tsi ∈ {at start,at end}.

Then we translate such a durative action as follows:

• If there are i 	= j such that

ttsi = (grnd rexpr) and

ttsj = (not(grnd rexpr)),

with ts ∈ {s, e} then the effect is not well-defined. In this
case we do nothing.

• Otherwise, we introduce the following transitions:

– A loop for state work with guard

g(φ1) ∧
∧

1≤i<j≤k

wdc(tsi , t
s
j) ∧ activeda == 0

and assignments

a(ts1), . . . , a(tsk), c(ts1), . . . , c(t
s
k),

activeda := 1, cda := 0,
lbda := max{grnd fexpi|tsi = at start, opi ∈ {=,>=}}
ubda := min{grnd fexpi|tsi = at start, opi ∈ {=,<=}}

– A loop for state work with guard

g(φ3) ∧
∧

1≤i<j≤m

wdc(tei , t
e
j) ∧ activeda == 1

∧ cda ≤ ubda ∧ cda ≥ lbda

∧ cda ≤ min{grnd fexpi|tsi = at end, opi ∈ {=,<=}
∧ cda ≤ max{grnd fexpi|tsi = at end, opi ∈ {=,>=}
and assignments

a(te1), . . . , a(tem), c(tem), . . . , c(tem),
activeda := 0

– A transition from state work to state dead with guard

¬g(φ2) ∧ activeda == 1

and synchronisation on the urgent channel violation:

violation!

Hence, for a successful execution of a durative action the
Timed Automaton has to fire two transition for the start and
the end of the action. At the start the automaton has to check
the start condition φ1 and to execute the start effects which
have to be well-defined. The flag activeda symbolises the
status of the action. It is true iff the action is currently exe-
cuted. When the action is started we reset the clock cda to
measure the duration of the execution. Moreover, we save
the bounds on the duration that have to be evaluated at the
beginning of the action.

To finish action da the Timed Automaton has to fire the
second transition. Here we check the condition φ3 and the

well-definedness of the effects at the end of da. The transi-
tion shall only be firable iff da is under execution. Hence,
we test the flag activeda appropriately. Finally, we test
whether the duration requirements are met by the corre-
sponding comparisons.

The third transition ensures that during execution of da
the condition φ2 always holds. As soon as ¬φ2 is true dur-
ing execution this transition is firable. Since it is a synchro-
nisation on an urgent channel it will be executed eventually.
The resulting effect is that this computation will never reach
state goal because there is no transition from dead .

Since we do not want to reach state goal if a durative ac-
tion is under execution we extend the guard for the transition
from work to goal by a test whether all durative actions are
inactive, ie.

work g(φ)∧∧
da activeda==0−−−−−−−−−−−−−−−→ goal

Simultaneous Actions
The semantics of PDDL3 allows to execute more than one
action (or end-points of durative actions) at the same point
of time. That means that this set A of actions (or end-points)
happen simultaneously. This is possible if

• all conditions are satisfied,

• the evaluation of a condition is not affected by an effect
of another action in A, and

• the conjunction of the effect is well-defined.

To simplify the analysis of these conditions a weak notion
of interference has been introduced in (Fox & Long 2001b).
Only sets of non-interfering actions (or end-points) are al-
lowed in the semantics. Interference can be determined by a
simple syntactical analysis. Let a and b be actions (or end-
points). They are interfering iff one of the following condi-
tions is true.

• The (pre-)condition of a contains a ground instance of a
relational expression grnd rexpr that is set or reset by the
effects of b (or vice versa).

• The effects of a set a ground instance of a relational ex-
pression grnd rexpr that is reset by the effects of b (or
vice versa).

• The effects of a change a value of a ground instance of
a functional expression grnd fexpr that appears rhs in an
assignment of b (or vice versa).

• The effects of a and b change the value of a ground in-
stance of a functional expression grnd fexpr and one of
this changes is non-additive.

In the Timed Automaton semantics for PDDL3 speci-
fications we have to introduce a new transition for each
set A

df= {a1, . . . , ak} of non-interfering actions (or end-
points). Let ta be the transition introduced for an action
a ∈ A. Then the transition for the simultaneous action set A
carries the conjunction of all guards:

∧

a∈A

guard(ta)
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The assignment of the transition is the sequence of all as-
signments:

assignments(ta1), . . . , assignments(tak
)

Due to the interference conditions the order of the assign-
ments can be chosen arbitrarily.

In the model of Timed Automata it is not necessary that
some time passes between transitions. That means that we
have a two-dimensional time domain because within a cer-
tain point of time ordered sequences of transitions can fire.
However, the time model of PDDL3 does not allow such a
behaviour, it is required that time passes between execution
of sets of actions. Hence, we extend for each loop in state
work the guard by the condition c0 > 0 and the assignments
by c0 := 0. Then it is guaranteed that some time has to pass
before execution of a set of actions.

Case Study
We have implemented a prototype based on a parser for
PDDL6. The input of this tool is a PDDL specification con-
taining a domain and a problem. If the parsing is successful,
then the tool constructs a file that contains the translation of
the PDDL specification as described in Sect. Translation7.

Note that the translation of PDDL3 specification as ex-
plained so far does not consider the definition of a metric
if given in the problem (cf. Section PDDL). For planning
problems a version of UPPAAL has been developed in which
it possible to specify costs of both passing time and transi-
tions (Behrmann et al. 2001). With this option the prototype
is able to handle four different possibilities:

• no metric is given: In this case the result of the translation
is not modified.

• (:metric minimize total-time): In this case
the consumption of time shall be minimal. Hence, we
specify that the costs increase uniformly with the time.

• (:metric minimize price): We assume that
price is a nullary function that is only increased by ef-
fects of the PDDL3 specification. Here, all increasing ef-
fects are translated into proper costs for the corresponding
transitions.

• (:metric minimize (+ total-time
price)): This is the accumulation of both types
of costs. We translate this by both increasing the cost
uniformly with the time and increasing the cost properly
when price is increased.

As case study we consider the domain of the timed jugs
again. However, with slightly more difficult problem speci-
fication. We introduce two more jugs with capacity 7 resp.
9 and finally we would like to have 2 water units in the first
jug and the second jug and 6 water units in the fourth jug:

6available at http://www.dur.ac.uk/d.p.long/competition.html.
7There are some modifications that save variables resp. clocks.

Moreover, UPPAAL only allows formulas as guards which are con-
structed by comparisons and conjunction. Hence, we have to con-
struct the disjunctive normalform of a given guards and introduce
a transition for each conjunction in this normalform.

(define (problem jugs1)
(:domain Timed_Jugs)
(:objects jug1 jug2 jug3 jug4 - jug
)

; the classic problem

(:init (= hands 2)
(not (used jug1))
(not (used jug2))
(not (used jug3))
(not (used jug4))
(= (capacity jug1) 5)
(= (capacity jug2) 3)
(= (capacity jug3) 7)
(= (capacity jug4) 9)
(= (contents jug1) 0)
(= (contents jug2) 0)
(= (contents jug3) 0)
(= (contents jug4) 0)

)

(:goal (and (= hands 2)
(= (contents jug1) 2)
(= (contents jug2) 2)
(= (contents jug4) 6)))

; we have to pay for time AND water!

(:metric
minimize (+ total-time price))

)

With two hands and equivalent costs for time and water
the optimal plan is8

contents
action t 1 2 3 4
f2, f3 0 0 0 0 0

3 3
2 → 4 7 7
3 → 1 10 0 3
1 → 2 15 5 2
2 → 4 18 2 3
3 → 2 21 0 6

23 2 0

It consumes the minimal amount of water (10) and takes
23 time units to execute. However, if we change the metric
in a way that water is for free, a different plan is optimal:

contents
action t 1 2 3 4
f1, f4 0 0 0 0 0
f2 5 5

8 3
2 → 3 9 9
4 → 2 12 0 3
2 → 3 15 3 6
1 → 2 18 0 6
2 → 3 21 2 3

22 2 7

In this case we can save one time unit by the cost of 7
water units. Note that the PDDL semantics requires a time
distance between subsequent durative actions in this case be-
cause they are interfering. However, the distances can be
chosen arbitrarily small such that the plans above can be
executed within all intervals longer than 23 (resp. 22) time

8We use these abbreviations: fi: fill jug i and i → j: pouring
from jug i into jug j.
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units. For the simplicity of the presentation we omit these
distances here.

We can also consider the same problem but with more
hands than two. If we assume that three hands are available
and water is as expensive as time, then the optimal plan is:

contents
action t 1 2 3 4
f2, f3 0 0 0 0 0
2 → 4 3 3

6 0 3
3 → 1 7 7 3
1 → 2 12 5 2
2 → 4 15 2 3
3 → 2 18 0 6

20 2 0

Hence, the third hand would save 3 time units here. Note
that this plan is not feasible with two hands but very similar
to the first plan above. If water is for free, we can even save
more time:

contents
action t 1 2 3 4
f1, f2 0 0 0 0 0
f4 2

3 3
2 → 3 5 5
1 → 2 8 0 3
2 → 3 11 2 3 9
4 → 2 14 0 6
2 → 3 17 2 3 6

18 2 7

In case of four hands (more than four hands are not useful
for four jugs) we get the following plans. In the case of ex-
pensive water we get the same solution as with three hands.
In the case where water is for free, the system computes a
solution that takes only 16 time units:

contents
action t 1 2 3 4
f1, f2, f4 0 0 0 0 0
2 → 3 3 3

5 5
1 → 2 6 5 0 3
4 → 1, 2 → 3 9 2 3 9
1 → 2 12 5 0 6 6
4 → 2 15 2 3
2 → 3 16 2 7

The execution times of the model-checking are as fol-
lows:9

problem time
2 hands, exp. water 24 s
2 hands, free water 55 s
3 hands, exp. water 1 m 58 s
3 hands, free water 8 m 40 s
4 hands, exp. water 6 m 56 s
4 hands, free water 21 m 25 s

9The execution times for the translation are neglectable.

These results have been established by a special feature in
the cost optimizing version of UPPAAL: The tool has a list of
the reachable symbolic states that are still waiting for being
checked. In this version of UPPAAL it is possible to order
this list in a very useful way. The order of the list is given
by a function heur on the state space. For example, a simple
and useful definition would be heur(s) := cost(s) for each
state s where cost(s) describes the minimum cost to reach
s. The result of this heuristic is that the tool explores the
cheapest state first.

However, the situation of our case study is even better:
We defined heur(s) as follows

heur(s) := cost(s) +
1
2

∑

i=1,2,4

|goal(i) − content(i, s)|

where goal(i) decribes the desired contents of the ith jug
and content(i) is the current content of the ith jug in state
s. Thus, we assign to state the minimal costs to reach this
state plus estimated remaining costs to reach the goal. Typi-
cally such estimates are difficult to find. However, the func-
tion above is a rough, simple lower bound for the remaining
costs. This heuristic prefers the most promising states in the
search order.

The positive effect of a good heuristic function can be
seen from the following execution times of UPPAAL when
we use

heur(s) := cost(s)

instead:
problem time

2 hands, exp. water 55 s
2 hands, free water 1m 18 s
3 hands, exp. water 20 m 14 s
3 hands, free water 20 m 38 s
4 hands, exp. water > 90 m
4 hands, free water 81 m 40 s

Conclusion
In this paper we have described a translation from PDDL3

into the modelling formalism (cost-decorated) timed au-
tomata model thus allowing cost- and time-optimal solutions
to PDDL−3 planning problems to be re-formulated as cost-
optimizing reachability problems for timed automata. Initial
experiments with the translations in combination with the
real-time model checker UPPAAL demonstrate the feasibil-
ity of this approach.

The experiments reported on in the current version of this
paper do not fully exploit all the guiding and pruning heuris-
tics developed for the cost-optimizing version of UPPAAL
(Behrmann et al. 2001). In particular, all our experiments
have been using a so-called minimum cost search order,
which has the property that the first solution found is guar-
anteed to be the optimal one. However, in several cases it
is often useful to apply alternative (heuristic/random) search
orders to quickly obtain an upper bound on the cost, which
in the continued search for better solutions may be used
to prune the search space. In (Behrmann et al. 2001) 15
Lawrence Job Shop problems were considered. Here the
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minimum-cost search order failed on all instances to find
(the optimal) solutions in 30 minutes, whereas the solutions
found within just 60 seconds by random search with pruning
were close to the optimal (in fact identical to the optimal in
11 cases).

As for long-term future research we want to consider al-
ternative translations from PDDL3 to UPPAAL as the par-
ticular translation chosen will clearly have a major impact
on the final performance. The current translation is rather
monolithic resulting in a system with only two timed au-
tomata, but with heavy use of discrete variables. This calls
for identification of good symbolic data structures for si-
multaneous representation of both discrete and continuous
parts of the state space. However, despite various sugges-
tions (Asarin, Maler, & Pnueli 1997; Behrmann et al. 1999;
Wang 2000) this is as yet an open research problem (on
which we — as others — are working). An alternative trans-
lation would opt for more timed automata and fewer dis-
crete variables (e.g. one timed automata for each object in
the problem instance), in the hope of being able to exploit
the (independence) structure of such a model. However, it
is still an open research topic how to extend methods like
partial-order-reduction to the setting of time.
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Abstract

In this paper symbolic exploration with binary decision di-
agrams (BDDs) is applied to two-player games to improve
main memory consumption for reachability analysis and
game-theoretical classification, since BDDs provide a com-
pact representation for large set of game positions. A number
of examples are evaluated:Tic-Tac-Toe, Nim, Hex, andFour
Connect. In Chess we restrict the considerations to the cre-
ation of endgame databases. The results are preliminary, but
the study puts forth the idea that BDDs are widely applica-
ble in game playing and provides a universal tool for people
interested in quickly solving practical problems.

Introduction
BDDs have encountered AI for different purposes. The
most apparent area is (especially non-deterministic)plan-
ning (Cimatti, Roveri, & Traverso 1998), since the spaces of
planning problems tend to be very large. AI-Planning can
be casted asModel Checking (Clarke, Grumberg, & Peled
2000), where it has been observed that BDDs can be used to
concisely express sets of states in a state transition system.
Symbolic reachability analysis traverses each state within
the system and applies to transition systems with more than
1020 states. Even verifying temporal properties as specified
in different logics according to additionally labeled states is
possible for moderate system sizes.

BDDs have also been applied to single-agent problems
like the (n2 − 1)–Puzzle and Sokoban (Edelkamp & Ref-
fel 1998). The applied search algorithm BDDA* enjoys re-
cent research interests of the groups Hansen, Zhou, and Feng
(ADDA*), or Jensen, Bryant and Veloso (SetA*). However,
due to the lack of refined symbolic information the results
for (n2 − 1)–Puzzle and Sokoban are currently too weak to
compete with heuristic single state-space search techniques.

As game playing in AI contributes to both AI-planning
and AI-search, this paper considers two- and multi-player
games in exploring large sets of game positions with mod-
erate node sizes of the corresponding BDD data structure. It
is structured as follows. In the next two sections we briefly
address BDD basics and two-player zero-sum games with
complete information. Afterwards we introduce the sym-
bolic exploration technique with respect to the example of
Tic-Tac-Toe. We show how to encode the problem and how

to perform reachability analysis and game-theoretical classi-
fication. In the experimental section we additionally address
games likeNim, Hex, andFour Connect, and explain how to
compute symbolic endgame databases forChess.

BDDs
Binary decision diagrams (Bryant 1985) have been intro-
duced in the context of hardware verification and are a
graphical representation of Boolean functions. More pre-
cisely, a binary decision diagram (BDD) to represent a
Boolean functionf is a directed rooted acyclic graph with
one or two terminal nodes, labeled with 0 and 1, and inter-
nal nodes with out-degree two. A Boolean variable from the
variable set of the represented functionf is associated to ev-
ery internal node. The outgoing edges of nodek are labeled
with low(k) andhigh(k). Theinterpretation of a BDD forf
is flow if the variable at the root node is zero andfhigh oth-
erwise, whereflow andfhigh are itself interpreted as BDDs.

For a compact representation off two rules for reducing
the graph representation are available.Rule 1 deletes a node
with all outgoing edges if there exists another node with the
same labeling and same successors.Rule 2 deletes a nodek
if low(k) is equal tohigh(k). A BDD is reduced if neither
Rule 1 nor Rule 2 can be applied anymore. It isordered, if
on every path in the graph a total ordering of the variables
is preserved. Since reduced, ordered BDDs are a unique
representation of Boolean functions, with the term BDD we
always refer to reduced and ordered BDDs.

The main advantage with respect to a truth table is that
in practice BDDs tend to have tractable (polynomial) size
even if the represented set of all satisfying assignments is
intractable (exponential). This is due to the fact that a
directed acyclic graph commonly represents exponentially
many paths. A further advantage is that given two BDD-
representations for functionsf andg the logical operations
f ∧ g, f ∨ g and¬ f can be executed efficiently and for
the existential (∃) and universal (∀) quantification the effi-
cient graph representation positively influences the execu-
tion time.

Two-Player Zero-Sum Games
A two-player zero-sum game (with perfect information) is
given by a set of statesS, move-rules to modify states and
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two players, called Player 0 and Player 1. Since one player
is active at a time, the entire state space of the game is
Q = S×{0, 1}. A game has an initial state and some predi-
categoal to determine whether the game has come to an end.
We assume that every path from the initial state to a final one
is finite. For the set of goal statesG = {s ∈ Q | goal(s)}we
define an evaluation functionv : G → {−1, 0, 1}, −1 for a
lost position,1 for a winning position, and 0 for a drawing
one. This function is extended tôv : Q→ {−1, 0, 1} assert-
ing a game theoretical value to each state in the game.

Let L(i) be the set of lost positions for Playeri, i ∈
{0, 1}. The setL(1) can be recursively calculated as fol-
lows: i) All lost position s for Player 1 are contained in
L(1), i.e., {g ∈ G | v(g) = −1} ⊆ L(1). ii) If for each
move of Player 1 in states there exists a move of Player 2 to
a state inL(1) thens itself is inL(1). The setL(2) of lost
positions for Player 2, is defined analogously. These def-
initions assume optimal play for both players, where each
player chooses a move that maximizes his objective, e.g.
Player 2 has to choose a move that forces Player 1 remain
in L(1) and so does Player 1 in the analogous case.

Let R be the set of all reachable states, with respect to
the initial position and the rules of the game, thenD = R \
(L(1) ∪ L(2)) is the set of draw games.

Constructing the above setsL(1) L(2) andD together
with their game theoretical value in a backward traversal of
the state space of the game is referred to asclassification or
retrograde analysis.

A general introduction toTwo-Person Game Theory is
provided by (Rapoport 1966).

Exploration and Classification Algorithms
We exemplify the algorithmic considerations to compute the
set of reachable states and the game theoretical value for
large sets of states in the gameTic-Tac-Toe and distinguish
the two players by denotingWhite for Player 1 andBlack for
Player 2.

Tic-Tac-Toe is a pencil-and-paper two-player game. It is
played on a3 × 3–Grid, with alternating ticks of the play-
ers. The winner of the game has to complete either a row, a
column or a diagonal with his own ticks. Obviously, the size
of the state space is bounded by39 = 19, 683 states, since
each field is either unmarked or marked with Player 1 or
2. A complete enumeration shows that there is no winning
strategy (for either side); the game is a draw.

Encoding of States and Transitions

To encode a states all positions are indexed as Figure 1 vi-
sualizes.

1 1 1

2

2

1 2 3

4 5 6

7 8 9

Figure 1: a) A State in Tic-Tac-Toe b) Labeling of the Board

We devise two predicates:Occ(s, i) being 1 if positioni
is occupied, andBlack(s, i) evaluating to 1 if the position
i, 1 ≤ i ≤ 9, is marked by Player 2. This results in a
total state encoding length of 18 bits. All final positions in
which Player 1 has lost are defined by enumerating all rows,
columns and the two diagonals as follows.

WhiteLost(s) =
(Occ(s, 1) ∧ Occ(s, 2) ∧ Occ(s, 3) ∧
Black(s, 1) ∧ Black(s, 2) ∧ Black(s, 3)) ∨
(Occ(s, 4) ∧ Occ(s, 5) ∧ Occ(s, 6) ∧
Black(s, 4) ∧ Black(s, 5) ∧ Black(s, 6)) ∨
(Occ(s, 7) ∧ Occ(s, 8) ∧ Occ(s, 9) ∧
Black(s, 7) ∧ Black(s, 8) ∧ Black(s, 9)) ∨
(Occ(s, 1) ∧ Occ(s, 4) ∧ Occ(s, 7) ∧
Black(s, 1) ∧ Black(s, 4) ∧ Black(s, 7)) ∨
(Occ(s, 2) ∧ Occ(s, 5) ∧ Occ(s, 8) ∧
Black(s, 2) ∧ Black(s, 5) ∧ Black(s, 8)) ∨
(Occ(s, 3) ∧ Occ(s, 6) ∧ Occ(s, 9) ∧
Black(s, 3) ∧ Black(s, 6) ∧ Black(s, 9)) ∨
(Occ(s, 1) ∧ Occ(s, 5) ∧ Occ(s, 9) ∧
Black(s, 1) ∧ Black(s, 5) ∧ Black(s, 9)) ∨
(Occ(s, 3) ∧ Occ(s, 5) ∧ Occ(s, 7) ∧
Black(s, 3) ∧ Black(s, 5) ∧ Black(s, 7))

The predicateBlackLost is defined analogously. In order
to specify the transition relation we fix aFrame denoting
that in the transition from states to s′ besides the move in
the actual grid cellj nothing else will be changed.

Frame(s, s′, j) =
(Occ(s, j) ∧ Occ(s′, j)) ∨
(¬Occ(s, j) ∧ ¬Occ(s′, j)) ∧
(Black(s, j) ∧ Black(s′, j)) ∨
(¬Black(s, j) ∧ ¬Black(s′, j))

These predicates are superimposed to express that with
respect to board positioni the status of every other cell is
preserved.

Frame(s, s′, i) =
∧

1≤i�=j≤9

Frame(s, s′, j)

Now we can express the relation of a black move with origin
s and successors′. As a precondition we have that one cell
i is not occupied and the effects of the operator are that in
states′ cell i is occupied and black.

BlackMove(s, s′) =
∨

1≤i≤9

¬Occ(s, i) ∧ Black(s′, i) ∧

Occ(s′, i) ∧ Frame(s, s′, i)
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The predicateWhiteMove is defined analogously. To de-
vise the encoding of all moves in the transition relation
Trans(s, s′) we address one additional bitMove(s) for each
states, denoting the truth of Player 2’s turn, as follows.

Trans(s, s′) =
(¬Move(s) ∧ ¬WhiteLost(s) ∧
WhiteMove(s, s′) ∧ Move(s′)) ∨
(Move(s) ∧ ¬BlackLost(s) ∧
BlackMove(s, s′) ∧ ¬Move(s′))

There are two cases. If it is Player 2’s turn and if he is
not already lost, execute all black moves. The next move
is a white one. The other case is interpreted as follows. If
Player 1 has to move, and if he is not already lost, execute
all possible white moves and continue with a black one.

Reachability Analysis
Symbolic reachability analysis traverses the entire state
space that is reachable from the initial position. Essentially
reachability analysis corresponds to a symbolic breadth-first
search traversal, which successively takes the setFrom of
all positions in the current iteration and applies the transi-
tion relation to find the set of allNew positions in the next
iteration. For the iteration to be completed we further need
a procedureReplace to change the nodes labeling from the
association with respect tos′ back to an association with re-
spect tos. Iteration is aborted if no new position is available.
The union of all new positions is stored in the setReached.
All sets are represented by BDDs according to the given en-
coding. The implementation is depicted in Fig 2.

procedure Reachable
Reach← From← Start(s′)
do

To ← Replace(From, s′, s)
To ← ∃s (Trans(s, s′) ∧ To(s))
From← New ← To ∧ ¬Reach
Reach ← Reach ∨ New

while New

Figure 2: Calculating the Set of Reachable Positions.

Game-Theoretical Classification
As stated above, two-player games with perfect information
are classified iteratively. Therefore, in opposite to reachabil-
ity analysis the direction of the search process isbackwards.
Fortunately, backward search causes no problem, since the
representation of all moves has already been defined as a
relation.

Assuming optimal play and starting with all goal situa-
tions according to one player – here Black’s lost positions –
all previous winning positions – here White’s winning po-
sitions – are computed. A position is lost for Player 2 if
all moves lead to an intermediate winning position in which

white can force a move back to a lost position.

BlackLose(s) =
BlackLost(s) ∨ ∀s′ (Trans(s, s′) ⇒
(∃s′′ Trans(s′, s′′) ∧ BlackLost(s′′))

Note that the choice of the operators∧ for existential quan-
tification and⇒ for universal quantification are crucial.

procedure Classify
WhiteWin← false
BlackLose← From← BlackLost(s)
do

To ← Replace(From, s, s′)
To ← ∃s′ (Trans(s, s′) ∧ To(s′))
To ← To ∧ ¬Reach ∧ ¬Move(s)
WhiteWin← WhiteWin ∨ To
To ← Replace(To, s, s′)
To ← ∀s′ (Trans(s, s′) ⇒ To(s′))
To ← To ∧Move(s)
From← New ← To ∧ ¬BlackLose
BlackLose ← BlackLose ∨ New

while New

Figure 3: Determining the set of white winning and black
lost positions.

The pseudo-code for symbolic classification is shown in
Fig. 3. The algorithmClassify starts with the set of all final
lost postitions for Black, and alternates beween the set of po-
sitions that in which black (at move) will loose and positions
in which white (at move) can win, assuming optimal play. In
each iteration each player moves once; corresponding to two
quantification in the analysis. The executed Boolean opera-
tions are exactly those established in the recursive descrip-
tion above.

One important issue of the pseudo-code is the explicit at-
tachment of the player to move, since this information might
not be available in the backward traversal. Furthermore, the
computations can be restricted to the set of reachable states
through conjuncts with its BDD representation. We summa-
rize that given a suitable state encodingConfig, for symbolic
exploration and classification in a specific two-player game
the programmer has to implement the procedures of the fol-
lowing interface.

1. Start(Config): Definition of the initial state for reachabil-
ity analysis.

2. WhiteLost(Config): Final lost positions for white.

3. BlackLost(Config): Final lost position for black.

4. WhiteMove(Config, Config): Transition relation for white
moves.

5. BlackMove(Config, Config): Transition relation for black
moves.

Complete Exploration
In this section we experiment with implementations to the
given interface specification for simple two-player games in
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C/C++ with J. Lind-Nielsen’s BDD libraryBuDDy, Release
1.6 (Lind-Nielsen 1999).

Tic-Tac-Toe
Table 1 depicts the growths of the number of states and the
number of BDD nodes in the reachability analysis and the
classification algorithm with respect to an increasing search
depthd in Tic-Tac-Toe. The statistics for the BDD structure
for BlackLose andWhiteWin are interleaved. Instead of the
expected9!/5!4! = 126 newly generated states in the last
iteration we obtain 78 states. This is due to the fact that we
stop state enumeration if a goal has been found.

Reachable BlackLose WhiteWin
d n s n s n s

0 19 1 90 626
1 37 10 532 1498
2 81 82 772 1034
3 111 334 825 1838
4 152 1090 997 1098
5 175 2350 1002 1986
6 344 3870
7 525 5010
8 652 5400
9 656 5478

Table 1: Reachability analysis and classification in the game
Tic-Tac-Toe. The numbers of BDD nodes and the sizes of
the represented sets of reachable states, white winning and
black lost positions are given.

The number of represented states in a BDD corresponds
to the number of paths to the one sink. The number of reach-
able lost positions for black is 626, whereas we have 316 lost
positions for white. The number of eventually lost positions
for black accumulates to 1098. The number of white win-
ning positions is 1986 and, as expected, the start is not won
for white.

Four Connect
This popular game is played on a vertical rack with 6 rows
and 7 columns. Alternatively, black and white pieces are in-
serted into one pile falling down onto the existing ones. The
state space is obviously bounded by342 and we experiment
with encoding of two bits for each of the 42 positions, or-
dered from bottom to top and right to left. When encoding
the height of each column for occupancy42 + 7 · 3 = 63
bits suffice, for a state space of at most1018 states. Tables 2
and 3 depict the results of the reachability analysis.Four
Connect has been proven to be a win for the first player
in optimal play using a knowledge-based approach (Allis
1998) and minimax-based proof number search (PNS) (Al-
lis 1994), that introduces the third valueunknown into the
game search tree evaluation. PNS has a working mem-
ory requirement linear in the size of the search tree, while
αβ requires only memory linear to the depth of the tree.
Proof-Set Search is a recent improvement to PNS, that trades
node explorations for a higher memory consumption (Müller
2001b).

Due to space limitation we have not yet verified Al-
lis’ result. So far, we have only succeeded in full BDD-
classifications for 4-Connect up to a4× 5 board, which are
all draws.

Reachable New
l n s n s

0 85 1 157 7
1 169 8 322 49
2 334 57 502 238
3 582 295 901 1,120
4 979 1,415 1,476 4,263
5 1,630 5,678 2,426 16,422
6 2,728 22,100 3,977 54,859
7 4,542 76,959 6,347 186,389
8 7,436 263,348 10,260 567,441
9 12,246 830,789 15,669 1.73e+06

10 19,353 2.56e+06 23,127 4.81e+06
11 29,064 7.38e+06 28,152 1.34e+07
12 39,394 2.08e+07 37,494 3.43e+07
13 51,978 5.51e+07 41,081 8.83e+07
14 65,097 1.43e+08 54,072 2.09e+08
15 80,717 3.53e+08 59,908 5.01e+08
16 96,554 8.55e+08 74,105 1.11e+09
17 113,616 1.96e+09 78,847 2.48e+09
18 129,004 4.45e+09 92,083 5.17e+09
19 145,584 9.63e+09 96,704 1.08e+10
20 160,009 2.04e+10 109,838 2.11e+10
21 175,720 4.16e+10 114,229 4.14e+10

Table 2: Reachability analysis of the gameFour Connect.
The numbers of BDD nodes and represented reached and
new states for each stepl in the exploration are depicted.

Hex
Hex is a classical board game invented by the Danish math-
ematician Hein. The book (Browne 2000) provides a com-
prehensive report on the history of the game and advanced
playing strategies. The board is a hexagonal tiling ofn rows
andm columns. Usuallym = n, with 11x11 being the
widely accepted standard board size. The rules are simple:
players take turns placing a piece of their color on an un-
occupied location. The game is won when one player es-
tablishes an unbroken chain of ther pieces connection their
sides of the board. Since the game can never result in a draw
it is easy to prove that the game is won for the first player to
move, since otherwise he can adopt the winning strategy of
the second player to win the game. Nevertheless the proof
is not constructive such that we are still left with the prob-
lem to determine the game theoretical value of all interme-
diate positions. The state space ofHex is bounded by3n2

as
each point may exists in either of three statesEmpty, White
or Black. The current state-of-the-art programHexy uses a
quite unusual approach electrical circuit theory to combine
the influence of sub-positions (virtual connections) to larger
and larger ones (Anshelevich 2000).

The binary encoding forHex is similar to the previous
example, with two bits per field, since the players are only
allowed to set their pieces. Table 4 displays the results of
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Reachable New
l n s n s

22 188,617 8.31e+10 125,290 7.61e+10
23 201,421 1.59e+11 127,098 1.39e+11
24 210,410 2.99e+11 133,653 2.40e+11
25 220,472 5.39e+11 135,216 4.13e+11
26 227,188 9.52e+11 140,897 6.64e+11
27 234,464 1.61e+12 141,266 1.06e+12
28 238,101 2.68e+12 144,497 1.59e+12
29 241,280 4.27e+12 141,112 2.35e+12
30 239,985 6.62e+12 137,731 3.25e+12
31 239,253 9.88e+12 133,574 4.42e+12
32 234,583 1.43e+13 127,470 5.57e+12
33 228,654 1.98e+13 121,470 6.83e+12
34 219,173 2.67e+13 111,600 7.70e+12
35 207,433 3.44e+13 101,312 8.31e+12
36 191,440 4.27e+13 83,287 8.11e+12
37 176,475 5.08e+13 73,051 7.36e+12
38 160,640 5.82e+13 55,880 5.75e+12
39 144,188 6.39e+13 44,667 3.82e+12
40 127,134 6.78e+13 29,267 1.87e+12
41 109,287 6.96e+13 15,147 5.33e+11
42 90,269 7.02e+13 0 0

Table 3: Reachability analysis of the gameFour Connect
(cont.)

reachability analysis applied for this encoding. Time con-
sumption in all cases was within 1 minute on a 450 MHz
Pentium, and space in the order of 128 MByte was sufficient
for exploration.

Transition Relation Reachable
n l n n s

3 9 171 144 6,046
4 16 311 424 1.01e+07
5 25 491 1,000 1.61e+11
6 36 711 2,034 2.40e+16
7 49 971 3,724 3.30e+22
8 64 1,271 6,304 4.15e+29
9 81 1,611 10,044 4.78e+37

10 100 1,991 15,250 5.00e+46
11 121 2,411 22,264 4.76e+56
12 144 2,871 31,464 4.11e+67

Table 4: Final results of the reachability analysis for the
gameHex scaled with parametern denoting ann×n board.
The final depth of the analysisl, the BDD-size of the transi-
tion relation and the numbers of BDD nodes and represented
states for a complete exploration are presented.

The challenging question is to how to encode the end of
the game, i.e. the connection of two opponent sides by the
respective color of the players. We proceed as follows. All
paths from one nodea to a nodeb of length l are gener-
ated in a Divide-and-Conquer style by recursively determin-
ing all paths froma to an intermediate nodek of length
�l/2� and all paths fromk to b of length�l/2�. To avoid
re-computations of BDDs we memorize calculated results

in a 3-dimensional tableT [a][b][l]. With 210 BDD nodes
for n = 3, 424 for n = 4, and 7206 forn = 5 the BDD
representations of the goal predicates is small, but the enu-
meration of all paths is very time consuming, such that we
have verified correct classification only for these cases.

Nim
Nim is another folklore two-player game. We consider the
very simple situation of one stack of disks, where each
player is allowed to take one, two, or three of them. Note
that then-stack Nim problem reduces to a 1-stack problem
by applying combinatorial game theory (Berlekamp, Con-
way, & Guy 1982). The situation is lost if the resulting vec-
tor is zero. The game is lost for the player, who faces the
empty stack. The optimal strategy is to enforce a situation
with 3k + 1 disks,k ≥ 1, and the opponent to move. One
encoding is very simple. We assign a bitbi for each disk
di, 1 ≤ i ≤ n. Therefore, a move (for either side) is repre-
sented by the conjunctionbi(s)∧ bj(s)∧ bk(s)∧ ¬bi(s′)∧
¬bj(s′)∧ ¬bk(s′)∧ Frame(s, s′, i, j, k), for 1 ≤ i, j, k ≤ n,
whereFrame(s, s′, i, j, k) asserts that every bit except the
bits at i, j and k is unchanged. This encoding, however,
scales linearly with the number of disks. Therefore, a con-
cise representation requires the binary encoding of natural
numbers in finite domain. This reduces the encoding length
fromn+1 bits (the additional bit denotes the player to move)
to �log n�+ 1. The set of reachable states in the casen = 2
and the first encoding are00-white moves, 00-black moves,
01-black moves, 10-black moves, and11-white moves. In
the second encoding this reduces to the set0-white moves,
0-black moves, 1-black moves, and2-white moves.

Table 5 gives the number of reachable states in the state
space and the size of their BDD representation for both
cases. While in the first encoding the represented set grows
exponential (∼ 2n+1 states) the BDD representation scale
linearly (2n+1 nodes). For the second encoding the growth
of the symbolic representation is still smaller than the rep-
resented set of2n states, e.g forn = 10, 000 only 19 BDD
nodes represent the total of 20,000 states. Note that explicit
and symbolic classification is also trivial for this game and
verifies the above game-theoretical values of the start states.

Endgame Databases in Chess
Several current challenges in single-agent search like
Sokoban, Rubik’s Cube and the(n2 − 1)-Puzzle can be
solved with State-of-the-Art implementations and use a
common data structure for improving the lower bound es-
timate on the solution length: The pattern database, in
which sub-positions are stored together with their optimal
solution length in a relaxed problem space. In two-player
games, pattern databases are generated to determine the
game-theoretical value for endgames. Pattern databases can
be casted as representations of Boolean functions. Instead
of computing the value of a functionf for a given input
from scratch, a representation off is stored in a table. For
the input the pattern value can be retrieved in a simple table
lookup.
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Unary Encoding Binary Encoding
n n s n s

5 11 58 5 10
10 21 2,037 6 20
15 31 65,520 6 30
20 41 2.09e+06 8 40
25 51 6.71e+07 7 50
30 61 2.14e+09 7 60
35 71 6.87e+10 8 70
40 81 2.14e+09 10 80

Table 5: The gameNim with an either unary or binary en-
coding of natural numbers. The numbers of BDD nodes and
represented states for the entire set of reachable states are
provided. In the binary encoding equivalent states have been
merged.

Chess is one of the oldest games known to mankind. The
book (Heinz 2000) provides a computer-chess primer and
new results of computer-chess. Chess has advanced from
thedrosophila of AI to one of its main successes, resulting
in the defeat of the human-world champion in a tournament
match. Some combinatorial chess problems like the number
of 33,439,123,484,294 complete Knight’s tours have already
been solved with BDDs (L̈obbing & Wegener 1996). Due to
the complexity of chess we are restricted to the construction
of endgame databases. Not only the size of the chess board
but also the numerous available moves lead to intractable
large dat base for all states and transitions. Early work on
endgame databases is surveyed in (van den Herik & Her-
schberg 1986). Nowadays, Edward’s table-bases and Thom-
son’s databases are most important to the chess commu-
nity. The major compressions schemes for positions without
pawns (since these situations contain only totally reversible
moves) use symmetries along the diagonal, horizontal and
vertical middle axes of the chess board. Since the 3-fold
symmetry allows for the confinement of one piece in a tri-
angular region of 10 squares, the obtained reduction ratio is
about(64− 10)/64 = 84.38%.

Example Setting
As a first example we consider a board with two opposing
Kings and one white Queen. In the encoding of the moves
for the kings we restrict successor generation to squares not
threatened by another figure. Movements of the queen are
more complicated. The Queen can freely move on rows,
columns and diagonals as long as no other figure is present.
Removal is only allowed if a figure of the opposite color
is encountered at the destination square. However, captures
in this simple problem instance simply terminates the game
since the remaining game is either a draw (two opposing
Kings) or a definite win for white. Opposite to Tic-Tac-
Toe in each move two squares are changed for each move.
Therefore theFrame has to be adequately enlarged with this
further parameter.

The simple encoding with three bits for each square de-
noting occupancy, color and figure type, together with one
bit for the player to move, yields 193 bits in total, a number

for which symbolic exploration turns out to be intractable.
The BDD sizes simply exhaust main memory. A more suit-
able encoding of board positions is a binary representation of
the occupied squares for the two kings and the queen. Since
six bits per figure suffice to encode 64 squares this gives a
total of 19 bits.

In a specialized implementation of the example problem
the chess configurationChessConfig is realized by three sim-
ple predicates:qw(i, j) for row i and columnj returns a
BDD, evaluating to 1, if and only if the white queen is posi-
tioned at(i, j). The procedureskw(i, j) andks(i, j) yield
analogous BDD representations for the black and white
king, respectively. The constructor includes a switch for the
different variable sets in the situations prior and after move
commitment. The classChess then implements all above
methods, while we have added two methodsBlackThreat-
ened andWhiteTreatened that indicate, if a given square is
available for the player black and white, respectively.

General Setting
In a more general case of arbitrary figures on the board ex-
ploration is based on the BDD representation of the figures’
positionsAt(i, j), 1 ≤ i, j ≤ 8. This implementation scans
the endgame database description and the initial state for
reachability analysis in the command line.

We distinguish between white and black occupancy of
squares, since according to the color of the pieces the tar-
get position might lead to a capture. For Queens, Bish-
ops and Rooks all intermediate positions within one move
are blocked. Therefore, to specify a move beside the pre-
calculatedFrame we pre-compute two vectorsEmptyWhite
andEmptyBlack representing the emptiness of each square.
EmptyWhite (EmptyBlack) w.r.t. (i, j) evaluates to 1, if no
white (black) figure is currently located at position(i, j).
For example, all Knight jumps in the direction up-up-left
are characterized as follows.

∨

2<i≤8,1<j≤8

At(s, i, j) ∧ At(s′, i− 2, j − 1) ∧

EmptyWhite(s, i− 2, j − 1) ∧ Frame(s, s′)
A capture is found by querying variables equality for each

pair of figures on the board. This predicate simply assigns
that the binary value of the board positions of different fig-
ures coincide. Figures that have been captured are placed
onto an extension of the board.

In order to specify theCheck andMate positions, we ap-
ply the classification algorithm for one and two plies (half-
move). A position isMate if even in perfect play the for-
eign king is definitely captured in one move and a position
is Check if the king can be taken assuming a void move of
the opponent. Therefore, aCheck-Mate is the conjunct of
the former two predicates. Table 6 gives our preliminary re-
sults. For these simple endgame studies the game can be
terminated if one of the player takes a figure of the oppo-
nent. In general we encounter a database entry of a smaller
game.

Reachability and classification took less than 30 seconds
on a 450 MHz Pentium. The number of represented states in
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Check-Mate Reachable
n s n s

KQK 385 256 75 516,096
KRK 297 216 75 516,096

KRRK 8,829 13,0720 794 3.19e+07
KRNK 2,595 12,751 954 3.19e+07
KNNK 804 236 1,050 3.19e+07
KNBK 519 156 1,148 1.59e+07
KBBK 1,295 1,056 641 8.12e+06

Table 6: Endgame databases inChess according to different
situations. The letter N abbreviates Knight, K denotes King
Q Queen, R Rook, B Bishop.

the final set of reachable states exceeds the BDD represen-
tation by magnitudes. In classifying the example KBRK,
the set for states eventually won for the first player has
had 312’932 elements with a BDD representation of 15’460
nodes, which corresponds to a saving of about 95 %; the
larger the number of states, the better the gain by BDD rep-
resentation.

In all cases backward analysis is more time consuming
than forward exploration. This observation not necessarily
reflects BDD sizes but to the number of sub-functions en-
countered in existential and universal quantification. More-
over, the number of subproblems is related to the number
of represented states. Therefore, backward iterations corre-
sponds to a sizable amount of work if the number of repre-
sented states in the goal predicate is large.

After a successful classification the optimal strategy for
Player 1 can be obtained by memorizing the sets of states
WhiteWins in each iteration. If Player 2 has performed his
move a simple conjunction of the available successors with
theWhiteWins gives the next winning position.

Endgame database queries can be decided in time linear
to the encoding length. Therefore, BDD endgame databases
can compete with hashing schemes to query the game-
theoretical value in ordinary endgame databases.

The symbolic representation of a BDDB transforms to an
explicit one by extracting and deleting one represented state
after another. A satisfying pathp in theB is extracted as a
BDD P andB is updated toB ∧ ¬ P until B represents
false. One application is a print routine for the PDB.

A Framework for Multi-Player Games
LetQ be the set of all states and forG = {s ∈ Q | goal(s)}
we define an evaluation functionv : G → {0, 1, . . . , k},
with k being the number of players and the valuei > 0
corresponds to a definite win for Playeri.

As in the two-player scenario this function is extended to
v̂ : Q → {0, 1, . . . , k} by induction. The set of winning
positions for playeri, i.e. all positionss ∈ Q with v̂(s) = i,
is calculated as follows.

PlayerWin(i, s) =
PlayerWon(i, s) ∨
∀s(1) (Trans(s(0), s(1)) ⇒

(∀s(2) Trans(s(1), s(2)) ⇒
· · ·
(∀s(k) Trans(s(k−1), s(k)) ⇒
(∃s(k+1) Trans(s(k), s(k+1)) ∧

PlayerWin(i, s(k+1)) . . .)

Other Domains and Their Encoding
Due to the depth and diversity of the research in the area of
game-playing (Schaeffer 2000) we can only indicate possi-
ble applications of BDD-exploration and classification for a
complete exploration.

Nine-Men-Morris has been solved with huge pattern
databases (Gasser 1993), in which every situation (after
the initial setting) has been asserted to its game-theoretical
value. The outcome of a complete search is that the game is
a draw. A straightforward encoding yields 48 bits for3 · 8
placements. Since Gasser’s result has never been verified
BDDs are a mean for reconsidering the result. Since each
cyclic layer of theNine-Men-Morris graph can be furtherly
compressed to 12 bits, we find a better encoding of 36 bits.
However, involved encodings might lead to a more compli-
cated transition relations.

In its time the retired human-computer world-champion
Checkers program Chinnock has performed its intense
endgame database computations (up the 7 and 8 pieces)
on various high-end computers in the US and Canada. All
checker positions involving 8 or fewer pieces on the board,
result in a total of 443,748,401,247 positions. In a simple
encoding Checkers requires32 · �log 5� = 96 bits. As above
an improved encoding might get closer to the reasonable
bound of�log 532� = 75 bits. Although this seems tractable
for a BDD engineer, experiments with the Fifteen-Puzzle in
a concise encoding of 64 bits has shown that reachability
analysis easily exhausts 500 MByte of memory with sym-
bolic breadth first search. Therefore, for the application of
presented approach in Checkers we suggest to increase the
bound on endgame computations.

The size of the search space inGo (19 × 19 variant) has
been estimated at10170 positions(319·19 ≈ 10172), and is
probably the biggest of all popular board games. The result-
ing binary encodings of over 500 bits are definitely too large
for a complete symbolic exploration. Go has been addressed
by different strategies. One important approach (Müller
1995) with exponential savings in some endgame situations
uses a Divide-and-Conquer method based on combinatorial
game theory in which some board situations are split into a
sum of local games of tractable size. In these sub-searches
BDD databases might be advantageous. The general strat-
egy of partial order bounding (M̈uller 2001a) to propagate
relative evaluations in the tree has been shown to be effective
in Go endgames; it applies to all minimax search algorithms
such asαβ and PNS.

One multi-player game isHalma/Chineese Checkers with
its star-like game board introduced at the end of the 19th
century. It can be played with up to 6 players. The goal of
the game is to move all own pieces to the opposing side of
the board by sliding single pieces to adjacent places or jump-
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ing over adjacent pieces if the destination is free. Chaining
of jumps is allowed and reveals the tactics of the game. One
obvious encoding considers 3 bits for each of the 121 board
positions to denote the occupancy of the pieces such that this
game is likely to be too complex to be solved with current
BDD technology.

Conclusion and Outlook
To the authors’ knowledge, this paper is one of the first
manuscripts on using BDDs to classify two-player games.
The only other work we are aware of is (Baldamuset al.
2002), that applies a Model Checker to solve American
Checkers problems.

In the experiments we highlighted possible memory sav-
ings for the complete exploration in two simple problems
Nim andTic-Tac-Toe and a medium-size problemFour Con-
nect. With Hex and Chess we gave examples, where the
binary encodings of the moves and the ending is not trivial.
The results are preliminary, but lead to drastic savings in the
considered problem spectrum. The gap often corresponds
to several magnitudes. We generalized the approach to the
the multi-player scenario which especially in card-games at-
tracts several researchers nowadays (cf. (Ginsberg 1999)
for an example).

The results are preliminary. In large instances toHex
and inFour Connect we have not yet determined the game-
theoretical value of all states for larger problem instances
with the symbolic traversal of the search space. Moreover,
the domain of chess gives only rather trivial results (King
+ 1 or 2 pieces vs. King), which state spaces have already
fully been explored by many computer-chess programmers.
Last but not least, the indicated application of the methods in
Nine-Man-Morris, Checkers andHalma is quite speculative
and yet not been implemented. However, these limitation
are not necessarily problem-inherent, and symbolic repre-
sentation and exploration is promising to enrich the port-
folio of game playing programs. Moreover, the simplicity
and generality of the approach can serve as an interface for
specifying simple two-player games with optimal play. The
next two options to improve the performance are static or
dynamic variable ordering schemes, which usually have a
significant influence on the space and time complexity, and
partitioning techniques of the search space to bypass bottle-
necks in the symbolic exploration process. As in the case of
chess, game playing problem instances are often redundant
with respect to different automorphisms to be exhibited by
combined reduction schemes and advanced data structures.

Since reachability analysis is in practice easier and faster
than classification, BDDs might support the evaluation of
successors in active play as follows. Take the successor state
and evaluate the game all the way down to the end and draw
statistics on how often the goal situation is met for both
players. The successor with the best score for one player
is searched first. Enumeration bases on recent progress in
game playing, since its successful variant israndom sam-
pling that has been applied inBridge, whereMonte Carlo
Sampling determines the hands of the opponents (Ginsberg
1999) and toBackgammon, where aRoll-Out reveals the

current strength of the game (Tesauro 1995).
Another reason why counting might be an advantage to

αβ pruning in min-max search is that this algorithm is sen-
sible to the number of leaf nodes responsible for the root
evaluation even though alpha-beta tends to hide errors at leaf
nodes. This problem has been addressed by conspiracy num-
ber search (CNS) (McAllester 1988). The basic idea of CNS
is to search the tree in a manner that at leastc > 1 leaf val-
ues have to change in order to change the root one. CNS has
been successfully applied to chess by (Schaeffer 1989) and
(Lorenz 2000).

As a final side remark, note that two player exploration
joins many features with adversarial universal planning for
multi-agent domains in which a set of uncontrollable agents
may be adversarial to the planner (Jensen, Veloso, & Bowl-
ing 2001).
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Abstract

We describe a planning algorithm that integrates two ap-
proaches to solving Markov decision processes with large
state spaces. It uses state abstraction to avoid evaluating states
individually. And it uses forward search from a start state,
guided by an admissible heuristic, to avoid evaluating all
states. These approaches are combined in a novel way that ex-
ploits symbolic model-checking techniques and demonstrates
their usefulness in solving decision-theoretic planning prob-
lems.

Introduction
Markov decision processes (MDPs) have been adopted as
a framework for AI research in decision-theoretic planning.
Classic dynamic programming (DP) algorithms solve MDPs
in time polynomial in the size of the state space. However,
the size of the state space grows exponentially with the num-
ber of features describing the problem. This “state explo-
sion” problem limits use of the MDP framework, and over-
coming it has become an important topic of research.

Over the past several years, approaches to solving MDPs
that do not rely on complete state enumeration have been
developed (Boutilieret al. 1999). One approach exploits
a feature-based (or factored) representation of an MDP to
create state abstractions that allow the problem to be repre-
sented and solved more efficiently. Another approach lim-
its computation to states that are reachable from the start-
ing state(s) of the MDP. In this paper, we show how to
combine these two approaches. Moreover, we do so in a
way that demonstrates the usefulness of symbolic model-
checking techniques for decision-theoretic planning.

There is currently great interest in using symbolic model-
checking to solve AI planning problems with large state
spaces. This interest is based on recognition that the prob-
lem of finding a plan (i.e., a sequence of actions and states
leading from an initial state to a goal state) can be treated
as a reachability problem in model checking. The plan-
ning problem is solved symbolically in the sense that reach-
ability analysis is performed by manipulating sets of states,
rather than individual states, which alleviates the state explo-
sion problem. Earlier work has shown that symbolic model
checking can be used to perform deterministic and nonde-
terministic planning (Cimattiet al. 1998). Nondeterministic
planning is similar to decision-theoretic planning in that it

considers actions with multiple outcomes, allows plan exe-
cution to include conditional and iterative behavior, and rep-
resents a plan as a mapping from states to actions. However,
decision-theoretic planning is more complex than nondeter-
minsitic planning because it associates probabilities and re-
wards with state transitions. The problem is not simply to
construct a plan that can reach the goal, but to find a plan
that maximizes expected value.

The first use of symbolic model checking for decision-
theoretic planning is the SPUDD planner (Hoeyet al. 1999),
which solves factored MDPs using dynamic programming.
Although it does not use reachability analysis, it uses sym-
bolic model-checking techniques to perform dynamic pro-
gramming efficiently on sets of states. Our paper builds
heavily on this work, but extends it in an important way.
Whereas dynamic programming solves an MDP for all pos-
sible starting states, we use knowledge of the starting state(s)
to limit planning to reachable states. In essence, we show
how to improve the efficiency of the SPUDD framework by
using symbolic reachability together with dynamic program-
ming. Our algorithm can also be viewed as a generalization
of heuristic-search planners for MDPs, in which our con-
tribution is to show how to perform heuristic search sym-
bolically for factored MDPs. The advantage of a heuristic
search approach over dynamic programming is that heuris-
tic search can focus planning resources on the relevant parts
of the state space.

Factored MDPs and decision diagrams
A Markov decision process (MDP) is defined as a tuple
(S, A, P, R) where: S is a set of states;A is a set of ac-
tions; P is a set of transition modelsP a : S × S → [0, 1],
one for each action, specifying the transition probabilities of
the process; andR is a set of reward modelsRa : S → �,
one for each action, specifying the expected reward for tak-
ing actiona in each state. We consider MDPs for which the
objective is to find a policyπ : S → A that maximizes to-
tal discounted reward over an indefinite (or infinite) horizon,
whereγ ∈ [0, 1) is the discount factor.

In a factored MDP, the set of states is described by a
set of random variablesX = {X1, . . . , Xn}, wherex =
{x1, . . . , xn} denotes a particular instantiation of the vari-
ables, corresponding to a unique state. Without loss of gen-
erality, we assume state variables are Boolean. Because the
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set of statesS = 2X grows exponentially with the number of
variables, it is impractical to represent the transition and re-
ward models explicitly as matrices. Instead we follow Hoey
et al.(1999) in using algebraic decision diagrams to achieve
a more compact representation.

Algebraic decision diagrams (ADDs) are a generalization
of binary decision diagrams (BDDs), a compact data struc-
ture for Boolean functions used in symbolic model check-
ing. A decision diagram is a data structure (correspond-
ing to an acyclic directed graph) that compactly represents
a mapping from a set of Boolean state variables to a set of
values. A BDD represents a mapping to the values 0 or 1.
An ADD represents a mapping to any discrete set of val-
ues (including real numbers). Hoeyet al. (1999) describe
how to represent the transition and reward models of a fac-
tored MDP compactly using ADDs. We adopt their nota-
tion and refer to their paper for details of this representa-
tion. Let X = {X1, . . . , Xn} represent the state variables
at the current time and letX′ = {X ′

1, . . . , X ′
n} represent

the state variables at the next step. For each action, an ADD
P a(X,X′) represents the transition probabilities for the ac-
tion. Similarly, the reward modelRa(X) for each actiona is
represented by an ADD. The advantage of representing map-
pings from states to values as ADDs is that the complexity of
operators on ADDs depends on the number of nodes in the
diagrams, not the size of the state space. If there is sufficient
regularity in the model, ADDs can be very compact, allow-
ing problems with large state spaces to be represented and
solved efficiently. Symbolic model checking has been used
to verify hardware and software systems with up to10100

states. It also shows promise in scaling up AI planning algo-
rithms to cope with large state spaces.

Symbolic LAO* algorithm
To solve factored MDPs, we describe a symbolic generaliza-
tion of the LAO* algorithm (Hansen & Zilberstein 2001).
LAO* is an extension of the classic search algorithm AO*
that can find solutions with loops. This makes it possible
for LAO* to solve MDPs, since a policy for an infinite-
horizon MDP allows both conditional and cyclic behavior.
Like AO*, LAO* has two alternating phases. First, it ex-
pands the best partial solution (or policy) and evaluates the
states on its fringe using an admissible heuristic function.
Then it performs dynamic programming on the states visited
by the best partial solution, to update their values and possi-
bly revise the best current solution. The two phases alternate
until a complete solution is found, which is guaranteed to be
optimal.

AO* and LAO* differ in the algorithms they use in the dy-
namic programming step. Because AO* assumes an acyclic
solution, it can perform dynamic programming in a single
backward pass from the states on the fringe of the solution
to the start state. Because LAO* allows solutions with cy-
cles, it relies on an iterative dynamic programming algo-
rithm (such as value iteration or policy iteration). In orga-
nization, the LAO* algorithm is similar to the “envelope”
dynamic programming approach to solving MDPs (Deanet
al. 1995). It is also closely related to RTDP (Bartoet al.
1995), which is an on-line (or “real time”) search algorithm

for MDPs, in contrast to LAO*, which is an off-line search
algorithm.

We call our generalization of LAO* a symbolic search al-
gorithm because it manipulates sets of states, instead of indi-
vidual states. In keeping with the symbolic model-checking
approach, we represent a set of statesS by its characteristic
function χS , so thats ∈ S ⇐⇒ χS(s) = 1. We repre-
sent the characteristic function of a set of states by an ADD.
(Because its values are 0 or 1, we can also represent a char-
acteristic function by a BDD.) From now on, whenever we
refer to a set of states,S, we implicitly refer to its character-
istic function, as represented by a decision diagram.

In addition to representing sets of states as ADDs, we rep-
resent every element manipulated by the LAO* algorithm as
an ADD, including: the transition and reward models; the
policy π : S → A; the state evaluation functionV : S → �
that is computed in the course of finding a policy; and an ad-
missible heuristic evaluation functionh : S → � that guides
the search for the best policy. Even the discount factorγ is
represented by a simple ADD that maps every input to a
constant value. This allows us to perform all computations
of the LAO* algorithm using ADDs.

Besides exploiting state abstraction, we want to limit
computation to the set of states that are reachable from the
start state by following the best policy. Although an ADD
effectively assigns a value to every state, these values are
only relevant for the set of reachable states. To focus com-
putation on the relevant states, we introduce the notion of
masking an ADD. Given an ADDD and a set of relevant
statesU , masking is performed by multiplyingD by χU .
This has the effect of mapping all irrelevant states to the
value zero. We letDU denote the resultingmasked ADD.
(Note that we need to haveU in order to correctly interpret
DU ). Mapping all irrelevant states to zero can simplify the
ADD considerably. If the set of reachable states is small, the
masked ADD often has dramatically fewer nodes. This in
turn can dramatically improve the efficiency of computation
using ADDs.1

Our symbolic implementation of LAO* does not maintain
an explicit search graph. It is sufficient to keep track of the
set of states that have been “expanded” so far, denotedG,
thepartial value function, denotedVG, and apartial policy,
denotedπG. For any state inG, we can “query” the policy
to determine its associated action, and compute its successor
states. Thus, the graph structure is implicit in this represen-
tation. Note that throughout the whole LAO* algorithm, we
only maintain one value functionV and one policyπ. VG

andπG are implicitly defined byG and the masking opera-
tion.

Symbolic LAO* is summarized in Table 1. In the follow-
ing, we give a more detailed explanation.

1Although we map the values of irrelevant states to zero, it does
not matter what value they have. This suggests a way to simplify
a masked ADD further. After mapping irrelevant states to zero,
we can change the value of a irrelevant state to any other non-zero
value whenever doing so further simplifies the ADD.
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policyExpansion(π, S0, G)
1. E = F = ∅
2. from = S0

3. REPEAT
4. to =

⋃
a Image(from ∩ Sa

π, P a)
5. F = F ∪ (to − G)
6. E = E ∪ from
7. from = to ∩ G − E
8. UNTIL (from = ∅)
9. E = E ∪ F
10. G = G ∪ F
11. RETURN(E, F, G)

valueIteration(E, V )
12. saveV = V
13. E′ =

⋃
a Image(E, P a)

14. REPEAT
15. V ′ = V
16. FOR each actiona
17. V a = Ra

E + γ
∑

E′ P a
E∪E′V ′

E′
18. M = maxa V a

19. V = ME + saveVE
20. residual= ‖VE − V ′

E‖
21. UNTIL stopping criterion met
22. π = extractPolicy(M, {V a})
23. RETURN(V, π, residual)

LAO*( {P a}, {Ra}, γ, S0, h, threshold )
24. V = h
25. G = ∅
26. π = 0
27. REPEAT
28. (E, F, G) = policyExpansion(π, S0, G)
29. (V, π, residual) = valueIteration(E, V )
30. UNTIL (F = ∅) AND (residual≤ threshold)
31. RETURN(π, V, E, G).

Table 1: Symbolic LAO* algorithm.

Policy expansion
In the policy expansion step of the algorithm, we perform
reachability analysis to find the set of statesF that are not
in G (i.e., have not been “expanded” yet), but are reachable
from the set of start states,S0, by following the partial policy
πG. These states are on the “fringe” of the states visited by
the best policy. We add them toG and to the set of states
E ⊆ G that are visited by the current partial policy. This is
analogous to “expanding” states on the frontier of a search
graph in heuristic search. Expanding a partial policy means
that it will be defined for a larger set of states in the dynamic-
programming step.

Symbolic reachability analysis using decision diagrams is
widely used in VLSI design and verification. Our policy-
expansion algorithm is similar to the traversal algorithms
used for sequential verification, but is adapted to handle the
more complex system dynamics of an MDP. The key op-
eration in reachability analysis is computation of theimage
of a set of states, given a transition function. The image

is the set of all possible successor states. To perform this
operation, it is convenient to convert the ADDP a(X, X ′)
to a BDD T a(X, X ′) that maps state transitions to a value
of one if the transition has a non-zero probability, and oth-
erwise zero. The image computation is faster using BDDs
than ADDs. Mathematically, the image is computed using
the relational-product operator, defined as follows:

ImageX′(S, T a) = ∃x [T a(X, X ′) ∧ χS(X)] .

The conjunctionT a(X, X ′)∧χS(X) selects the set of valid
transitions and the existential quantification extracts and
unions the successor states together. Both the relational-
product operator and symbolic traversal algorithms are well
studied in the symbolic model checking literature, and we
refer to that literature for details about how this is computed,
for example, (Somenzi 1999).

The image operator returns a characteristic function over
X′ that represents the set of reachable statesafter an action
is taken. The assignment in line 4 implicitly converts this
characteristic function so that it is defined overX, and rep-
resents the current set of states ready for the next expansion.

Because a policy is associated with a set of transition
functions, one for each action, we need to invoke the appro-
priate transition function for each action when computing
successor states under a policy. For this, it is useful to repre-
sent the partial policyπG in another way. We associate with
each actiona the set of states for which the action to take
is a under the current policy, and call this set of statesSa

π.
Note thatSa

π ∩ Sa′
π = ∅ for a �= a′, and∪aSa

π = G. Given
this alternative representation of the policy, line 4 computes
the set of successor states following the current policy using
theimage operator.

Dynamic programming
The dynamic-programming step of LAO* is performed us-
ing a modified version of the SPUDD algorithm. The origi-
nal SPUDD algorithm performs dynamic programming over
the entire state space. We modify it to focus computation on
reachable states, using the idea of masking. Masking lets
us perform dynamic programming on a subset of the state
space instead of the entire state space. The pseudocode in
Table 1 assumes that dynamic programming is performed
on E, the states visited by the best (partial) policy. This
has been shown to lead to the best performance of LAO*,
although a larger or smaller set of states can also be up-
dated (Hansen & Zilberstein 2001). Note that all ADDs
used in the dynamic-programming computation are masked
to improve efficiency.

BecauseπG is a partial policy, there can be states inE
with successor states that are not inG, denotedE′. This
is true until LAO* converges. In line 13, we identify these
states so that we can do appropriate masking. To perform
dynamic programming on the states inE, we assign admis-
sible values to the “fringe” states inE′, where these values
come from the current value function. Note that the value
function is initialized to an admissible heuristic evaluation
function at the beginning of the algorithm.

With all components properly masked, we can perform
dynamic programming using the SPUDD algorithm. This is
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summarized in line 17. The full equation is

V a(X) = Ra
E(X) + γ

∑

E′
P a

E∪E′(X, X ′) · V ′
E′(X′).

The masked ADDsRa
E and P a

E∪E′ need to be computed
only once for each call tovalueIteration() since they don’t
change between iterations. Note that the productP a

E∪E′ ·V ′
E′

is effectively defined overE ∪ E′. After the summation
overE′, which is accomplished by existentially abstracting
away all post-action variables, the resulting ADD is effec-
tively defined overE only. As a result,V a is effectively a
masked ADD overE, and the maximumM at line 18 is also
a masked ADD overE.

The residual in line 20 can be computed by finding the
largest absolute value of the ADD(VE − V ′

E). We use
the masking subscript here to emphasize that the residual
is computed only for states in the setE. The masking opera-
tion can actually be avoided here since at this step,VE = M ,
which is computed in line 18, andV ′

E is theM from the pre-
vious iteration.

Dynamic programming is the most expensive step of
LAO*, and it is usually not efficient to run it until conver-
gence each time this step is performed. Often a single itera-
tion gives the best performance. After performing value iter-
ation, we extract a policy in line 22 by comparingM against
the action value functionV a (breaking ties arbitrarily):

∀s ∈ E π(s) = a if M(s) = V a(s).
The symbolic LAO* algorithm returns a value function

V and a policyπ, together with the set of statesE that are
visited by the policy, and the set of statesG that have been
“expanded” by LAO*.

Convergence test
At the beginning of LAO*, the value functionV is initialized
to the admissible heuristich that overestimates the optimal
value function. Each time the value iteration is performed,
it starts with the current values ofV . Hansen and Zilber-
stein (2001) show that these values decrease monotonically
in the course of the algorithm; are always admissible; and
converge arbitrarily close to optimal. LAO* converges to an
optimal or ε-optimal policy when two conditions are met:
(1) its current policy does not have any unexpanded states,
and (2) the error bound of the policy is less than some prede-
termined threshold. Like other heuristic search algorithms,
LAO* can find an optimal solution without visiting the entire
state space. The convergence proofs for the original LAO*
algorithm carry over in a straightforward way to symbolic
LAO*.

Experimental results
Table 2 compares the performance of symbolic LAO* and
SPUDD on the factory examples (f to f6) used by Hoeyet
al.(1999) to test the performance of SPUDD, as well as addi-
tional test examples (r1 to r4) that correspond to randomly-
generated MDPs. Because the performance of LAO* de-
pends on the starting state, the results for LAO* are an av-
erage for 50 random starting states. Experiments were per-
formed on a Sun UltraSPARC II with a 300MHz processor
and 2 gigabytes of memory.

We compared symbolic LAO* and SPUDD on additional
examples (r1 to r4) because many of the state variables in the
factory examples (f to f6) represent resources that cannot be
affected by any action. As a result, we found that only a
small number of states are reachable from any starting state.
The additional examples are structured so that every state
variable can be changed by some action. As a result, for
examples r1 to r4, all the random starting states we generated
can reach the entire state space.

To create an admissible heuristic function, we performed
ten iterations of an approximate value iteration algorithm
similar to APRICODD (St-Aubinet al. 2000). Value itera-
tion is started with an initial admissible value function cre-
ated by assuming the maximum reward is received each step,
and it improves this value function each iteration. These first
few iterations are very fast because the ADD representing
the value function is compact, especially when approxima-
tion is used. The time used to compute the heuristic for these
experiments is between2% and8% of the running time of
SPUDD on these examples.

LAO* achieves its efficiency by focusing computation on
a subset of the state space. The column labelled|E| shows
the average number of states visited by an optimal policy,
beginning from a random start state. Clearly, the factory
examples have an unusual structure, since an optimal pol-
icy for these examples visits very few states. The numbers
are much larger for the random MDPs, although they still
show that an optimal policy visits a small part of the state
space. The column labeledreach shows the average num-
ber of states that can be reached from the starting state, by
following any policy. The column labelled|G| is impor-
tant because it shows the number of states “expanded” by
LAO*. These are states for which a backup is performed at
some point in the algorithm, and this number depends on the
quality of the heuristic. The better the heuristic, the fewer
states need to be expanded before finding an optimal policy.
The gap between|E| andreach reflects the potential for in-
creased efficiency using heuristic search, instead of simple
reachability analysis.

The columns labeled “nodes” and “leaves”, under LAO*
and SPUDD respectively, compare the size of the final value
function returned by LAO* and SPUDD. give the number
of nodes in the final value function ADD returned by LAO*
and SPUDD. The columns under “nodes” gives the num-
ber of nodes in the respective value function ADDs, and the
columns under “leaves” give the number of leaves. Because
LAO* focuses computation on a subset of the state space, it
finds a much more compact solution (which translates into
increased efficiency).

The last four columns compare the running times of
LAO* and SPUDD. The total running time of LAO* is bro-
ken down into two parts; the column “expand” shows the av-
erage time for policy expansion and the column “DP” shows
the average time for value iteration. These results show that
value iteration consumes most of the running time. This
is in keeping with a similar observation about the original
LAO* algorithm for flat state spaces. The time for value it-
eration includes the time for masking. For this set of exam-
ples, masking takes between0.5% and21% of the running
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Example Reachability Results Size Results Timing Results
LAO* LAO* SPUDD LAO* SPUDD

|S| |A| |E| |G| reach nodes leaves nodes leaves expand DP total total

f 217 14 5.4 104.7 190.4 55.0 5.4 1220 246 0.27 6.4 6.7 34.5
f0 219 14 5.3 61.9 131.7 61.0 5.2 1597 246 0.15 3.5 3.7 46.2
f1 221 14 4.1 54.1 106.7 54.3 4.1 3101 327 0.13 3.6 3.7 101.6
f2 222 14 4.0 65.6 124.5 53.4 3.9 3101 327 0.22 4.1 4.4 105.0
f3 225 15 4.3 59.3 135.9 73.8 4.4 9215 357 0.16 4.7 4.9 289.1
f4 228 15 4.2 49.4 124.9 78.2 4.1 22170 527 0.14 5.0 5.2 645.3
f5 231 18 4.8 218.4 508.6 83.0 4.1 44869 1515 1.15 35.9 37.3 1524.2
f6 235 23 9.2 1418.7 2385.6 106.4 4.5 169207 3992 13.52 771.5 792.6 7479.5
r1 215 20 134.3 413.7 215 65.5 11.5 1288 406 0.24 16.8 17.1 539.0
r2 220 25 3014.3 3281.1 220 181.4 19.3 15758 4056 0.46 53.6 54.0 12774.3
r3 220 30 10442.8 33322.6 220 6240.2 2190.4 9902 4594 57.71 1678.5 1738.1 10891.7
r4 235 30 383.9 383.9 235 77.4 3.5 NA NA 0.05 7.2 7.4 > 20hr

Table 2: Performance comparison of LAO* and SPUDD.

time of value iteration. The final two columns show that
the time it takes LAO* to solve a problem, given a specific
starting state, is much less than the time it takes SPUDD to
solve the problem. The running time of LAO* is correlated
with |G|, the number of states expanded during the search,
which in turn is affected by the starting state, the reachabil-
ity structure of the problem, and the accuracy of the heuristic
function.

Related work
Use of symbolic model checking in heuristic search has been
explored by Edelkamp and Reffel (1998), who describe a
symbolic generalization of A* that can solve deterministic
planning problems. They show that symbolic search guided
by a heuristic significantly outperforms breadth-first sym-
bolic search.

In motivation, our work is closely related to the frame-
work of structured reachability analysis, which exploits
reachability analysis in solving factored MDPs (Boutilieret
al. 1998). However, there are important differences. The
symbolic model-checking techniques we use differ from the
approach used in that work, which is derived from GRAPH-
PLAN. More importantly, their concept of reachability anal-
ysis is weaker than the approach adopted here. In their
framework, states are considered irrelevant if they cannot
be reached from the start state by followingany policy. By
contrast, our approach considers states irrelevant if they can-
not be reached from the start state by followingan optimal
policy. To recognize states that cannot be reached by fol-
lowing an optimal policy, our algorithm gradually expands
a partial policy, guided by an admissible heuristic. Use of
an admissible heuristic to limit the search space is charac-
teristic of heuristic search, in contrast to simple reachability
analysis. As Table 2 shows, LAO* evaluates much less of
the state space than simple reachability analysis. The better
the heuristic, the smaller the number of states it examines.

Conclusion
We have described a symbolic generalization of LAO* that
solves factored MDPs using heuristic search. The algo-

rithm improves on the efficiency of dynamic programming
by using an admissible heuristic to focus computation on the
reachable parts of the state space. The stronger the heuristic,
the greater the focus and the more efficient a planner based
on this approach. An important topic not explored in this pa-
per is how to design good admissible heuristics for factored
MDPs. We will address this question in future work.
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Introduction
We are developing autonomous, flexible control systems
for mission-critical applications such as Uninhabited Aerial
Vehicles (UAVs) and deep space probes. These applica-
tions require hybrid real-time control systems, capable of
effectively managing both discrete and continuous control-
lable parameters to maintain system safety and achieve sys-
tem goals. Using the CIRCA architecture for adaptive real-
time control systems (Musliner, Durfee, & Shin 1993; 1995;
Musliner et al. 1999), these controllers are synthesized auto-
matically and dynamically, on-line, while the platform is op-
erating. Unlike many other AI planning systems, CIRCA’s
automatically-generated control plans have strong temporal
semantics and provide safety guarantees, ensuring that the
controlled system will avoid all forms of mission-critical
failure.

To support on-line reconfiguration, CIRCA uses
concurrently-operating planning (controller synthesis)
and control (plan-execution) subsystems. The Controller
Synthesis Module (CSM) uses models of the world (plant
and environment) to automatically synthesize hard real-time
safety-preserving controllers (plans). Concurrently a sepa-
rate Real-Time Subsystem (RTS) executes the controllers,
enforcing response time guarantees. The concurrent opera-
tion means that the computationally expensive methods used
by the CSM will not violate the tight timing requirements
of the controllers.

At the last AIPS workshop on model-theoretic approaches
to planning, we discussed how the CIRCA CSM used
a model-checker to plan CIRCA’s hard real-time con-
trollers (Goldman, Musliner, & Pelican 2000). In this ap-
proach, our forward (Musliner, Durfee, & Shin 1995) or
divide-and-conquer (Goldman et al. 1997) planning search
used an external model-checking program1 to verify the cor-
rectness of the plan. The verifier was used incrementally on
plan fragments, after each decision during plan construction.

We found that the verifier was the primary bottleneck in
this architecture. Accordingly, over the past two years, our
efforts have concentrated on improving the performance of

∗This material is based upon work supported by DARPA/ITO
and the Air Force Research Laboratory under Contract No.
F30602-00-C-0017.

1Initially KRONOS. (Yovine 1997)

the verification component, and on “opening up” commu-
nication between the verification and planning components.
To improve the performance of CIRCA plan verification, we
have built a new, CIRCA-Specific Verifier (CSV). The CSV
exploits features of the CIRCA action representation and ex-
ecution semantics to significantly simplify the verification
process and improve verifier performance; by two orders
of magnitude for large examples. This paper will primarily
concern itself with the implemented CSV, which has proven
itself in practice.

We start by introducing the CIRCA CSM and its action
representation, a STRIPS-style notation augmented with tim-
ing information. Then we outline the CSM planning algo-
rithm, pointing out the role played by timed automaton ver-
ification. Next we explain how to formulate the execution
semantics of the CIRCA model as a construction of sets of
timed automata. The timed automaton model provides the
semantics, but does not provide a practical approach for ver-
ification. We describe methods for model-checking that ex-
ploit CIRCA’s implicit, transition-based, state space repre-
sentation. We conclude with a comparison to related work
in controller synthesis and AI planning and future directions
in our work.

CIRCA
The CIRCA architecture is intended to provide intelligent
control to autonomously-operating systems.2 To do this,
CIRCA must operate at multiple time scales. At the coarsest
scale, CIRCA must be able to reason about the profile of a
mission as a whole. For example, if CIRCA is operating an
Uninhabited Combat Aerial Vehicle (UCAV), its mission-
level planning must be able to reason about issues like fuel
use and navigation to its goal. At a lower level, CIRCA must
have a controller that is able to react to threats and opportu-
nities that arise in its immediate environment. For exam-
ple, when targeted by enemy radar, the CIRCA-controlled
UCAV must carry out countermeasures (e.g., release chaff)
and initiate evasive maneuvers. Furthermore, CIRCA must

2CIRCA has been applied to real-time planning and control
problems in several domains including mobile robotics, simulated
autonomous aircraft, space probe challenge problems (Musliner &
Goldman 1997) and controlling a fixed-wing model aircraft (Atkins
et al. 1998).
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Planner
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Figure 1: The CIRCA architecture combines AI planning
and verification with real-time execution.

guarantee that these reactions will be taken in time. It is not
enough to eventually release chaff; CIRCA must inspect its
environments for threats sufficiently often, and must react to
those threats within specified time bounds.

CIRCA employs two strategies to manage this complex
task. First, its mission planner decomposes the mission into
more manageable subtasks that can be planned in detail.
Second, CIRCA itself is decomposed into two concurrently-
operating subsystems (see Fig. 1): an AI Subsystem (AIS)
reasons about high-level problems that require powerful but
potentially unbounded computation, while a separate real-
time subsystem (RTS) reactively executes the AIS-generated
plans and enforces guaranteed response times. The AIS con-
tains the CSM, which is the focus of this paper, as well as
the mission planner and some support modules that are not
discussed here.

The Controller Synthesis Module (CSM) bridges mission-
level planning and reactive control. It takes descriptions of
a phase of a system mission and automatically synthesizes a
set of reactions that maintain the system’s safety and move
it towards its goals. While the RTS is executing this set of
reactions (controller), the CSM will be working to generate
controllers for other phases of the mission.

The Controller Synthesis Module
CIRCA’s CSM plans real-time reactive discrete controllers
that guarantee system safety when run on CIRCA’s Real-
Time Subsystem (RTS). The CSM builds reactive discrete
controllers that observe the system state and some features
of its environment and take appropriate control actions. The
CSM takes in a description of the processes in the system’s
environment, represented as a set of time-constrained transi-
tions that modify world features. Discrete states of the sys-
tem are modeled as sets of feature-value assignments.

CIRCA’s transitions are similar to STRIPS actions, having
preconditions and postconditions, but also have timing infor-
mation. Furthermore, not all of the transitions are control-
lable. Fig. 2 shows several transitions taken from a problem
where CIRCA is to control the Cassini spacecraft in Saturn
Orbital Insertion (Gat 1996; Musliner & Goldman 1997).
This figure also includes the initial state description.

The CSM reasons about transitions of three types:

Action transitions represent actions performed by the
RTS. These parallel the operators of a conventional plan-
ning system. Associated with each action is a worst case
execution time, an upper bound on the delay before the
action occurs.

Temporal transitions represent uncontrollable processes,
some of which may need to be preempted. See the follow-
ing section for the definition of “preemption” in this con-
text. Associated with each temporal transition is a lower
bound on its delay. Transitions whose lower bound is zero
are referred to as “events,” and are handled specially for
efficiency reasons.

Reliable temporal transitions represent continuous pro-
cesses that may need to be employed by the CIRCA agent.
For example, when CIRCA turns on an Inertial Reference
Unit it initiates the process of warming up that equipment;
the process will complete after some delay. Reliable tem-
poral transitions have both upper and lower bounds on
their delays.

The use of planner-style transition representations sig-
nificantly differentiates the CIRCA CSM from discrete and
timed controller synthesis approaches developed in control
theory and theoretical computer science. As in conventional
planning, we find that vast sub-spaces of the state space are
unreachable, either because of the control regime, or be-
cause of consistency constraints. The effect is only made
greater when we must incorporate reasoning about time into
the planning problem. The use of an implicit representa-
tion, together with a constructive search algorithm, allow us
to avoid enumerating the full state space. The transition-
centered representation allows us to conveniently represent
processes that extend over multiple states. For example, a
single transition (e.g., warming up a piece of equipment)
may be extended over multiple discrete states. A similar
representational convenience is often achieved by multiply-
ing together many automata, but expanding the product con-
struction restores the state explosion. later in this paper we
show how the transition-based implicit representation can be
exploited in a verifier.

CSM Algorithm
The CIRCA planning problem can be posed as choosing a
control action for each reachable discrete state (feature-
value assignment) of the system. Note that this controller
synthesis problem is simpler than the general problem of
synthesizing controllers for timed automata. In particular,
CIRCA’s controllers are memoryless and cannot reference
clocks. This restriction has two advantages: first, it makes
the synthesis problem easier and second, it allows us to en-
sure that the controllers we generate are actually realizable
in the RTS.

Since the CSM focuses on generating safe controllers, a
critical issue is making failure states unreachable. In con-
troller synthesis, this is done by the process we refer to as
preemption. A transition t is preempted in a state s iff some
other transition t′ from s must occur before t could possibly
occur. The CSM achieves preemption by choosing a control
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;; Turning on an Inertial Reference Unit (IRU).
ACTION start_IRU1_warm_up

PRECONDITIONS: ’((IRU1 off))
POSTCONDITIONS: ’((IRU1 warming))
DELAY: <= 1

;; The process of the IRU warming.
RELIABLE-TEMPORAL warm_up_IRU1

PRECONDITIONS: ’((IRU1 warming))
POSTCONDITIONS: ’((IRU1 on))
DELAY: [45 90]

;; Sometimes the IRUs break without warning.
EVENT IRU1_fails

PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’((IRU1 broken))

;; If engine is burning while active IRU
;; breaks, we must quickly fix problem before
;; the spacecraft gets too far out of control.
TEMPORAL fail_if_burn_with_broken_IRU1

PRECONDITIONS: ’((engine on)(active_IRU IRU1)
(IRU1 broken))

POSTCONDITIONS: ’((failure T))
DELAY: >= 5

(failure F)
(engine off)
(IRU1 off)
(IRU2 off)
(active_IRU none)

Initial State Description

Figure 2: Example transition descriptions and initial state
description given to CIRCA CSM.

action that is fast enough that it is guaranteed to occur before
the transition to be preempted.3

The controller synthesis algorithm is as follows:

1. Choose a state from the set of reachable states (at the
start of controller synthesis, only the initial state(s) is(are)
reachable).

2. For each uncontrollable transition enabled in this state,
choose whether or not to preempt it. Transitions that lead
to failure states must be preempted.

3. Choose a control action or no-op for that state.
4. Invoke the verifier to confirm that the (partial) controller

is safe.
5. If the controller is not safe, use information from the ver-

ifier to direct backtracking.
6. If the controller is safe, recompute the set of reachable

states.
7. If there are no unplanned reachable states (reachable

states for which a control action has not been chosen),
terminate successfully.

8. If some unplanned reachable states remain, loop to step 1.

During the course of the search algorithm, the CSM will
3Note that in some cases a reliable temporal transition, e.g., the

warming up of the backup IRU, can be the transition that preempts
a failure.

use the verifier module after each assignment of a control
action (see step 4). This means that the verifier will be in-
voked before the controller is complete. At such points we
use the verifier as a conservative heuristic by treating all un-
planned states as if they are “safe havens.” Unplanned states
are treated as absorbing states of the system, and any ver-
ification traces that enter these states are regarded as suc-
cessful. Note that this process converges to a sound and
complete verification when the controller synthesis process
is complete. When the verifier indicates that a controller is
unsafe, the CSM will query it for a path to the distinguished
failure state. The set of states along that path provides a set
of candidate decisions to revise. The CSM uses backjump-
ing (Gaschnig 1979) to exploit this information in its search.

Two remarks are worth making. The first is that the
search described here is not made blindly. We use a domain-
independent heuristic, providing limited lookahead, to direct
the search. We do not have space to describe that heuristic
here; it is based on one developed for AI planning (McDer-
mott 1999). Without heuristic direction, even small synthe-
sis problems can be too challenging. The second is that we
have developed an alternative method of search that works
by divide-and-conquer rather than reasoning forward (Gold-
man et al. 1997). For many problems, this supplies a sub-
stantial speed-up. Again, we do not have space to discuss
this approach in depth here.

Modeling for Verification
The CSM algorithm described above operates entirely in the
discrete domain of the timed problem. This ensures that the
controllers may be easily implemented automatically. How-
ever, a path-dependent computation is required to determine
how much time remains on a transition’s delay when it ap-
plies to two or more states on a path. The CSM uses a timed
automaton verification system to ensure that the controllers
the CSM builds are safe. In this section, we discuss a formal
model of the RTS, expressed in terms of timed automata.
The following section describes how to reason about this
model efficiently.

Execution Semantics
The controllers of the CIRCA RTS are not arbitrary pieces
of software; they are intentionally very limited in their com-
putational power. These limitations serve to make controller
synthesis computationally efficient and make it simpler to
build an RTS that provides timing guarantees. The controller
generated by the CSM is compiled into a set of Test-Action
Pairs (TAPs) to be run by the RTS. Each TAP has a boolean
test expression that distinguishes between states where a par-
ticular action is and is not to be executed. Note that these test
expressions do not have access to any clocks. A sample TAP
for the Saturn Orbit Insertion domain is given in Fig. 3.

The set of TAPs that make up a controller are assembled
into a loop and scheduled to meet all the TAP deadlines.
Note that in order to meet deadlines, this loop may contain
multiple copies of a single TAP. The deadlines are computed
from the delays of the transitions that the control actions
must preempt.
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#<TAP 2>
Tests: (AND (IRU1 BROKEN)

(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))
(AND (ACTIVE_IRU IRU1) (ENGINE ON))))

Acts : select_IRU2

TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4

Figure 3: A sample Test-Action Pair and TAP schedule loop
from the Saturn Orbit Insertion problem.

Timed Automata
Now that we have a sense of the execution semantics of
CIRCA’s RTS, we briefly review the modeling formalism,
timed automata, before presenting the model itself. For
those not concerned with the details of the semantic con-
truction, it will be sufficient to know that timed automata are
nondeterministic finite automata augmented with timing in-
formation. This timing information dictates upper and lower
bounds on state transitions. When reasoning about complex
systems, or systems embedded in an environment, it is con-
venient to describe sets of automata, that can be assembled
into a product automaton. The behaviors of such automata
can be synchronized by labels, or events, on their edges. The
formal details follow.

Definition 1 (Timed Automaton (Daws et al. 1996).) A
timed automaton A is a tuple

〈S,si,X ,L, E , I〉
where S

is a finite set of locations; si is the initial location; X is a
finite set of clocks; L is a finite set of labels; E is a finite
set of edges; and I is the set of invariants. Each edge
e ∈ E is a tuple (s, L, ψ, ρ, s′) where s ∈ S is the source,
s′ ∈ S is the target, L ⊆ L are the labels, ψ ∈ ΨX is the
guard, and ρ ⊆ X is a clock reset. Timing constraints (ΨX )
appear in guards and invariants and clock assignments. In
our models, all clock constraints are of the form ci ≤ k or
ci > k for some clock ci and integer constant k. Guards
dictate when the model may follow an edge, invariants
indicate when the model must leave a state. In our models,
all clock resets re-assign the corresponding clock to zero;
they are used to start and reset processes. The state of a
timed automaton is a pair: 〈s, C〉. s ∈ S is a location
and C : X → Q ≥ 0 is a clock valuation, that assigns a
non-negative rational number to each clock.

It often simplifies the representation of a complex system
to treat it as a product of some number of simpler automata.
The labels L are used to synchronize edges in different au-
tomata when creating their product.

Definition 2 (Product Automaton) Given two automata
A1 and A2, A1 =

〈S1, s
i
1,X1,L1, E1, I1

〉
and A2 =〈S2, s

i
2,X2,L2, E2, I2

〉
, their product Ap is〈S1 × S2, s

i
p,X1 ∪ X2,L1 ∪ L2, Ep, Ip

〉
, where si

p =
(si

1, s
i
2) and I(s1, s2) = I(s1) ∧ I(s2). The edges are de-

fined by:

1. for l ∈ L1 ∩ L2, for every 〈s1, l, ψ1, ρ1, s
′
1〉 ∈ E1,

and 〈s2, l, ψ2, ρ2, s
′
2〉 ∈ E2, Ep contains

〈(s1, s2), l, ψ1 ∪ ψ2, ρ1 ∪ ρ2, (s′1, s
′
2)〉.
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Figure 4: The verifier model and its relation to the CSM
model.

2. for l ∈ L1 \ L2, for 〈s1, l, ψ1, ρ1, s
′
1〉 ∈

E1 and s2 ∈ S2, Ep contains
〈(s1, s2), l, ψ1, ρ1, (s′1, s2)〉. Likewise for l ∈ L2 \ L1.

Modeling CIRCA with Timed Automata
We give the semantics of CSM models in terms of sets of
interacting timed automata. The use of multiple automata
permits us to accurately and elegantly capture the interac-
tion of multiple, simultaneously operating processes. In
this construction, there is one base machine, the locations
of which correspond to the states of the CSM model. The
base machine captures the overall state of the system and
its environment. The base machine interacts with a number
of uncontrollable transition machines, one for each of the
uncontrollable transitions, and an automaton that represents
the CIRCA agent’s RTS. This construction is summarized in
Fig. 4.

The effects of the various transitions are captured by the
labels on the edges of the various machines. Labels synchro-
nizing transition automata and the RTS with the base ma-
chine ensure that the base machine state reflects the effect of
the transitions. Labels synchronizing the transition automata
and the base machine ensure that the state of the transition
machines accurately indicate whether or not a given process
is enabled in a particular system state. Finally, labels syn-
chronizing the base machine with the RTS machine cause
the RTS machine to correctly model the planner’s assign-
ment of control actions to world states.

In the remaining parts of this section, we give the details
of the semantic construction. The casual reader can skip this
material. The important thing to know is that the seman-
tics, while offering a basis for plan verification, is not suit-
able for direct use. The following section will describe how
our CIRCA-Specific Verifier directly interprets the seman-
tics, bypassing the product construction, to achieve compu-
tational savings.

The starting point of the translation is the CIRCA plan-
graph, constructed by the CIRCA CSM:

Definition 3 (Plan Graph)

P = 〈S,E, →F ,
→
V , φ, I, T, ι, η, p, π〉 where

1. S is a set of states.
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2. E is a set of edges.

3.
→
F= [f0...fm] is a vector of features (in a purely proposi-
tional domain, these will be propositions).

4.
→
V = [V0...Vm] is a corresponding vector of sets of values
(Vi = {vi0...viki

}) that each feature can take on.

5. φ : S �→→
V is a function mapping from states to unique

vectors of value assignments.
6. I ⊂ S is a distinguished subset of initial states.
7. T = U ∪ A is the set of transitions, made up of an un-

controllable (U ) subset, the temporals and reliable tem-
porals, and a controllable (A) subset, the actions. Each
transition, t, has an associated delay (∆t) lower and up-
per bound: lb(∆t) and ub(∆t). For temporals ub(∆t) =
∞, for events lb(∆t) = 0, ub(∆t) = ∞.

8. ι is an interpretation of the edges: ι : E �→ T .
9. η : S �→ 2T is the enabled relationship — the set of tran-

sitions enabled in a particular state.
10. p : S �→ A ∪ ε (where ε is the “action” of doing nothing)

is the actions that the CSM has planned. Note that p will
generally be a partial function.

11. π : S �→ 2U is a set of preemptions the CSM expects.

For every CIRCA plan graph, P , we construct a timed au-
tomaton model, θ(P). θ(P) is the product of a number of
individual automata. There is one automaton, which we call
the base model, that models the feature structure of the do-
main. There is an RTS model that models the actions of the
CIRCA agent. Finally, for every uncontrollable transition,
there is a separate timed automaton modeling that process.
Proper synchronization ensures that the base machine state
reflects the effect of the transitions and that the state of the
other automata accurately indicate whether or not a given
process will (may) be underway.

Definition 4 (Translation of CIRCA Plan Graph)
θ(P) = β(P) × ρ(P) × ∏

u∈U(P) υ(u) where β(P) is the
base model; ρ(P) is the RTS model; and υ(u) is the automa-
ton modeling the process that corresponds to uncontrollable
transition u.

Definition 5 (Base model)
β(P) =

〈
θ(S),

{
l0

}
, ∅,Σ(P), θE(P), I�

〉
where:

1. θ(S) = {θ(s) | s ∈ S}∪{
lF , l0

}
is the image under θ of

the state set of P . This image contains a location for each
state in P , as well as a distinguished failure location, lF ,
and initial location, l0.

2. Σ(P) is the label set; it is given as Definition 6.

3. θE(P) is the edge set of the base model. It is given as
Definition 7.

Note that there are no clocks in the base machine; all
timing constraints will be handled by other automata in the
composite model. Thus, the invariant for each state in this
model is simply �. We have notated this vacuous invariant
as I�. Similarly, all of the edges have a vacuous guard. The
labels of the translation model ensure that the other compo-
nent automata synchronize correctly.

Definition 6 (Label set for θ(P))

Σ(P) = {eu,du, fu | u ∈ U} ∪ (1)

{ca, fa | a ∈ A} ∪ (2)

{r} (3)

The symbols in (1) are used to synchronize the automata
for uncontrollable transitions with the base model. The sym-
bols in (2) together with the distinguished reset symbol r are
used to synchronize the automaton modeling the RTS with
the base model. The base model edge set, θE(P), captures
the effect on the agent and environment of the various tran-
sitions.

Definition 7 (Base model edge set) θE(P) is made up of
the following subsets of edges. The clock resets of these
transitions are all ∅, and the guards are all �, so we have
omitted them.

(1)
{〈l0, θσ(init, s), θ(s)〉 | s ∈ I

}

(2)
{〈θ(s), {fu} , lF 〉 | s ∈ S, u ∈ π(s)

}

(3) {〈θ(s), {fu} ∪ θσ(u, s′), θ(s′)〉 |
s ∈ S, u �∈ π(s), s′ ∈ u(s)}

(4) {〈θ(s), {ca} , s〉 | s ∈ S, a = p(s)}
(5) {〈θ(s), {fa} ∪ θσ(a, s′), θ(a(s))〉 |

s ∈ S, a ∈ η(s), s′ ∈ a(s)}
(6)

{〈θ(s), {fa} , lF 〉 | s ∈ S, a �∈ η(s)
}

Edge set (1) is merely a set of initialization edges, that
carry the base model from its distinguished single initial lo-
cation to the image of each of the initial states of P . (2) takes
the base model to its distinguished failure location, lF , when
a preemption fails. (3) captures the effects of the uncontrol-
lable transitions the CSM didn’t preempt. (4) synchronizes
with the RTS transitions that capture the RTS committing to
execute a particular action (i.e., the test part of the TAP). (5)
captures the effects of a successfully-executed action. (6)
captures a failure due to a race condition. Event sets θσ(t, s)
are used to capture the effects on the various processes of
going to s by means of t.

Definition 8
θσ(t, s) = {eu | u ∈ η(s)}∪{du | u �= t∧u �∈ η(s)}∪{r}

The symbol set θσ(t, s) contains an enable symbol for
each u enabled in s, and a disable symbol for each u not
enabled in s. The addition of the symbol r ensures that the
RTS machine will “notice” the state transition.

There will be one automaton, υ(u) for every uncontrol-
lable transition, u. Each such model will have two states, en-
abled, eu, and disabled, du, and transitions for enabling, dis-
abling, and firing: eu,du, and fu, respectively (see Fig. 4).
It will also have a clock, cu, and the guards and invariants
will be derived from the timing constraints on u:

Definition 9 (Uncontrollable Transition Automata)
υ(u) = 〈{eu, du} , du, {cu} , {eu,du, fu} , E(v(u)), I〉

E(v(u)) = { 〈du, {du},�, ∅, du〉,
〈du, {eu},�, cu:= 0, eu〉,
〈eu, {eu},�, ∅, eu〉, 〈eu, {du},�, ∅, du〉,
〈eu, {fu}, cu ≥ lb(∆u), ∅, du〉 }

I(eu) = cu ≤ ub(∆u) and I(du) = �
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The model of the RTS, ρ, contains all of the planned ac-
tions in a single automaton. Execution of each planned ac-
tion is captured as a two stage process: first the process of
committing to the action (going to the state ca), and then the
action’s execution (returning to s0 through transition fa).

Definition 10 (RTS Model)

ρ = 〈{s0} ∪ {ca | a ∈ p} , s0,
{
cRTS

}
,

{r} ∪ {ca, fa | a ∈ p} ,
{〈s0, {ca} , cRTS ≤ 0, cRTS:=0, ca〉,
〈ca, {fa} , cRTS ≥ ub(∆a), cRTS:=0, s0〉,
〈ca, {r} , cRTS < ub(∆a), cRTS:=0, s0〉,
〈ca, {r} , cRTS < ub(∆a), ∅, ca〉 | a ∈ p

}

{
I(ca) = cRTS ≤ ub(∆a), I(s0) = cRTS ≤ 0

}〉
Note that the RTS model is not a deterministic timed

automaton, because of the final two transitions in Defini-
tion 10. These two transitions capture what happens when
there is an uncontrollable transition, s

u→ s′, that changes
the world state, before the RTS has executed the reaction
planned for state s. One of two things will happen:

1. The uncontrolled transition happens before the TAP’s test
has executed, and the TAP is never triggered. Effectively,
the RTS doesn’t “know” it was ever in state s.

2. The uncontrolled transition occurs after the TAP for state
s has started running. In this case, the RTS will have “de-
cided to” execute the action for state s, but the action will
actually take place in state s′ (or possibly even a successor
state, if the environment is sufficiently fast-moving).

The latter case is a hazard, and the verifier should check for
it. See the discussion of safety violations below.

The RTS is actually a deterministic piece of software. The
nondeterminism here captures our uncertainty about the ex-
act course of execution of the TAP loop, and the exact sep-
aration between TAPs that provide a particular reaction. We
will not know the exact separation until the controller syn-
thesis process is complete, and the TAPs have been com-
piled and scheduled. Therefore, we make the conservative
assumption that a hazard might occur.

There are two classes of safety violations the verifier must
detect. The first is a failure to successfully preempt some
nonvolitional transition. This case is caught by transitions
(2) of Definition 7. The second is a race condition: here the
failure is to plan a for state s but not complete it before an
uncontrolled process brings the world to another state, s′,
that does not satisfy the preconditions of a. The latter case
is caught by transitions (6) of Definition 7.4

Exploiting the Model in Verification
A direct implementation of the above model will suffer a
state space explosion. To overcome this, we have built a
CIRCA-Specific Verifier (CSV) able to exploit CIRCA’s im-
plicit state-space representation. The CSV constructs its

4Checking for the race condition is not fully implemented in our
current version; its implementation is in progress as of this writing.

timed automata, both the individual automata and their
product, in the process of computing reachability. This on-
the-fly computation relies on the factored representation of
the discrete state space and on the limitations of CIRCA’s
RTS.

The efficiency gains from our factored state representa-
tion come in the computation of successor states. A naive
implementation of the search would compute all of the lo-
cations (distinct discrete states) of the timed automaton up
front, but many of those might be unreachable. We compute
the product automaton lazily, rather than before doing the
reachability search, thus constructing only reachable states.

The individual automata, as well as their product, are
computed on-the-fly. The timed automaton formalism per-
mits multiple automata to synchronize in arbitrary ways.
However, CIRCA automata synchronize in only limited
ways. There will be only one “primary transition” that oc-
curs in any state of the CIRCA product automaton: either a
controlled transition that is part of the RTS automaton, or a
single uncontrolled transition. Thus we may dispense with
component transitions and their labels.

The transitions that synchronize with the primary transi-
tion are of three types:

1. updates to the world automaton, recording the effect (the
postconditions) of the primary jump on the discrete state
of the world;

2. enabling and disabling jumps that set the state of uncon-
trolled transitions in the environment;

3. a jump that has the effect of activating the control action
planned for the new state.

Accordingly, we can very efficiently implement a lazy
successor generation for a set of states S = 〈s,C〉, where
s is a discrete state and C is a symbolic representation of
a class of clock valuations, in our case a difference-bound
matrix. When one needs to compute the successor locations
for the location s, one need only compute a single outgoing
edge for the RTS transition and make one outgoing edge for
each uncontrollable transition.

Making the outgoing edges is a matter of (again lazily)
building the successor locations and determining the clock
resets for the edge. The clocks that must be reset are: (a)
For each uncontrolled transition that is enabled in the suc-
cessor location, but not enabled in the source location, s, add
a clock reset for the corresponding transition; (b) If the ac-
tion planned for the successor location is different from the
action planned for the source location, reset the action clock.
These computations are quite simple to make and much eas-
ier than computing the general product construction.

Our experimental results show that the CSV substan-
tially improves performance over KRONOS (Yovine 1997)
and also over a conventional model checker (denoted
“RTA”) that we built into CIRCA before developing
the CSV. Table 1 contains comparison data between
the conventional verifiers and the CSV, for two dif-
ferent search strategies. The problems are available at:
http://www.htc.honeywell.com/projects/ants/;
the precise scenario definitions can be found using the key
in Table 3. The columns marked “forward,” correspond
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Forward DAP
Scenario Size Kronos RTA CSV Kronos RTA CSV

1 1920 9288 190 188 22431 483 417
2 72 6777 173 124 7070 385 309
3 100 4765 114 97 4399 783 385
4 560 5619 138 156 5599 366 288
5 3182592 ∞ ∞ ∞ ∞ ∞ 16278
6 40304 16983 762 568 506897 3035 1349
7 191232 258166 23030 25194 12919 4102 1833
8 191232 14637 652 533 436450 1157849 79855
9 991232 231769 21923 15474 ∞ ∞ 2254

10 448512 ∞ 1063321 466631 ∞ ∞ 5661
11 411136 ∞ 1064518 444657 ∞ ∞ 5571
12 193536 37500 2585 1568 321626 3382 1626
13 129024 56732 3453 2933 77022 9958 1218
14 4592 16025 478 427 20220 1251 1036
15 7992 4680 183 176 75941 7672 5568
16 768 11535 426 337 13983 859 621
17 120 5730 100 368 5695 754 680
18 2880 16425 1349 1102 28922 2484 1669
19 192 6474 170 117 5715 331 308
20 768 9016 303 246 6870 564 416

Table 1: Comparison of run times with different search strategies (Forward and DAP), timed automaton verifier (RTA) versus
CIRCA-Specific Verifier (CSV). Times are given in milliseconds.

to the algorithm described in this paper. The columns
marked “DAP” correspond to the divide-and-conquer
alternative (Goldman et al. 1997). The times, given in
milliseconds, are for runs of the CSM on a Sun UltraSparc
10, SPARC v.9 processor, 440 MHz, with 1 gigabyte of
RAM. An ∞ indicates a failure to find an automaton within
a 20 minute time limit (i.e., t > 1, 200, 000).

To give a sense of the raw size of the problems, the “Size”
column presents a worst-case bound on the number of dis-
crete states for the final verification problem of each sce-
nario. This value is computed by multiplying the number
of possible CSM world model states (for the base model)
times the number of transition model states (2|U |) times the
number of RTS model states (|A| + 1).

Using the forward search strategy, the CSV is faster on 16
out of 20 scenarios. Using DAP, the CSV is faster on all 20
trials. The probability of these occurring, if the CSV and the
conventional verifier were equally likely to win on any given
trial, is .0046 and .000019, respectively. Table 1 indicates a
speed-up of two orders of magnitude on the larger scenarios,
numbers 9-11, using DAP.

Table 2 shows the state space reductions achieved by ex-
ploiting the implicit representation. This table compares the
total number of states visited by each verifier in the course
of controller synthesis.

A few facts should be noted: A verifier will be run many
times in the course of synthesizing a controller. To mini-
mize this, a number of cheaper tests filter controller synthe-
sis choices in advance of verification, in order to avoid ver-
ification search whenever possible. The comparison is only
with KRONOS used as a component of the CSM, not KRO-

NOS as a general verification tool. Finally, the computations
done by KRONOS and RTA are of a special-purpose prod-
uct model that is slightly simpler and less accurate than the
CSV’s model.

Related Work

Asarin, Maler, Pneuli and Sifakis (AMPS) (1995; 1995) in-
dependently developed a game-theoretic method of synthe-
sizing real-time controllers. They view the problem as try-
ing to “force a win” against the environment, by guaran-
teeing that all traces of system execution will pass through
(avoid) a set of desirable (undesirable) states. Unlike the
game-theoretic algorithms, the CSM algorithm works start-
ing from an initial state and building forward by search. The
game-theoretic algorithms, on the other hand, use a fixpoint
operation to find a controllable subspace, starting from un-
safe states (or other synthesis failures). Another difference
is that the CSM algorithm heavily exploits its implicit state
space representation. Because of these features, for many
problems, the CSM algorithm is able to find a controller
without visiting large portions of the state space.

The AMPS work stopped at the design of the algorithm
and derivation of complexity bounds; to our knowledge it
was not implemented. More recently, the AMPS algorithm
has been implemented for the special case of automatically
synthesizing schedulers based on Petri Net designs (Altisen
et al. 1999), using the KRONOS model-checking program.
Our work differs in being aimed at a different class of con-
trol problems, involving controlling devices in an active en-
vironment. We also differ in constructing purely reactive

61



Scenario Forward RTA Forward CSV DAP RTA DAP CSV
1 30 30 30 33
2 34 34 33 33
3 15 15 15 15
4 18 18 18 18
5 153147 229831 170325 3069
6 122 120 500 54
7 2826 5375 631 83
8 146 131 301165 24065
9 4361 4799 163133 259

10 219885 129329 184972 871
11 219885 129329 189184 871
12 585 513 509 99
13 685 675 1782 93
14 106 106 141 142
15 17 17 1054 1389
16 117 101 131 116
17 27 27 29 25
18 284 290 355 269
19 18 18 18 18
20 63 60 33 34

Table 2: Comparison of state spaces explored with different search strategies (Forward and DAP), timed automaton verifier
(RTA) versus CIRCA-specific verifier (CSV). Units are verifier state objects, i.e., a location × a difference-bound matrix.

Scenario Scenario name
1 DC
2 FORWARD-DC
3 NO-TIME
4 PREEMPT
5 PUMA
6 PUMA-NO-EMERG-EVENT
7 PUMA-NO-FALL
8 PUMA-NO-FALL-FAST-EMERG
9 PUMA-NO-TABLE-REP

10 PUMA-NO-UNKNOWN
11 PUMA-NO-UNKNOWN-FAST-PACKER
12 PUMA-NO-UNKNOWN-NO-EMERG-TTF
13 RT-SATURN-ORBIT-INSERTION
14 SATURN-ORBIT-INSERTION
15 TABLE
16 TIME-OUT
17 UCAV-FIRE-AT-TARGET
18 UCAV-RADAR-CHAFF
19 UCAV-RADAR-ONLY
20 UCAV-RADAR-ONLY2

Table 3: Scenario key. The scenario names can be
used to find the corresponding scenario definitions at
http://www.htc.honeywell.com/projects/ants/.

(memoryless) controllers.
Tripakis and Altisen (TA) (1999) have independently de-

veloped a controller synthesis algorithm for discrete and
timed systems, that also uses forward search with on-the-
fly generation of the state space. Note that on-the-fly syn-
thesis has been part of the CIRCA system since its con-
ception in the early 1990s (Musliner, Durfee, & Shin 1993;
1995). TA’s on-line synthesis has some different features
from ours. They allow for multiple control actions in a single
state, and they allow the controller to consult clocks. TA’s
implicit representation of the state space is based on com-
position of automata, as opposed to our feature and transi-
tion approach. We hope to compare performance of CIRCA
and a recent implementation of the TA algorithm (Tripakis
2002).

TA do not have a fully on-the-fly algorithm for timed con-
troller synthesis. Their algorithm requires the initial compu-
tation of a quotient graph of the automata, in turn requiring
a full enumeration of the discrete state space. The disadvan-
tages of such an approach can be seen by considering the
state space sizes of some examples, given in Table 1. We do
not need to pre-enumerate the quotient, since we build only
a clockless reactive controller and so can use the cruder time
abstraction, which we compute on-the-fly. Note that this
means that there are some controllers that TA (and AMPS)
can find, that we cannot. However, clockless reactive con-
trollers are easy to implement automatically, and this is not
true of controllers that employ clocks. Also, and again be-
cause of the size of the state space, we use heuristic guidance
in our state space search.

The “planning as model checking” (Giunchiglia &
Traverso 1999) approach is similar to work on game-
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theoretic controller synthesis, but limited to purely discrete
systems.

Kabanza (1996)’s SIMPLAN is very similar to our CSM.
However, SIMPLAN adopts a discrete time model and uses
domain-specific heuristics. SIMPLAN incorporates time im-
posing a system-wide clock and progressing the controller
one “tick” at a time. In control problems with widely vary-
ing time constants, this approach leads to state-space ex-
plosion; we have adopted region-based (equivalence class)
model-checking techniques to minimize this state explosion.

Conclusions
In this paper, we have presented the CIRCA controller syn-
thesis algorithm, provided a timed automaton model for
CIRCA CSM problems, and shown how a CIRCA-Specific
Verifier (CSV) algorithm can exploit the features of the
model. The CSV shows dramatic speed-up over a general-
purpose verification algorithm. While our model was devel-
oped for CIRCA, it is a general model for supervisory con-
trol of timed automata, and could readily be used in other
applications.
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Abstract

The Metric Interval Temporal Logic (MITL) progression al-
gorithm invented by Bacchus and Kabanza (1996) is extended
to work also for the case when the duration and content of
states are only partially specified (constrained). This is mo-
tivated by an approach to prediction, but also leads to a new,
tableaux style, algorithm for deciding the consistency of an
MITL formula. The algorithm is not yet fully developed.

1. Introduction
Metric Interval Temporal Logic (MITL) (Alur, Feder, &
Henzinger 1996), like LTL (Emerson 1990), is a tense-
modal logic expressing properties of infinite sequences of
propositional states. The logics differ in that state sequences
in MITL models aretimed: each state in the sequence has
a starting and ending timepoint, which maps to an underly-
ing real timeline, and modal operators in MITL are qualified
with constraints on state durations.

For applications working with MITL, the progression al-
gorithm of Bacchus and Kabanza (1996) is a powerful tool.
The algorithm “pushes” the truth criteria for an MITL for-
mula forwards over the states of a timed model, one at a
time: input is an MITL formulaφ, and a stateq with du-
rationD(q), and the algorithm returns an MITL formulaφ′
such thatφ is T in q iff φ′ is T in the succeeding state.

Of state succeedingq, nothing needs to be known: the
returned formula is a condition that can be checked for con-
tradiction, for truth in the succeeding state when it becomes
known, or further progressed. The progression algorithm as
presented, however, requires all properties of the stateq, in
particular the durationD(q), to be known.

Motivated by the use of MITL to represent knowledge in a
predictive model, I have extended the progression algorithm
to work with only partial knowledge about the duration of
stateq, expressed by a set of constraints on variables repre-
senting state starting and ending times. As it turns out, the
further extension to working with only partial knowledge
about the stateq itself is fairly straightforward, and poten-
tially applicable to the problem MITL consistency checking.

The next two sections introduce background material:
first, the approach to prediction that motivated this line of
inquiry, then in more detail MITL and Bacchus’ and Ka-
banza’s progression algorithm. Section4 presents the exten-
sion to partial knowledge about state timing.

Section5, finally, describes the further extension to the
progression algorithm and how it may be applied to MITL
consistency. This is still work in progress: the consistency
checking algorithm presented is sound, but not complete.

2. Background I: Prediction as a Knowledge
Representation Problem

Prediction is a central component in many control and rea-
soning tasks,e.g. state estimation/diagnosis, interpretation
of sensor data (most notably the problem of reidentification),
tracking control and planning. All of prediction relies on
models: it is only with the knowledge encoded in a model,
whatever form it takes, that a predictive system can conclude
anything stronger than a tautology.

In a previous paper (Haslum 2001), I argued that there
are for any application involving prediction many possible
“model designs”, by which I mean broadly the ontology,
representation, acquisistion and computational methods as-
sociated with a model, and for the comparative investigation
of different alternatives. As a case study, I have designed
two different solutions to a prediction problem encountered
in the WITAS UAV project1: one is a discrete event model
and uses a schema-like representation of “normality”, while
the other is based on a Markov process. Both models use
continuous time.

The role of MITL is in the first model design, as a lan-
guage to formulateexpectations, expressing beliefs about
what will hold true, over time, in the normal case. Expec-
tations are arranged in a heirarchy reflecting the strength of
belief. A possible future development is represented by a
timed sequence of events, finite since the prediction hori-
zon is bounded. By checking which formulas of the hier-
archy, if any, the development necessarily violates, it is as-
signed a “normality rating”, representing a measure of the
percieved relative likelihood of that development occuring.

1The WITAS project studies architectures and tech-
niques for intelligent autonomous systems, centered around
an unmanned aerial vehicle (UAV) for traffic surveil-
lance. For an overview, seee.g. (Doherty et al. 2000) or
http://www.ida.liu.se/ext/witas/. The problem
considered is to predict the movements of a vehicle in a road
network, and appears in the context of the task of planning a search
strategy.
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To make enumeration of even finite developments possible,
it is necessary to adopt a constraint based representation of
state starting and ending times, since events are distributed
along a dense time line. This, and the use of progression
as the tool to check for formula violation in finite develop-
ments, motivated the first step in extending the progression
algorithm.

3. Background II: Timed Automata, MITL
and Progression

Timed automata and MITL both have their roots in the re-
search area of formal specification and verification of reac-
tive hardware/software systems. Introductions can be found
in e.g.Alur (1999) and Emerson (1990).

Timed Automata Timed automata (Alur & Dill 1994) are
essentially finite state automata, augmented with time con-
straints of two kinds: a transition can have a time window
in which it is possible to make the transition and a state can
have a maximal time that the system may remain in the state
before it has to exit by some transition.

Let R
+ denote real numbers� 0, with a special symbol

∞ for infinity.

Definition 1 (Timed Automaton)
A timed automaton,A = (Q,R,C,L), consists of a set of
statesQ, a transition relation

R ⊆ Σ ×Q×Q× R
+ × R

+,

whereΣ is some set ofeventlabels, astate constraintfunc-
tionC : Q −→ R

+, and state labelling functionL : Q −→
2P , whereP is some set of propositional symbols (often the
set of states is2P , i.e. a state is defined by its properties).

As usual, if(a, q, q′, t, t′) ∈ R, the system may transit
from stateq to q′ in response to the eventa, but only in
the time interval[t, t′] relative to the time that the system
enteredq (time constraints of the first kind), and the system
may remain in stateq for a time at most equal toC(q) (time
constraints of the second kind)2.

Like a finite automaton accepts a set of strings over its al-
phabet, a timed automaton accepts a set of histories.

Definition 2 (Development)
A development is a sequence of alternating states and events
marking state transitions,d = q0, a0, q1, a1, . . ., with an as-
sociated functionT : d −→ R

+ that tells the starting time
of each state, such that

(i) for i � 0, there exists t, t′ ∈ R
+ such that

R(ai, qi, qi+1, t, t
′) andT (qi)+t � T (qi+1) � T (qi)+t′,

and

(ii ) for i � 0, T (qi+1) � T (qi) + C(qi).

2The normal way to define timed automata is to augment stan-
dard automata with a set of real-valued “clock variables”, and ex-
press time constraints in a language of inequalities (Alur 1999).
Definition 1 is less general, but it is sufficient for MITL satisfiabil-
ity and simplifies some of what follows.

The time interval through which stateqi lasts is
[T (qi), T (qi+1)), i.e. closed at the beginning and open at
the end3. The duration of a stateqi is denotedD(qi) =
T (qi+1) − T (qi).

Two additional properties are usually required of a timed au-
tomaton: executability, which is the requirement that any
finite prefix satisfying conditions (i) and (ii ) of definition
2 can be extended to an infinite development, andnon-
zenoness, which is the requirement that the automaton does
not make an infinite number of transitions in finite time.

Even when only finite development prefixes starting in a
specific stateq0 are considered, the set of possible develop-
ments is uncountable, since the starting time of any state in
a development can change by an arbitrarily small amount.
For finite developments to be enumerable, a more compact
representation has to be adopted: a set of developments that
differ only on state starting times are represented by a sin-
gle sequence of states and events,d = q0, a0, . . . , qn, and
a set of constraints on the starting timesT (q0), . . . , T (qn),
managed in a temporal constraint network (TCN). Through-
out, the TCN is assumed to besimple, i.e. containing only
upper and lower bounds on the difference between pairs of
temporal variables. This ensures that there are efficient al-
gorithms for checking the consistency of the TCN, and for
extracting minimal and maxmimal bounds on variable dif-
ferences (Dechter, Meiri, & Pearl 1991; Brusoni, Console,
& Terenziani 1995).

Metric Interval Temporal Logic

The Metric Interval Temporal Logic (MITL) is a so called
“tense modal logic”, and was developed as a language for
specifying properties of real-time, reactive systems (Alur,
Feder, & Henzinger 1996).

Definition 3 (MITL Syntax)
The language of propositional MITL consists of a set of
atomsP , propositional connectives and four temporal oper-
ators: ✷[t,t′]ϕ (alwaysϕ), ✸[t,t′]ϕ (eventuallyϕ), ©[t,t′]ϕ
(nextϕ) andϕU[t,t′] ψ (ϕ until ψ). The intervals adjoined to
the operators express metric temporal restrictions, and take
point values inR+.

Formulas in MITL are evaluated over an infinite timed de-
velopment(d, T ). Since MITL formulas only reference
present and future states, any suffix of a development is, for
the purpose of evaluating formulas, also a development: thus
a formula holds in a stateqi, if it holds in the development
suffix beginning withqi.

Definition 4 (MITL Semantics)
Let di denote the suffix ofd starting with theith state.

A formulaϕ not containing any temporal operator holds
in di iff ϕ evaluates to T in the stateqi. The truth conditions
for temporal formulas are

3This choice is rather arbitrary: the reverse convention could be
made as well.
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• ✷[t,t′]ϕ holds in di iff ϕ holds in everydk such that
the intersection of time intervals[T (qk), T (qk+1)) and
[T (qi) + t, T (qi) + t′] is non-empty (note thatk � i is
implied by the fact thatt, t′ � 0 and that time increases
along a development).

• ✸[t,t′]ϕ holds in di iff there exists aqk such that
[T (qk), T (qk+1)) and[T (qi)+ t, T (qi)+ t′] intersect and
ϕ holds indk.

• ©[t,t′]ϕ holds indi if ϕ holds inqi+1 andT (qi) + t �
T (qi+1) � T (qi) + t′.

• ϕU[t,t′] ψ holds in di iff there exists aqk such that
[T (qk), T (qk+1)) and[T (qi) + t, T (qi) + t′] intersect,ψ
holds indk andϕ holds for alldj with i � j < k.

Connectives are interpreted as in ordinary logic.

It should be clear that the definitions can be extended to al-
low open or half-open operator time intervals, but to avoid an
explosion of cases in definitions and algorithms, only closed
intervals are considered in the remainder of the paper.

The MITL Progression Algorithm
The MITL progression algorithm provides a way to evalu-
ate MITL formulas “incrementally” over a finite prefix of a
development. Thus, the algorithm does not always return
TRUE or FALSE, but often a condition to be further pro-
gressed through remaining states in the development.

Algorithm 5 (MITL Progression)
Letϕ andq be the input formula and state, respectively, and
ϕ′ the returned formula. The progresion algorithm works
recursively, by cases depending on the form of the input for-
mula:

(i) If ϕ contains no temporal operators,ϕ′ = TRUE if ϕ is
true in q andϕ′ = FALSE if not (note thatTRUE and
FALSE are formula constants, not truth values).

(ii ) If ϕ combines one or more subformulas with a proposi-
tional connective,ϕ′ is the result of likewise combining
the result of progressing each subformula. For example,
if ϕ = α ∧ β thenϕ′ = α′ ∧ β′.

(iii ) If ϕ = ©[t,t′]ψ, then

(iii.a) if D(q) < t or t′ < D(q), thenϕ′ = FALSE, and
(iii.b) if t � D(q) � t′, thenϕ′ = ψ.
(iv) If ϕ = ✷[t,t′]ψ, then

(iv.a) if D(q) < t, thenϕ′ = ✷[t−D(q),t′−D(q)]ψ,

(iv.b) if t � D(q) � t′, thenϕ′ = ψ′ ∧ ✷[0,t′−D(q)]ψ, and

(iv.c) if t′ < D(q), thenϕ′ = ψ′,
whereψ′ is the result of progressingψ.

(v) If ϕ = ✸[t,t′]ψ, then

(v.a) if D(q) < t, thenϕ′ = ✸[t−D(q),t′−D(q)]ψ,

(v.b) if t � D(q) � t′, thenϕ′ = ψ′ ∨ ✸[0,t′−D(q)]ψ,

(v.c) if t′ < D(q), thenϕ′ = ψ′,
whereψ′ is the result of progressingψ.

(vi) if ϕ = χU[t,t′] ψ, then

(vi.a) if D(q) < t, thenϕ′ = χ′ ∧ (χU[t−D(q),t′−D(q)] ψ),

(vi.b) if t � D(q) � t′, ϕ′ = ψ′ ∨ (χ′ ∧ (χU[0,t′−D(q)] ψ))
and

(vi.c) if t′ < D(q), thenϕ′ = ψ′,
whereχ′ andψ′ are the result of progressingχ andψ,
respectively.

4. The Extended Progression Algorithm
Algorithm 5 assumes that the duration of the input state,
D(q), is a number, but as explained above sets of develop-
ments have to be represented by a combination of state/event
sequence and time constraints to achieve enumerability.
Consequently, the progression algorithm has to take as input
a set of time constraints,C, and return the set ofall possible
progressions,{(ϕ′

1, C
′
1), . . . , (ϕ

′
k, C

′
k)}, where eachC′

i is a
set of additional time constraints consistent withC andϕ′

i
is the result of progressing the input formulaϕ under con-
straintsC ∪ C ′

i.
The extension is conceptually straightforward, though

somewhat complicated in practice. Notice that for each tem-
poral operator algorithm 5 branches depending on the du-
ration of the input state, and that the returned formula is
built up according to the recursive path of branches taken.
In general, an MITL formula defines a tree structure of pos-
sible progressions, with time constraints associated to the
branches and resulting formulas at the leaves.

For the formal definition of the progression tree, a special
form of each temporal operator has to be introduced: arela-
tive intervalis written[X : t, t′], whereX is a TCN variable
and t, t′ ∈ R

+, and interpreted as[X + t,X + t′]. Rela-
tive temporal operators are obtained by adjoining a relative
interval to any of the standard temporal operators.

Definition 6 (Progression Tree)
For an MITL formulaϕ and a stateq with starting and end-
ing times denoted by variablesXS(q) andXE(q), thepro-
gression treeTP (ϕ) is defined as follows: edges in the tree
are labeled with constraints (involvingXS(q), XE(q), and
possibly other TCN variables) and leaf nodes are labeled
with formulas.

(i) If ϕ is a state formula (i.e. contains no temporal opera-
tors),TP (ϕ) consists only of a leaf, labeled withTRUE if
ϕ holds inq andFALSE if not.

(ii ) TP (¬α) is constructed fromTP (α) by replacing every
leaf labelα′ with ¬α′.

(iii ) To constructTP (α∧ β), start withTP (α). For every leaf,
let α′ be the leafs label: replace the leaf with a copy of
TP (β), and within that copy replace every leaf labelβ′ by
α′ ∧ β′. The construction is illustrated in figure 1.
The construction ofTP (α ∨ β) is analogous.

(iv) TP (©[t,t′]ψ) has three branches:
(iv.a) a branch labeledXE(q) − XS(q) < t leads to a leaf

labeled byFALSE,
(iv.b) a branch labeledXE(q) − XS(q) > t′, also to a leaf

labeledFALSE, and
(iv.c) a branch labeledt � XE(q) −XS(q) � t′ leads to the

root ofTP (ψ).
(v) TP (✷[X:t,t′]ψ) also has three branches:
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TP (α)

TP (β) TP (β) · · ·

α′
1 ∧ β′

1 α′
1 ∧ β′

2 · · · α′
2 ∧ β′

1 · · ·

Figure 1: Construction ofTP (α ∧ β)

(v.a) at the first branch, labeledXE(q) − X < t, is a leaf
labeled✷[X:t,t′]ψ,

(v.b) at the second branch, labeledt � XE(q) −X � t′, is
a copy ofTP (ψ), and within that copy every leaf label
ψ′ is replaced with(✷[X:t,t′]ψ) ∧ ψ′, and

(v.c) at the third branch, labeledt′ < XE(q) − X, is an
unmodified copy ofTP (ψ).

(vi) TP (✷[t,t′]ψ) is equal toTP (✷[XS(q):t,t′]ψ).
(vii) TP (✸[X:t,t′]ψ) has three branches:

(vii.a) at the first branch, labeledXE(q) − X < t, is a leaf
labeled✸[X:t,t′]ψ,

(vii.b) at the second branch, labeledt � XE(q) −X � t′, is
a copy ofTP (ψ) with every leaf labelψ′ replaced by
(✸[X:t,t′]ψ) ∨ ψ′, and

(vii.c) at the third branch, labeledt′ < XE(q) −X, is a copy
of TP (ψ).

(viii ) TP (✸[t,t′]ψ) is equal toTP (✸[XS(q):t,t′]ψ).
(ix) TP (χU[X:t,t′]ψ) has three branches:

(ix.a) at the first branch, labeledXE(q) − X < t, is a leaf
labeledχU[X:t,t′]ψ,

(ix.b) at the second branch, labeledt � XE(q) − X � t′,
is TP (ψ), but every leaf, with labelψ′, is replaced a
copy ofTP (χ), and in this copy, every leaf labelχ′ is
replaced by(χ′ ∧ (χU[X:t,t′]ψ)) ∨ ψ′, and

(ix.c) at the third branch, labeledt′ < XE(q) − X, is only
TP (ψ).

(x) TP (χU[t,t′]ψ) equalsTP (χU[XS(q):t,t′]ψ).

The construction of the progression tree parallels progres-
sion algoritm 5, but time constraints are captured in the edge
labels instead of the bounds of intervals adjoined to temporal
operators in the formulas labelling the leafs. The introduc-
tion of relative temporal operators serves to ensure that all
time constraints found in the progression tree remain sim-
ple. The algorithm for progression now becomes a simple
matter of tree traversal:

Algorithm 7 (Extended MITL Progression)
Let ϕ andq be the input MITL formula and state, respec-
tively, andC a set of (simple) time constraints.

ConstructTP (ϕ). For every leafl in the progression tree,
collect the set of constraintsCl found along the path tol:

if C ∪ Cl is consistent,(ϕ′
l, C

′
l) is included in the set of

progressions returned.

The method of traversing the progression tree is not impor-
tant, as long as every leaf at the end of a consistent path is
eventually found. The most efficient method appears to be
to search the tree depth first and check the set of constraints
incrementally, at each node.

Example 1 Consider the formulaϕ = ✷[5,9] ©[0,4] p. The
progression tree is shown in figure 2. If the input set of con-
straints isC = {0 < XE −XS < 7}, there are two consis-
tent solution paths:

(a) XE −XS < 5, with the result✷[XS :5,9] ©[0,4] p.

(b) 5 � XE − XS � 9, XE − XS > 4, with the result
FALSE.

XE −XS > 9 andXE −XS < 0 both contradictC, while
0 � XE − XS � 4 is inconsistent with the constraint5 �
XE −XS labelling the branch above.

Note that solutions returned by the algorithm may contain
relative temporal operators: these only make sense in the
context of a particular constraint set, which may be viewed
as conjoined to the returned formula. Consequently, if
the formula of a returned solution(ϕ′, C ′) is to be further
progressed through another state, the whole constraint set,
C ∪ C ′, must be passed as input to the next progression.

5. MITL Consistency
Alur et al. (1996) present a decision procedure for the con-
sistency of an MITL formula, but with several restrictions
on the formula: there is nonextoperator, the time intervals
adjoined to temporal operators must have rational constant
endpoints, and must be non-singular,i.e. not of the form
[t, t]. The restriction to non-singular intervals is necessary,
since the consistency problem is provably undecidable if sin-
gular intervals are allowed (Alur & Henzinger 1994).

The algorithm constructs a timed automaton accepting ex-
actly the developments that are models of the formula. The
automaton is then checked for emptiness (i.e. whether it ac-
cepts at least one development),e.g. using the procedure of
Alur and Dill (1994).

Suppose that the progression algorithm is extended, so
that the input stateq may be unspecifiedw.r.t. propositions
as well as starting and ending time, and the solutions re-
turned contain constraints on both. Then, if progressing an
MITL formula through a sequence of completely unspec-
ified states (except for the constraintD(q) � 0, for each
state), results inTRUE, any sequence of states that satisfies
the set of constraints collected along the way is a model for
the formula. This idea leads to what is essentially a tableaux
algorithm for MITL consistency.

The decision procedure for (non-real time) Linear Tem-
poral Logic (LTL) is also tableaux based, but constructs a
Büchi automaton equivalent to the formula to be checked
(Wolper 1989; Gerthet al. 1995). A variant described by
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XE −XS < 5 5 � XE −XS � 9 XE −XS > 9

✷[XS :5,9] ©[0,4] p

XE −XS < 0 XE −XS > 4 0 � XE −XS � 4

FALSE FALSE (✷[XS :5,9] ©[0,4] p) ∧ p

XE −XS < 0 XE −XS > 4 0 � XE −XS � 4

FALSE FALSE p

Figure 2:TP (✷[5,9] ©[0,4] p)

Schwendimann (1998) is remarkably similar to the algo-
rithm developed here, except it is formulated in terms of in-
ference rules rather than progression, and applies of course
only to LTL.

Partial State Progression

For the progression algorithm to work with partially or com-
pletely unspecified states requires only a small change in the
progression tree: case (i) is replaced by

(i’ ) For a single propositionp, TP (p) has two branches, la-
beled byp = T andp = F, ending in leafs labeledTRUE
andFALSE, respectively.

The branch labels are constraints on the value ofp, while
the leaf labels are formula constants. Because there are no
disjunctions, the set of propositional constraints essentially
corresponds to a partial assignment, so consistency can be
easily determined.

Tableaux Construction

The tableaux is a tree constructed by repeated progression of
the MITL formula to be checked for consistency. Each node
in the tree is labeled by a formula and a constraint set. The
tree also represents a set of developments: each node corre-
sponds to a state, and each path from the root downwards to
a development.

Definition 8 (Tableaux Tree)
Let ϕ be an MITL formula. Thetableaux treeof ϕ, TT (ϕ)
is defined inductively by:

(i) The root,r, is labeled byϕ and{XE(r) −XS(r) � 0}.

(ii ) Letn be a node labeled with formulaϕn and constraint set
Cn. For each solution(ϕ′, C ′) found by progressingϕn

with input constraintsCn, n has a successor node,n′, la-
beled withϕ′ andCn∪C ′∪{XS(n′) = XE(n),XE(n′)−
XS(n′) � 0}.

Because constraints are only passed down in the tree, vari-
ables can be named by the depth of the node only,i.e. the
root node starts atX0 and ends atX1, its successors all start
atX1 and end atX2, etc. The constraintXi+1 − Xi � 0,
placed on every node, ensures that the duration of the corre-
sponding state is non-negative.

Example 2 Figure 3 shows the tableaux tree for the formula
✷[5,9] ©[0,4] p (formula labels only). Nodes marked “zeno
cycle” correspond to non-executable developments, as ex-
plained in the next section.

Definition 9 (Closed, Satisfying)
A noden in TT (ϕ) is closediff ( a) the formula labeling the
node isTRUE or FALSE, or (b) the constraint set stored in the
node is inconsistent. A node issatisfyingif it is labeled with
TRUE.

To decide the consistency of a formulaϕ, TT (ϕ) is searched
for a satisfying node: if one is found,ϕ is consistent, and
the sequence of states along the path from the root to the
node is a model. The subtree beneath a closed node does not
have to be examined, and if every leaf node is closed and not
satisfying,ϕ is inconsistent.

Closing Cycles
For many MITL formulas, the tableaux tree contains infinite
branches without a closing node, and thus a straightforward
search in the tableaux tree may fail to terminate. Consider
for example✷[0,∞]✸[0,10]p: this formula generates, among
others, an infinite sequence of progressions identical to the
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✷[5,9] ©[0,4] p

FALSE

FALSE

✷[0:5,9] ©[0,4] p

FALSE

FALSE

p ∧ ✷[0:5,9] ©[0,4] p

FALSE

p

TRUE

FALSE

p ∧ ✷[0:5,9] ©[0,4] p (zeno cycle)

FALSE

✷[0:5,9] ©[0,4] p (zeno cycle)

Figure 3:TT (✷[5,9] ©[0,4] p)

input formula (except for the✷ operator being relative to
X0).

If a noden is labeled by the same formula as a noden′
found along the path from the root ton, and the constraint set
of the ancestor noden′ subsumes,i.e. is less restrictive than,
that ofn, then all the possible successors ofn are already
contained in the subtree beneathn′, and it should not be
necessary to search further belown. Thus, definition 9 must
be amended:

Definition 10 (Cycle, Zeno Cycle)
A noden in TT (ϕ) for which there exists an ancestor noden′
labeled by an identical formula and such that the constraint
set ofn′ subsumes that ofn, is acycle. A cycle node is also
closed.

If in addition, the maximal value ofXS(n) − XS(r),
wherer is the root, is bounded by the set of constraints (i.e.
not infinite), noden is azeno cycle.

Because time constraints are only added as the formula
is progressed down the tableaux tree, the temporal con-
straint set of a node always subsumes those of its succes-
sors. Subsumption for state constraints, however, must still
be checked.

A cycle noden represents an infinite development, con-
sisting of the states along the path from the root to the an-
cestor noden′, followed by an infinite number of repetitions
of the states fromn′ to, but not including,n. If the maximal
starting time ofn (which is also the ending time of the cycle)
is bounded, the time in this development can not diverge be-
yond that bound,i.e. it will pass through an infinite number
of states in finite time: hence the name “zeno cycle”.

Evaluation in Cycles That a node is a cycle does not mean
that it does not satisfy the formula labeling the node. For ex-
ample,TT (✷[0,∞]✸[0,10]p) contains a cycle node at depth
2, labeled by✷[X0:0,∞]✸[0,10]p and, among others, the con-

straints{X2 − X1 � 10, p2 = T}. This represents a de-
velopment consisting of an infinite sequence of states, each
with duration at most10, in all of whichp is true, clearly a
model for the formula.

For any noden that is a cycle but not a zeno cycle, if
the formula labeling the node at the start of the cycle (node
n′ in definition 10) holds in the corresponding infinite de-
velopment, according to the standard MITL semantics,n
is satisfying. Even though the development is infinite, the
number of distinct states it visits is finite, which makes eval-
uation possible, although not without complications: the dis-
tance, in time, between different states in the cycle may be
“stretched”, though not arbitrarily, by inserting repetitions
of the cycle.

Improved Cycle Detection The condition for cycle detec-
tion defined above is too weak to ensure that the search for
a satisfying node in the tableaux tree terminates. Two exam-
ples illustrate the problem:

Example 3 TT (✷[0,∞](✸[0,∞]p ∧ ✸[0,∞]¬p)) contains an
infinite branch beginning with

n0 :✷[0,∞](✸[0,∞]¬p ∧ ✸[0,∞]p)
n1 : ✸[X0:0,∞]¬p ∧ ✷[X0:0,∞](✸[0,∞]¬p ∧ ✸[0,∞]p)
n2 : ✸[X1:0,∞]p ∧ ✷[X0:0,∞](✸[0,∞]¬p ∧ ✸[0,∞]p)
n3 : ✸[X2:0,∞]¬p ∧ ✷[X0:0,∞](✸[0,∞]¬p ∧ ✸[0,∞]p)

...

corresponding to a sequence of states in whichp alternates
between T and F.

Example 4 TT (✷[0,∞]✸[0,∞](p ∧ ¬p)) contains only infi-
nite branches of the form

n0 :✷[0,∞]✸[0,∞](p ∧ ¬p)

n1 : ✸[X0:0,∞](p ∧ ¬p) ∧ ✷[X0:0,∞]✸[0,∞](p ∧ ¬p)
n2 : ✸[X0:0,∞](p ∧ ¬p) ∧ ✸[X1:0,∞](p ∧ ¬p) ∧

✷[X0:0,∞]✸[0,∞](p ∧ ¬p)
...

since the state formulap ∧ ¬p will never be true.

In example 3, the formulas labelling nodesn3 andn1 are
identical, except for the reference time point of the rela-
tive interval adjoined to the✸ operator. If, however, the
constraints on the time variableX0 at n1 are not more re-
strictive than those onX2 at n3, the set of successors,i.e.
progressions, ofn3 will also be identical to those ofn1, ex-
cept for this difference: in particular, if there exists a satisfy-
ing node among the successors ofn3, the “same” satisfying
node must be found by the same sequence of progressions
from n1. To state this condition precisely requires some ex-
tra definitions:
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Definition 11 (Formula Shift)
The (backwards)shift byk of a formulaφ is obtained by
replacing every occurrence of every time variableXi with
i � k byXi−k in φ.

Definition 12 (Subsumes with Shift)
Let C andC ′ be constraint sets, whereC ⊆ C′. ThenC
subsumesC ′ with shift byk iff

• Xi−Xj in C subsumesXi−Xj in C ′, for all i � j < k,
• Xi−Xj in C subsumesXi−Xj+k in C ′, for all i < k �
j,

• Xi −Xj in C subsumesXi+k −Xj+k in C ′, for all k <
i � j.

The meaning of “Xi −Xj in C subsumesXu −Xv in C ′”
is that the bounds onXi − Xj set byC are less restrictive
than those placed onXu −Xv byC ′.

Definition 13 (Extended Cycle)
A noden starting atXj in TT (ϕ) for which there exists
an ancestor noden′ starting atXi such that the formula la-
bellingn′ equals the formula labellingn backwards shifted
by j − i and such that the constraint set atn′ subsumes that
atn with shift j − i, is also a cycle.

By the extended definition, noden3 in example 3 is a cy-
cle so the branch is closed. The formula labelling noden1

at the start of the cycle is true in the corresponding infinite
development.

This, however, is not enough to close the branch in ex-
ample 4, because the formula resulting from progression is
redundant. To fix this, the progression result is rewritten into
an equivalent, simpler, form, based on the notion of “weak
implication”:

Definition 14 (Weakly Implies)
Formulaα weakly impliesβ, w.r.t. constraint setC, in case

(i) α andβ are identical (i.e. a formula always weakly im-
plies itself), or

(ii ) α = ✷[X:s,t]φ, β = ✷[X′:s′,t′]φ
′, [X : s, t] necessarily

contains[X ′ : s′, t′] givenC andφ weakly impliesφ′, or
(iii ) α = ✸[X:s,t]φ, β = ✸[X′:s′,t′]φ

′, [X : s, t] is necessarily
contained in[X ′ : s′, t′] givenC andφ weakly implies
φ′.

The rewrite rules applied to the formula resulting from pro-
gression are:

R1. Eliminate from a conjunction every conjunct that is
weakly implied by another conjunct.

R2. Eliminate from a disjunction every disjunct that weakly
implies another disjunct.

Weak implication is determinedw.r.t. the constraint set in-
put to progression and the set returned along with the for-
mula. Since weak implication entails ordinary implication,
the rules preserve equivalence.

Because of the constraintX1−X0 � 0, [X1 : 0,∞] must
be contained in[X0 : 0,∞], so✸[X1:0,∞](p ∧ ¬p) weakly

implies✸[X0:0,∞](p ∧ ¬p), and the formula labelling node
n2 in example 4 can be simplified to
✸[X1:0,∞](p ∧ ¬p) ∧ ✷[X0:0,∞]✸[0,∞](p ∧ ¬p)

using rewrite ruleR1, which makes the node a cycle (by the
extended condition).

Correctness and Complexity
The tableaux method is clearly sound, in the sense that
whenever a satisfying node is found, the path leading to that
node (with infinite repetition if it is a cycle node) is a model
for the formula. Likewise, if only the basic cycle definition
is applied and all branches are closed and not satisfying,
the formula is inconsistent: the argument is that the pro-
gression algorithm is exhaustive and that the development
corresponding to a closed node can not be a model for the
formula. The extended cycle definition appears, intuitively,
to be correct, but since it is so complicated, intuition is not
quite reliable and it should be proved formally.

Even the extended cycle detection, however, is not strong
enough to ensure termination,e.g. the tableaux tree for
the formula✷[0,∞](✸[0,10]¬p ∧ ✸[0,10]p) contains infinite
branches. The reason, in this case, is that the time limit on
the✸ operator causes weak implication to fail:✸[X1:0,10]p
does not weakly imply✸[X0:0,10]p unless constraints entail
X1 = X0, since only then is[X1 : 0, 10] necessarily con-
tained in[X0 : 0, 10].

Deciding MITL consistency is EXPSPACE-complete
(Alur, Feder, & Henzinger 1996). The algorithm by Aluret
al. requires time exponential in the number of connectives
and the largest integer constant appearing in the formula.

The tableaux method may not be able to do too much bet-
ter. Consider the number of consistent progressions of a for-
mulaϕ, in the worst case: The number of temporal branch
nodes in the progression tree is bounded by the number of
temporal operators. At each node, the differenceXk −Xi,
wherek is the index of the state through which the formula
is progressed (equal to the tableaux depth), andi < k, is
compared to a constant interval (the restriction interval of a
temporal operator). Withn branch nodes, the comparisons
involve at most2n different constants, which when ordered
yield 2n + 1 different intervals that eachXk − Xi may
fall into. Denoting the number of distinct variable differ-
ences occuring in constraints in the tree byd � max(k, n),
the number of consistent paths through the temporal branch
nodes is at most

(2n+ d)!
d!(2n)!

� (2n+ 1)d,

sinceXi+1 − Xi � 0 for all i, and thereforeXk − Xj �
Xk − Xi wheneverj > i. The number of consistent truth
value assignments is of course2p, wherep is the number of
distinct propositions occuring in the formula.

Thus, the worst case branching factor in the tableaux tree
is polynomial in the number of temporal operators in the
formula, but exponential in the number of distinct proposi-
tions and in the tableaux depth. As for how deeply the tree
may have to be searched to find a satisfying node or close
all branches (assuming the search terminates at all), I have
currently no idea.
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6. Concluding Remarks
MITL is a powerful language for expressing properties over
time: it has been used to express requirements in formal ver-
ification, goals and control rules in planning, and knowledge
in predictive models. Likewise, progression is a powerful
tool for working with MITL. The extended algorithm en-
ables it to be used also with a compact representation of sets
of developments, which in turn enables enumeration of the
finite development prefixes generated by a timed automaton.

The tableaux algorithm for deciding MITL consistency
shows some promise: with extended cycle detection and
simplification rewriting, it manages to prove the formula
✷[0,∞]✸[0,∞]p ∧ ✸[0,∞]✷[0,∞]¬p unsatisfiable. In differ-
ence to the method by Aluret al., it does not depend on
time constants being integral, or even rational, except as far
as constraint management does. Also, it appears simpler,
which is not an unimportant property.

Still, it is very much work in progress: besides making
it complete, the extended cycle detection, possibly strength-
ened, needs to be proved correct, and a more thorough anal-
ysis of the algorithms complexity to be done. Although it
certainly requires both exponential time and space, it may
be exponential in different variables than the existing al-
gorithm: for example, it is hard to see that the size of the
constants in the intervals adjoining the temporal operators
should play a part, and this may make a difference in prac-
tice.

That aside, rewriting based on weak implication is inele-
gant andad hoc. It may be seen as imposing a “weak normal
form” on formulas, but exactly what this form is, and what
set of rewrite rules is sufficient to obtain it, needs to be clar-
ified.
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Abstract

In this paper we combine the goal directed search of
A* with the ability of BDDs to traverse an exponen-
tial number of states in polynomial time. We introduce
a new algorithm, SetA*, that generalizes A* to expand
sets of states in each iteration. SetA* has substantial ad-
vantages over BDDA*, the only previous BDD-based
A* implementation we are aware of. Our experimen-
tal evaluation proves SetA* to be a powerful search
paradigm. For some of the studied problems it outper-
forms BDDA*, A*, and BDD-based breadth-first search
by several orders of magnitude. We believe exploring
sets of states to be essential when the heuristic function
is weak. For problems with strong heuristics, SetA*
efficiently specializes to single-state search and conse-
quently challenges single-state heuristic search in gen-
eral.

Introduction
During the last decade, powerful search techniques using an
implicit state representation based on the reduced ordered
binary decision diagram (BDD, Bryant 1986) have been de-
veloped in the area of symbolic model checking (McMillan
1993). Using blind exploration strategies these techniques
have been successfully applied to verify systems with very
large state spaces. Similar results have been obtained in
well-structured AI search domains (Cimatti et al. 1997).
However for hard combinatorial problems the search fringe
often grows exponentially with the search depth.

A classical AI approach for avoiding the state explosion
problem is to use heuristics to guide the search toward the
goal states. The question is whether heuristics can be ap-
plied to BDD-based search such that their ability to effi-
ciently expand a large set of states in each iteration is pre-
served. The answer is non-trivial since heuristic search al-
gorithms require values to be associated with each state and
manipulated during search. A task for which BDDs often
have proven less efficient.

In this paper, we present a new search algorithm called
SetA*. The main idea is to avoid the above problem by gen-
eralizing A* (Hart, Nilsson, & Raphael 1968) from single
states to sets of states in the search queue. Recall that A*
associates two values g and h to each state in the search
queue. g is the cost of reaching the state and h is an esti-
mate of the remaining cost of reaching the goal given by a

heuristic function. In SetA* states with similar g and h val-
ues are merged such that we can represent them implicitly
by a BDD without having to store any numerical informa-
tion. In each iteration, SetA*: 1) pops the set with highest
priority, 2) computes its next states, and 3) partitions the next
states into child sets with unique g and h values, which are
reinserted into the queue. A straightforward implementa-
tion of the three phases has disappointing performance (see
PreSetA*, Table 2). A key idea of our work is therefore
to combine phase 2 and 3. The technique fits nicely with
the so called disjunctive partitioning of BDD-based search
(Clarke, Grumberg, & Peled 1999). In addition it can be ap-
plied to any heuristic function. Our experimental evaluation
of SetA* proves it a powerful search paradigm. For some
problems it dominates both A* and BDD-based breadth-
first search (see Table 2). In addition, it outperforms the
only previous BDD-based implementation of A* (BDDA*,
Edelkamp & Reffel 1998), we are aware of, with up to two
orders of magnitude (see Table 4).

The remainder of the paper is organized as follows. First
we briefly describe BDDs and BDD-based search. We then
define the SetA* algorithm and evaluate it experimentally in
a range of search and planning domains. Finally we discuss
related work and draw conclusions.

BDD-based Search
A BDD is a canonical representation of a Boolean function
with n linear ordered arguments x1, x2, ..., xn. It is a rooted,
directed acyclic graph with one or two terminal nodes la-
beled 1 or 0, and a set of variable nodes u of out-degree
two. The two outgoing edges are given by the functions
high(u) and low(u) (drawn as solid and dotted arrows).
Each variable node is associated with a propositional vari-
able in the Boolean function the BDD represents. The graph
is ordered in the sense that all paths in the graph respect the
ordering of the variables. A BDD representing the function
f(x1, x2) = x1 ∧ x2 is shown in Figure 1 (left). Given
an assignment of the arguments x1 and x2, the value of f
is determined by a path starting at the root node and itera-
tively following the high edge, if the associated variable is
true, and the low edge, if the associated variable is false.
The value of f is True if the label of the reached terminal
node is 1; otherwise it is False. A BDD is reduced so that
no two distinct nodes u and v have the same variable name
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x2
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Figure 1: A BDD representing the function f(x1, x2) =
x1 ∧ x2. True and false edges are drawn solid and dotted,
respectively. (a) and (b) Reductions of BDDs.

and low and high successors (Figure 1(a)), and no variable
node u has identical low and high successors (Figure 1(b)).
The BDD representation has two major advantages: first,
many functions encountered in practice have a polynomial
size. Second, any operation on two BDDs, corresponding
to a Boolean operation on the functions they represent, has a
low complexity bounded by the product of their node counts.

A search problem is a 4-tuple (S, T, i,G). S is a set
of states. T : S × S is a transition relation defining the
search graph. (s, s′) ∈ T iff there exists a transition lead-
ing from s to s′. i is the initial state of the search while
G is the set of goal states. A solution to a search problem
is a path π = s0, · · · , sn where s0 = i and sn ∈ G and∧n−1

j=0 (sj , sj+1) ∈ T . Assuming that states can be encoded
as bit vectors, BDDs can be used to represent the character-
istic function of a set of states and the transition relation. To
make this clear, consider the simple search problem shown
in Figure 2. A state s is represented by a bit vector with two
elements �s = (s0, s1). Thus the initial state is represented
by a BDD for the expression ¬s0 ∧ ¬s1. Similarly we have
G = s0 ∧ s1. To encode the transition relation, we need to
refer to current state variables and next state variables. We
adopt the usual notation in BDD literature of primed vari-
ables for the next state

T (s0, s1, s
′
0, s

′
1) = ¬s0 ∧ ¬s1 ∧ s′0 ∧ ¬s′1
∨ ¬s0 ∧ ¬s1 ∧ ¬s′0 ∧ s′1
∨ ¬s0 ∧ s1 ∧ s′0 ∧ s′1
∨ s0 ∧ s1 ∧ s′0 ∧ ¬s′1.

The main idea in BDD-based search is to stay at the BDD
level when finding the next states of a set of states. This can
be done by computing the image of a set of states V encoded
in current state variables

Img =
(∃�s . V (�s) ∧ T (�s,�s ′)

)
[�s/�s ′].

Consider the first step of the search from i in the example
domain. We have V (s0, s1) = ¬s0 ∧ ¬s1. Thus,

Img =
(∃�s .¬s0 ∧ ¬s1 ∧ T (s0, s1, s

′
0, s

′
1)

)
[�s/�s ′]

=
(
s′0 ∧ ¬s′1 ∨ ¬s′0 ∧ s′1

)
[�s/�s ′]

= s0 ∧ ¬s1 ∨ ¬s0 ∧ s1.

The image computation is applied for searching in forward

(0,1)

(0,0)

(1,1)

(1,0)

G
h=0

h=1

h=0

a

b

c

d

h=1

Figure 2: An example search problem consisting of four
states and four transitions a,b,c, and d. The dashed lines in-
dicate the two search fringes of a BDD-based breadth-first
search from the initial state i = (0, 0) to the goal states
G = {(1, 1)}. The h-values is a heuristic function equal
to the vertical goal distance.

direction. For searching backward an analogous computa-
tion called the preimage is applied. In this section, we focus
on techniques for performing the image computation effi-
ciently, but similar techniques exist for the preimage com-
putation.

A common problem in BDD-based search is that interme-
diate BDDs in the image computation tend to be large com-
pared to the BDD representing the result. In symbolic model
checking, a range of techniques has been proposed to avoid
this problem. Among the most successful of these are transi-
tion relation partitioning. For search problems, where each
transition normally only modifies a small subset of the state
variables, the suitable partitioning technique is disjunctive
partitioning (Clarke, Grumberg, & Peled 1999). To make a
disjunctive partitioning, the part of the individual transition
expressions keeping the unmodified variables unchanged is
removed. The transition expressions are then partitioned ac-
cording to what variables they modify. For our example we
get two partitions

P1 = ¬s0 ∧ ¬s1 ∧ s′0 ∨ ¬s0 ∧ s1 ∧ s′0
m1 = (s0)
P2 = ¬s0 ∧ ¬s1 ∧ s′1 ∨ s0 ∧ s1 ∧ ¬s′1
m2 = (s1).

In addition to large space savings, disjunctive partitioning
often lowers the complexity of the image computation which
now can skip the quantification of unchanged variables and
operate on smaller expressions

Img =
|P|∨

j=1

(∃mj . V (�s) ∧ Pj(�s,m′
j)

)
[mj/m

′
j ].

The complexity of the image computation depends on the
number of partitions. Notice that for each new partition, a
new conjunction with V (�s) is introduced. For this reason
the best performance is often obtained by clustering some of
the partitions according to an upper bound on the size of the
BDD representing a partition (Burch, Clarke, & Long 1991;
Ranjan et al. 1995).
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SetA*
SetA* is a generalization of weighted A* where the defi-
nition of f is changed from f = g + h to f = (1 −
w)g + wh, w ∈ [0, 1] (Pohl 1970). Similar to BDDA*,
SetA* assumes a finite search domain and unit-cost transi-
tions. SetA* expands a set of states instead of just a sin-
gle state. The main input is what we will call, an improve-
ment partitioning. That is, a disjunctive partitioning where
the transitions of a partition reduce the h-value by the same
amount. The improvement partitioning is non-trivial to com-
pute. The reason is that it may be intractable to calculate
each transition expression in turn. Fortunately large sets of
transitions are often described in more abstract terms (e.g.
by actions or guarded commands) that can be directly trans-
lated into BDDs. This allows for an implicit way to partition
a set of transitions according to their improvement. Assume
that a set of transitions are represented by a BDD T (�s,�s ′).
Given a BDD h(�s,�v) encoding the heuristic function, such
that �v is a bit vector representation of the h-value associated
with state s, the set of transitions with improvement equal to
k is

T (�s,�s ′) ∧ h(�s,�v) ∧ h(�s ′, �v ′) ∧ �v − �v ′ = �k.

The improvement partitioning is computed only once prior
to the search, and in practice it turns out that it often can be
produced directly from the description of transitions or by
splitting the disjunctive partitioning. In fact, for the heuris-
tics we have studied so far, no BDD encoding of the heuristic
function has been necessary. The improvement partitioning
may containing several partitions with similar improvement.
This may be an advantage if the partitions otherwise grow
too large.

SetA* uses two main data structures: a prioritized queue
Q and a reach structure R. Each node in Q contains a BDD
representing a set of states with particular g and h values.
The node with lowest f -value has highest priority. Ties are
solved by giving highest priority to the entry with lowest h-
value. An important parameter of Q is an upper bound u
on the BDD sizes. When inserting a new node it is unioned
with an existing node in Q with the same g and h value if
the sum of the size of their two BDDs is less than u. Other-
wise a new entry is created for the node. The reach structure
is for loop detection. R keeps track of the lowest g-value
of every reached state and is used to prune states from a set
of next states already reached with a lower g-value. The al-
gorithm is shown in Figure 3. All sets and set operations
are carried out with BDDs. SetA* takes five arguments. IP
is the improvement partitioning described above. init and
goal are the initial and goal states of the search. u is the
upper bound parameter of Q and w is the usual weight pa-
rameter of weighted A*. Initially the algorithm inserts the
initial state in Q. Observe that the h-value of the initial state
has to be found. However since init is a single state this is
trivial. Similar to the regular A* algorithm, SetA* continues
popping the top node of the queue until the queue is either
empty or the states of the top node overlaps with the goal.
The top node is expanded by finding the image of it for each
improvement partition in turn (l.9). Before being inserted
in Q, the new nodes are pruned for states seen at a lower

function SetA*(IP, init , goal , u, w)
1 Q.initialize(u,w, goal)
2 g ← 0
3 h← h(init)
4 Q.insert(init , g, h)
5 R.update(init , g)
6 while ¬Q.empty() and ¬Q.topAtGoal()
7 top ← Q.pop()
8 for j = 0 to |IP|
9 next ← image(top, IP j)
10 R.prune(next)
11 g ← top.g + 1
12 h← top.h− impr(IP j)
13 Q.insert(next , g, h)
14 R.update(next , g)
15 if Q.empty() then NoPathExists
16 else R.extractPath()

Figure 3: The SetA* algorithm.

search depth, and the reach structure is updated (l.10-14). If
the loop was aborted due to Q being empty no solution path
exists. Otherwise the path is extracted by applying transi-
tions backwards on the states in R from one of the reached
goal states.

SetA* is sound due to the soundness of the image com-
putation. Since no states reached by the search are pruned,
SetA* is also complete. Given an admissible heuristic and
w = 0.5, SetA* further finds optimal length paths. As for
A*, the reason is that a state on the optimal path eventually
will reach the top of Q because states on finalized but sub-
optimal paths have higher f -value (Pearl 1984).

The upper bound u can be used to adjust how many states
SetA* expands. If each partition in IP contains a single
transition and u = 0 then SetA* specializes to A*. Interest-
ingly it is even a highly efficient implementation of A*. The
memory sharing of BDDs robustly scales to tens of thou-
sands of BDDs, and loop detection is still handled implic-
itly via BDDs in the R structure. For problems with many
shortest length solution paths like the DVM and Logistics
described in the next section, it may be an advantage to fo-
cus on a subset of them by choosing a low u-value. A similar
approach is used by A∗

ε described in (Pearl 1984)
The weight w has the usual effect. For w = 0.5 Set A* be-

haves like A*. For w = 1.0 it performs best-first search, and
for w = 0.0 it carries out a regular breadth-first search. The
fact that w can take any value in the range [0, 1] is important
in practice, since it can be used to strengthen a conservative
heuristic and vice versa.

We end this section by demonstrating SetA* on our ex-
ample problem. For this demonstration we assume w = 0.5
and u = ∞. The heuristic function is the vertical distance
to the goal state. In Figure 2 the states have been labeled
with h-values. We see that IP must contain at least three
partitions: one containing transition d that improves by mi-
nus one, one containing a and c that improve by zero, and
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one containing b that improves by one. Initially we have

Q0 = < (f = 0.5, g = 0, h = 1, {(0, 0)}) >

R0 = < (g = 0, {(0, 0)}) > .

In the first iteration, state (0, 0) is expanded to one child
containing state (1, 0) and one child containing (0, 1). Ac-
cording to the improvements of the partitions, we get

Q1 = < (f = 0.5, g = 1, h = 0, {(0, 1)}),
(f = 1.0, g = 1, h = 1, {(1, 0)}) >

R1 = < (g = 0, {(0, 0)}), (g = 1, {(0, 1), (1, 0)}) > .

In the second iteration, only the c transition can fire resulting
in

Q2 = < (f = 1.0, g = 2, h = 0, {(0, 1)}),
(f = 1.0, g = 1, h = 1, {(1, 0)}) >

R2 = < (g = 0, {(0, 0)}), (g = 1, {(0, 1), (1, 0)}),
(g = 2, {(1, 1)}) > .

The tie breaking rule causes the goal state to be at the top
of Q at the beginning of the third iteration. Thus the while
loop is aborted and the solution path (0, 0), (0, 1), (1, 1) is
extracted from R2.

Experimental Evaluation
SetA* has been implemented in the UMOP multi-agent
planning framework (Jensen & Veloso 2000) to study its per-
formance characteristics relative to blind bidirectional BDD-
based breadth-first search (also implemented in UMOP) and
an A* implementation with explicit state representation and
cycle detection. In a second evaluation round we devel-
oped a domain independent STRIPS planning system called
DOP. The state encoding and heuristic function used by the
MIPS planner (Edelkamp & Helmert 2001) was reproduced
in order to conduct a fair comparison with BDDA* imple-
mented in MIPS. In addition to SetA*, two blind BDD-
based breadth-first search algorithms were implemented in
DOP, one searching forward and one searching backward.
MIPS also includes an algorithm called Pure BDDA*. Pure
BDDA* performs best-first search.

All experiments were carried out on a Linux 5.2 PC with
a 500 MHz Pentium 3 CPU, 512 KB L2 cache and 512
MB RAM. The time limit (TIME) was 600 seconds and the
memory limit (MEM) was 450 MB. For UMOP and DOP
the number allocated BDD nodes and the cache size used by
the BDD-package were hand-tuned for best performance. A
disjunctive partitioning with a minimum number of parti-
tions was applied unless otherwise noted.

Artificial Problems
Two problems IGk and DxV yMz were defined and studied
using the minimum Hamming distance to the goal states as
heuristic function (the mimimum number of different bits
between the bit vector representing the state and a goal
state). In these experiments the improvement partitioning
was computed by splitting a disjunctive partitioning using
a specialized BDD-function. Given an improvement k, this

SetA* A*
k #it T #it T

(sec) (sec)
1 16 0.2 16 0.13
2 16 0.2 145 0.39
3 16 0.2 514 1.26
4 16 0.2 2861 7.46
5 16 0.2 9955 29.02
6 16 0.2 24931 80.10
7 16 0.2 51098 181.77
8 16 0.2 90080 344.00
9 16 0.2 140756 579.22

10 16 0.2 - TIME
11 16 0.2 - -
12 16 0.2 - -
13 16 0.2 - -
14 16 0.2 - -
15 16 0.2 - -

Table 1: Results for the IGk problem. #it is the number of
iterations, and T is the total CPU time.

function traverses the BDD of an action and picks transitions
of the action improving k. The complexity of the function
is linear in the size of the action BDD when the goal is a
conjunction and the variable ordering interleaves current and
next state variables.

IGk This problem is simplest to define using the STRIPS
language (Fikes & Nilsson 1971). Thus a state is a set of
facts and an action is a triple of sets of facts. In a given state
S, an action (pre, add , del) is applicable if pre ⊆ S, and
the resulting state is S′ = (S ∪ add) \ del . The actions are

A1
1 A1

j j = 2, · · · , n A2
j j = 1, · · · , n

pre : {I∗} pre : {I∗, Gj−1} pre : {}
add : {G1} add : {Gj} add : {Ij}
del : {} del : {} del : {I∗}.

The initial state is {I∗} and the goal state is {Gj |k < j ≤
n}. Only A1

j actions should be applied to reach the goal.
Applying an A2

j action in any state leads to a wild path since
I∗ is deleted. The states on wild paths contain Ij facts. Since
any subset of Ij facts is possible, the number of states on
wild paths grows exponentially with n. The only solution is
A1

1, · · · ,A1
n which is non-trivial to find, since the heuristic

gives no information to guide the search on the first k steps.
The purpose of the experiment is to investigate how well
SetA* copes with this situation compared to A*. For SetA*
w = 0.5 and u = ∞. For the IGk problems considered, n
equals 16. This corresponds to a state space size of 233. The
results are shown in Table 1.

The experiment shows a fast degradation of A*’s per-
formance with the number of unguided steps. A* gets lost
expanding an exponentially growing set of states on wild
paths. SetA* is hardly affected by the lack of guidance. The
reason is that all transitions on the unguided part improve
by zero. Thus on this part, SetA* performs a regular
BDD-based breadth-first search, which due to the structure

75



0

1

2

3

4

5

6

Figure 4: The initial state of D5V 3M7.

of the problem scales well.

DxVyMz In this domain a set of sliders are moved be-
tween the corner positions of hypercubes. In any state, a
corner position can be occupied by at most one slider. The
dimension of the hypercubes is y. There are z sliders of
which x are moving on the same cube. The remaining z−x
sliders are moving on individual cubes. Figure 4 shows the
initial state of D5V 3M7. When x = z all sliders are mov-
ing on the same cube. If further x = 2y − 1 all corners of
the cube except one will be occupied. In this form, DVM is
a permutation problem similar to the 15puzzle and Rubik’s
Cube. We choose to investigate DVM instead of these well-
known problems because it has a direct Boolean encoding.
In this way, the complexity of the problem is solely caused
by the interaction between sliders, allowing us to adjust the
dependency of sliders linearly with the x parameter. For the
15puzzle and Rubik’s Cube there would be two sources of
complexity. One due to the interaction between objects and
one due to the physical constraints of the puzzles.

The purpose of the first experiment is to investigate how
SetA* degrades when the dependency of the domain is in-
creased and to compare its performance to A* and BDD-
based breadth-first search. In this experiment we study the
DxV 4M15 problem. For all experiments the size of the state
space is 260. We also show the results of PreSetA*, a pre-
mature version of SetA* finding the next states and splitting
them in two separate phases. Both versions of SetA* were
run with w = 0.5 and u = 200. In this experiment an upper
bound of 1000 on the size of the disjunctive partition BDDs
was chosen. The results are shown in Table 2.

The upper bound on the partitions is crucial for large val-
ues of x. Despite applying this technique, BDD-based bidi-
rectional search does not scale due to a blow-up of the search
fringe in both directions. A* works well when x is small
since f is a perfect or near perfect discriminator. How-
ever when the quality of the heuristic degrades A* gets lost
tracking equally promissing paths. The good performance
of SetA* is due to the low upper bound of the size of BDDs
in the search queue. It focuses the search on a reasonable
subset of the paths. Interestingly the search time is very low
even for the hardest problems. Time and memory are spent
on building and splitting the transition relation. Separating
the next state computation and the splitting as done by the
earlier version of SetA*, seems to come with a large perfor-
mance penalty.

In the second experiment we measure the performance of
SetA* for increasing upper bounds (u) of the size of BDDs

u #it T Tt Ts

(sec) (sec) (sec)
100 73 7.4 3.3 1.3
200 34 6.8 3.3 0.7
400 34 7.3 3.3 1.1
800 52 8.3 3.3 2.2

1600 51 10.1 3.3 4.0
3200 49 14.1 3.3 8.0
6400 49 24.4 3.3 17.7

12800 45 47.5 3.3 39.6
25600 42 110.4 3.3 102.8
51200 34 474.4 3.3 466.8

Table 3: Upper bound results for SetA* on the D9V 4M15

problem. u is the upper bound, #it is the number of itera-
tions, T is the total CPU time, Tt is the time used to generate
the improvement partitioning, and Ts is time used on search.

in the search queue. The results are shown in Table 3 and
were obtained for the D9V 4M15 problem using the same
disjunctive partitioning as in the previous experiment.

As depicted the performance degrades substantially for
large values of u. The problem is that the sets of most
promising states is large and have no compact BDD repre-
sentation. By choosing a low u-value we focus on a subset
of the most promising states in each iteration. As long as the
problem has many solution paths this approach may work
well. For D9V 4M15 this is reasonable to assume, since
the sliders still are fairly independent. For highly dependent
problems, however, a low u-value may lead to SetA* getting
lost on wild paths.

Planning Problems
Like MIPS, the DOP planning system uses an approximation
to the HSPr heuristic (Bonet & Geffner 1999) for STRIPS
domains. In addition, it performs similar analysis to mini-
mize the state encoding length. HSPr is an efficient but non-
admissible heuristic. We approximate it by summing the
depth d(f) of each fact in a state given by a relaxed forward
breadth-first search. The heuristic is applied in a backward
search from the goal states to the initial state. For any ac-
tion (pre, add , del) leading from S to S′ (when applied in
forward direction), we assume

del ⊆ pre and add �⊆ pre.

Since the search is backward the improvement of the action
is

impr = h(S′)− h(S)
= h(S′ ∩ (pre ∪ add))− h(S ∩ (pre ∪ add))

=
∑

f∈add\S

d(f)−
∑

f∈del

d(f).

Thus the improvement of an action can be computed without
any BDD-based encoding of the heuristic function. Each
action is partitioned in up to 2|add| sets of transitions with
different improvement.

76



SetA* PreSetA* A* BiDir
x #it T #it T #it T #it T

(sec) (sec) (sec) (sec)
1 34 0.6 34 0.8 34 1.1 34 0.7
2 34 0.7 34 0.9 34 1.1 34 0.7
3 34 0.6 34 1.4 34 1.1 34 1.6
4 34 0.6 34 1.5 34 1.1 34 8.1
5 34 0.6 34 3.5 34 1.0 34 334.0
6 34 0.8 34 14.4 - TIME - TIME
7 34 1.3 34 39.8 - TIME - TIME
8 34 2.1 34 50.7 - TIME - TIME
9 94 6.8 34 202.6 - TIME - TIME

10 58 16.3 34 297.2 - TIME - TIME
11 34 39.3 - TIME - TIME - TIME
12 - MEM - TIME - TIME - TIME

Table 2: Results for the DxV 4M15 problem. #it is the number of iterations, and T is the total CPU time.

The problems we consider, are Gripper from the STRIPS
track of the AIPS-98 planning competition (Long 2000) and
Logistics from the first round of the STRIPS track of the
AIPS-00 planning competition (Bacchus 2001). The pur-
pose of these experiments is to compare the performance of
SetA* and BDDA*, not to solve the problems particularly
fast. In that case, a more informative heuristic like the FF
heuristic (Hoffmann 2001) should be applied.

Gripper This domain considers a robot with two grip-
pers moving an increasing number of balls between two
connected rooms. The first experiment compares forward
BDD-based breadth-first search, SetA* with w = 1.0 and
u = ∞, backward BDD-based breadth-first search, pure
BDDA*, and BDDA*. Recall that Pure BDDA* performs
best-first search like SetA* with w = 1.0. The results are
shown in Table 4.

This domain is efficiently solved using blind BDD-based
breadth-first search. The reason is that the search fringe
grows only polynomially with the search depth. As is often
observed both for planning and model checking problems,
the best performance is obtained when searching forward.
The performance of SetA* is almost as good as forward
search even though, this algorithm relies on the slower back-
ward expansion. BDDA* spends considerable time prior to
search computing BDD formulas for arithmetic operations.
During search the fringe expansion of BDDA* seems to de-
grade fast with the size of the fringe. Pure BDDA* on the
other hand successfully completes a large number of itera-
tions due to a lower growth rate of the fringe. All algorithms
find shortest plans.

The second experiment shows the impact of the weight
setting in problem 20. The results are shown in Table 5.
Since the problem can be solved efficiently by blind BDD-
based breadth-first search, it is not surprising that the weight
setting turns out to be less important for the performance of
SetA*.

Logistics This domain considers moving packages with
trucks between sub-cities and with airplanes between cities.
In the first experiment SetA* was run with w = 1.0 and

w #it |p| T Ts

(sec) (sec)
0.0 360 125 7.6 4.6
0.1 358 125 7.7 4.5
0.2 354 125 7.9 4.7
0.3 347 125 8.0 4.7
0.4 338 125 8.0 4.8
0.5 373 125 9.2 5.9
0.6 204 125 6.1 2.9
0.7 204 125 6.1 3.0
0.8 204 125 6.2 3.0
0.9 204 125 6.2 3.2
1.0 204 125 5.9 2.9

Table 5: Results of the second Gripper experiment. w is
the weight, |p| is the solution length, #it is the number of
iterations, T is the total CPU time, and Ts is time used on
search.

u = 200. The upper bound of the size of partitions in the
disjunctive partitioning was 400. The results are shown in
Table 6.

Due to the fact that there are no resource constraints in the
Logistics domain, and thus no conflicts between subgoals,
the HSPr heuristic is quite efficient. Both SetA* and Pure
BDDA* search fast in this domain. However, Pure BDDA*
and BDDA* have a significant overhead due to their precom-
putation of arithmetic formulas. For SetA* the upper bound
on the size of the partitions in the disjunctive partitioning is
crucial for the larger Logistics problems. In addition the up-
per bound on the size of BDDs in the search queue speeds up
SetA* on the last five problems. The search fringe for blind
BDD-based search blows up in both directions. The plans of
SetA* are slightly longer than Pure BDDA*. The plans of
BDDA* are shorter than both SetA* and Pure BDDA*, but
only BDD-based breadth-first search finds optimal length
plans.

The second experiment was carried out on problem 7 of
the Logistics domain. In this experiment SetA* was run with
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Forward SetA* Backward Pure BDDA* BDDA*
#p |S| T #it T Ts T #it T Ts #it T Ts

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)
1 211 0.1 14 0.1 0.0 0.1 22 3.0 0.0 14 2.8 0.0
2 215 0.1 24 0.1 0.0 0.1 62 4.0 0.1 22 3.9 0.1
3 219 0.2 34 0.2 0.1 0.3 138 5.5 0.5 30 5.3 0.4
4 223 0.2 44 0.3 0.1 0.6 250 8.0 1.8 38 7.1 1.2
5 227 0.3 54 0.5 0.1 1.0 398 12.9 5.5 46 10.3 3.2
6 231 0.4 64 0.6 0.2 1.4 582 22.4 13.6 54 15.4 7.0
7 235 0.6 74 0.7 0.2 2.1 802 40.4 29.5 62 25.2 15.5
8 239 0.9 84 1.0 0.4 2.9 1058 72.5 59.4 70 47.1 36.2
9 243 1.0 94 1.2 0.4 4.1 1350 137.4 120.7 78 123.5 111.8

10 247 1.2 104 1.4 0.5 5.3 1678 317.2 295.8 - TIME -
11 251 1.4 114 1.7 0.7 7.1 - TIME - - TIME -
12 255 1.7 124 2.0 0.8 9.1 - TIME - - TIME -
13 259 2.0 134 2.3 1.0 13.0 - TIME - - TIME -
14 263 2.2 144 2.7 1.2 17.2 - TIME - - TIME -
15 267 2.7 154 3.1 1.4 16.4 - TIME - - TIME -
16 271 3.5 164 3.5 1.6 19.7 - TIME - - TIME -
17 275 3.4 174 4.0 1.9 23.1 - TIME - - TIME -
18 279 3.9 184 4.9 2.3 27.5 - TIME - - TIME -
19 283 4.5 194 5.1 2.6 32.4 - TIME - - TIME -
20 287 5.0 204 5.8 3.0 37.2 - TIME - - TIME -

Table 4: Results of the first Gripper experiment. #p is the problem number, |S| is the size of the state space, #it is the number
of iterations, T is the total CPU time, and Ts is time used on search.

SetA* Pure BDDA* Forward BDDA*
#p |S| #it |P | T Ts #it |P | T Ts |P | T #it |P | T Ts

(sec) (sec) (sec) (sec) (sec) (sec) (sec)
4 221 21 21 0.2 0.1 22 22 6.5 0.0 20 0.3 54 22 7.7 1.2
5 221 33 33 0.3 0.1 30 30 6.7 0.1 27 0.5 65 28 9.5 2.7
6 221 31 31 0.3 0.1 30 30 6.7 0.1 25 0.4 64 26 8.4 1.6
7 241 46 44 0.9 0.3 44 42 13.9 0.3 36 99.0 - - TIME -
8 241 41 40 1.0 0.3 36 36 14.1 0.2 31 59.5 94 32 138.5 118.5
9 241 48 46 0.9 0.2 46 45 14.0 0.3 36 100.0 102 38 132.6 115.8

10 254 66 56 2.5 1.1 54 51 25.1 1.1 - MEM - - TIME -
11 254 71 61 2.2 0.7 62 60 25.2 1.2 - - - - TIME -
12 254 60 54 2.0 0.6 52 49 24.9 0.8 - - - - TIME -
13 286 154 94 8.5 5.0 96 94 57.5 6.5 - - - - TIME -
14 286 127 78 7.7 3.9 70 65 56.7 8.3 - - - - TIME -
15 286 140 96 7.3 3.2 92 91 53.9 5.5 - - - - TIME -

Table 6: Results of the first Logistics experiment. #p is the problem number, |S| is the size of the state space, #it is the number
of iterations, |P | is the plan length, T is the total CPU time, and Ts is time used on search.
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w #it |p| T Ts

(sec) (sec)
0.0 279 25 8.6 7.9
0.1 248 25 9.0 8.3
0.2 203 25 8.9 8.1
0.3 154 25 7.9 7.1
0.4 102 25 4.7 4.0
0.5 180 27 2.3 1.6
0.6 49 29 0.9 0.1
0.7 31 31 0.8 0.1
0.8 31 31 0.8 0.1
0.9 31 31 0.8 0.1
1.0 31 31 0.9 0.1

Table 7: Results of the second Logistics experiment. w is
the weight, |p| is the solution length, #it is the number of
iterations, T is the total CPU time, and Ts is time used on
search.

u =∞. The results are shown in Table 7. As depicted HSPr
is a good heuristic for this domain increasing the speed sig-
nificantly while preserving a relative high solution quality.
Notice that the relaxation of the upper bound does not affect
the performance of SetA for this problem.

Related Work
Directed BDD-based search has received little attention in
symbolic model checking. The reason is that the main ap-
plication of BDDs in this field is verification where all reach-
able states must be explored. For Computation Tree Logic
(CTL) checking, guiding techniques have been proposed to
avoid a blow-up of intermediate BDDs (Bloem, Ravi, &
Somenzi 2000). However these techniques are not appli-
cable to search since they are based on defining lower and
upper bounds on the fixed-point. Directed search techniques
are relevant for falsification where the goal is to find a state
not satisfying an invariant. The first work on BDD-based
directed search, we are aware of, was for this application
(Yang & Dill 1998). The proposed algorithm is a simple
best-first search where the search fringe is partitioned with
a specialized BDD-operator according to the Hamming dis-
tance to the goal state. Even though this operation is fairly
efficient for the Hamming distance, it is not obvious how to
define it in general.

As far as we know, the only previous BDD-based im-
plementation of A* is BDDA*. BDDA* can use a general
heuristic function and has been applied to planning as well
as model checking. Similar to SetA*, it assumes unit-cost
transitions and Boolean encoding of states. In contrast to
SetA*, however, BDDA* requires arithmetic operations at
the BDD level during search and includes no tools to con-
trol the growth of the search fringe or for cycle detection. In
addition BDDA* is non-trivial to generalize to weighted A*.

The search queue in BDDA* is represented by a BDD
Open(s, f) that associates each state s in the queue with
its f -value. Given a BDD encoding of the heuristic func-
tion h(s, v) and a BDD encoding of the set of states with
minimum f -value Min(s), BDDA* expands all states with

minimum f -value by computing

Open ′(s, f) ← ∃s′.Min(s) ∧ T (s, s′) ∧
∃e′. h(s′, e′) ∧ ∃e . h(s, e) ∧
(f = fmin + e− e′ + 1).

Since the BDDs representing the heuristic function and the
transition relation often are large, a naive implementation of
this computation would be very slow. The MIPS implemen-
tation of BDDA* seems to use another strategy where the
largest possible subset of the computations are carried out
prior to the search. However this strategy has not been de-
scribed in the literature and as indicated by our experiments,
it still leads to substantial performance degradation.

Conclusion and Outlook
In this paper, we have combined BDD-based search and
heuristic search into a new search paradigm. The experimen-
tal evaluation of SetA* proves it a powerful algorithm often
several orders of magnitude faster than BDD-based breadth-
first search and A*. Today planning problems are efficiently
solved by heuristic single-state search algorithms. However
as recently noticed, the success may be due to an inherent
simplicity of the benchmark domains when using the right
heuristics (Hoffmann 2001). For less domain-tuned heuris-
tics, we believe that the ability of SetA* to explore an expo-
nential growing set of paths in polynomial time is essential.
Our ongoing research includes identifying such problems
and comparing the performance of SetA* and single-state
search algorithms.
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Abstract

CIRCA is an architecture for real-time intelligent control.
The CIRCA planner can generate plans that are guaranteed to
maintain system safety, given certain timing constraints. To
prove that its plans guarantee safety, CIRCA relies on formal
verification methods. However, in many domains it is impos-
sible to build 100% guaranteed safe plans, either because it
requires more resources than available, or because the possi-
bility of failure simply cannot be eliminated. By extending
the CIRCA world model to allow for uncertainty in the form
of probability distribution functions, we can instead generate
plans that maintain system safety with high probability. This
paper presents a procedure for probabilistic plan verification
to ensure that heuristically-generated plans achieve the de-
sired level of safety. Drawing from the theory of quality con-
trol, this approach aims to minimize verification effort while
guaranteeing that at most a specified proportion of good plans
are rejected and bad plans accepted.

Introduction
Realistic domains for autonomous agents present a broad
spectrum of uncertainty, including uncertainty in external
events and in the outcome of internally-selected actions.
Planning to achieve system goals and maintain safety in the
face of this uncertainty can be highly challenging. We can
attempt to generate a universal plan (cf. (Schoppers 1987)),
taking every contingency into account, but with limited re-
sources this may be futile. A more advantageous approach
may be to quantify the uncertainty and incorporate this infor-
mation into the reasoning process. This enables us to set an
arbitrary failure threshold for plans, and we can reject plans
with failure probability above the threshold. Furthermore,
the additional information can be used to focus our plan-
ning efforts on situations we are more likely to encounter
(cf. (Atkins et al. 1996)).

In this paper we introduce a probabilistic extension to
CIRCA—an architecture for real-time control—(Musliner
et al. 1993). The original planner in CIRCA builds reactive
control plans that achieve system goals and maintain system
safety, subject to strict time bounds and models of the dy-
namic external world (the environment). While the original
CIRCA model includes nondeterminism in the outcome of

∗The work reported in this paper was performed during a sum-
mer internship at Honeywell Laboratories.

actions and uncertainty about the timing and occurrence of
externally-caused transitions, it does not have quantified un-
certainty information. The extended model includes quan-
tified uncertainty in the form of probability distributions on
the timing of different transitions. This allows CIRCA to
build plans that are not completely guaranteed to prevent
failure—plans may allow for the possibility of failure, as
long as the failure probability is below some threshold. The
world model of the probabilistic extension corresponds to a
generalized semi-Markov process.

Standard model checking techniques cannot handle the
full generality of our model. We have therefore developed
a novel verification algorithm that can be used to efficiently
verify whether a potential plan satisfies given safety con-
straints. Our verifier uses Monte Carlo simulation, or more
precisely discrete event simulation, to generate sample ex-
ecution paths given a plan and a world model. Requiring
relatively few sample paths, the verifier can guarantee that
at most a specified proportion of good plans are rejected and
bad plans accepted.

The interaction between planner and verifier is depicted in
Figure 1. The planner generates a plan to achieve given ob-
jectives in a given dynamic real-time environment. The plan
is passed to the verifier that then tests whether the plan satis-
fies given safety constraints. The result of the verification is
passed back to the planner, which based on that information
decides whether the generated plan needs to be revised. If
the plan passed the verification, then no revision is needed,
and otherwise the verification result is used to guide plan
revision. We are not concerned with how to generate and
revise plans in this paper, but only how to verify plans.

Planner Verifier

verification result

plan

safety constraintsobjectives,
environment

Figure 1: Interaction between planner and verifier.
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The World Model
Musliner, Durfee, & Shin (1993) introduced a formalization
of the CIRCA world model, and later extended it (Musliner
et al. 1995). We will deviate slightly from their for-
malization here. The purpose is to enable us to view the
CIRCA world model as a generalized semi-Markov pro-
cess (GSMP), which is a formalism for discrete event sys-
tems introduced by Matthes (1962) (see also (Glynn 1989;
Shedler 1993)). The formal non-probabilistic world model
has seven elements (S, SF , S0, T, E,min∆,max∆):

1. A finite set of states S, where each state represents a de-
scription of relevant features.

2. A set of failure states SF ⊂ S, which consists of all states
in S that violate domain constraints or control-level goals.

3. A set of possible initial states S0 ⊂ S.

4. A finite set of transitions T = TE ∪TA∪TT , where TE is
a set of event transitions representing world occurrences
as instantaneous state changes, TA is a set of action transi-
tions representing actions performed by the run-time sys-
tem, and TT is a set of temporal transitions representing
the progression of time.

5. A function E : S → 2T mapping a state s to a set of
transitions enabled in s.

6. A function min∆ : T → R mapping transitions to mini-
mum trigger times.

7. A function max∆ : T → R mapping transitions to maxi-
mum trigger times.

Each transition τ ∈ T is a mapping between states; τ : S →
S.

For a given planning problem, the environment is repre-
sented by a world model Menv without any action transi-
tions. Given Menv, the planner generates a plan (or policy)
π, which is a mapping from states to action transitions. The
composition of Menv and π is a stochastic process repre-
senting the execution of π in the given environment. When
verifying that a plan π is safe, we are really verifying that
certain properties hold for the stochastic process represent-
ing the composition of π and the environment model. Fig-
ure 2(a) shows an environment for an unmanned aerial ve-
hicle. In Figure 2(b), actions constituting a plan have been
added to the environment.

Model Dynamics
At any particular point in time, the world is considered to
occupy a single state in the model. The initial world state
can be any state s ∈ S0. The world state changes when a
transition is triggered. If the current state is s and transition
τ is triggered, the next state is given by τ(s). Not all tran-
sitions are necessarily enabled in all states. For each state
s ∈ S, E(s) is the subset of T denoting the set of transitions
that can be triggered in state s. Only one transition can be
triggered in each state at any given time, so transitions in
E(s) compete to trigger a state change.

We can associate a clock rs,τ with each enabled transition
τ in a state s, showing the time remaining until τ is sched-
uled to occur in s. The clock value rs,τ is called the residual

lifetime of τ in s (Glynn 1989). When a transition τ∗ is trig-
gered in state s, causing a transition to state s′ = τ ′(s), then
the lifetimes of the transitions enabled in s′ are initialized as
follows:

1. If τ ∈ E(s) \ {τ∗}, then let rs′,τ = rs,τ − rs,τ∗ .

2. If τ 	∈ E(s) \ {τ∗}, then rs′,τ is set to some value in the
interval [min∆(τ),max∆(τ)].

The type of a transition determines the general form of the
interval [min∆(τ),max∆(τ)]. Event transitions can occur
at any time, and thus have a lower limit of zero and an upper
limit of infinity. Temporal transitions are similar to events,
but can have a non-zero lower limit. An action transition
represents an action taken by the run-time system, and has a
finite upper limit representing the worst-case execution time
for that action.

Note that with the formalism given here, the possible trig-
ger time of a transition in a given state at a given time can
depend on the history of state transitions, making the world
model non-Markovian.

Probabilistic Extension
The world model, as presented so far, has limited expressive
power. We can say that an event may occur in a state s by
representing the event with a transition τ which is enabled
in s, and we can bound the time that the world must stay in
s before the event may (or must) occur. We can, however,
say nothing about the expected time that the world must stay
in state s before the event occurs. There is no way to dis-
tinguish more frequently occurring events, such as rain de-
laying a tennis match at Wimbledon, from far less frequent
events, such as a player being struck by lightning.

A natural extension is to associate a probability distribu-
tion function F (t; τ) with each transition τ , giving the prob-
ability that τ will be triggered t time units after it was last
enabled. We can easily define the previously used interval
limits in terms of F :

min∆(τ) = sup{t | F (t; τ) = 0}
max∆(τ) = inf{t | F (t; τ) = 1}

We require that F (0; τ) = 0 (i.e. the distribution function
corresponds to a positive random variable), because no tran-
sition can be triggered before it has been enabled. A typical
choice of distribution for an event transition would be an ex-
ponential distribution, and for a temporal transition a shifted
exponential distribution. For an action transition one could,
for example, use a uniform distribution or a truncated nor-
mal distribution.

In addition we can replace S0 with a probability distribu-
tion p0 over S, where p0(s) is the probability that the world
starts in state s. The set of possible initial states is then sim-
ply

S0 = {s | p0(s) > 0}.
This way we obtain a probabilistic world model consist-

ing of six elements (S, SF , p0, T, E, F ). To make this a
GSMP we need to define transition probabilities p(s′; s, τ)
expressing the probability of the next state being s′ given
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(c) Probabilistic world model.

Figure 2: Three different world models. To the left is a world model representing the environment. The initial state is drawn
as an oval, and there is only one failure state. The solid arrow represents an event transition, and the double arrows represent
temporal transitions. The arc between the two “hit” transitions indicate that they are in fact the same transition enabled in two
different states. In the middle, actions (dashed arrows) constituting a plan have been added to the environment. To the right is
the same plan/environment model, but with probability distributions associated with each transition instead of just intervals.

that τ is triggered in state s. This is straightforward, how-
ever, because the next state is determined by τ(s). We thus
get the following:

p(s′; s, τ) =
{

1 if τ(s) = s′
0 otherwise

In addition, we set all clock speeds r(s, τ) to 1. The ele-
ments (S, p0, p, T,E, F, r) constitute a GSMP. In fact, the
form of the state transition probabilities and the probabil-
ity distribution functions makes this a time-homogeneous
GSMP (Glynn 1989).

Figure 2(c) shows the probabilistic version of the model in
Figure 2(b). Instead of an interval, a probability distribution
function is given for each transition.

Plan Verification
In the non-probabilistic world model, a safe plan is one
where no state s ∈ SF is reachable from the set of possi-
ble initial states S0. Action transitions are planned to “pre-
empt” temporal transitions to failure states. Transition τ1
preempts τ2 in state s if it can be proven that τ1 will al-
ways be triggered before τ2, independent of the history of
state transitions. This immediately rules out plans that have
event transitions to failure states. Because event transitions
can trigger instantaneously, no other transition can preempt
them. Safety of a plan can be verified by applying certain
correctness-preserving model transformations, pruning out
unreachable states (Musliner et al. 1995). As was shown
above, S0, min∆, and max∆ can be extracted from the
probabilistic world model, enabling us to verify probabilis-
tic plans using the same technique. This would, however, be
a waste of all the extra information available to us regarding
the stochastic behavior of transitions.

In probabilistic terms, the above technique can only dis-
tinguish between zero and non-zero probability of reaching
a set of states. Plans with non-zero probability of reaching
a failure state are considered unsafe. With probability dis-
tribution functions available for the transitions, we can set

an arbitrary threshold θ representing the highest acceptable
failure probability of a plan. Setting θ = 0 we revert to the
old model. With θ > 0, though, we can accept plans that
would have otherwise been discarded. For example, it now
becomes possible to have a plan with event transitions to
failure states provided that the events represented by these
transitions are sufficiently infrequent, or the probability of
entering a states in which such events are enabled is suffi-
ciently low.

As an example, consider the plan in Figure 2(b). The “be-
gin evasive” action preempts the “hit” transition in the bot-
tom state, but the “hit” transition can still be triggered in the
center state. If, for example, the lifetime of “begin evasive”
is 50 time units, the lifetime of “safe” is 100 time units, and
the lifetime of “hit” is 120 time units, then “hit” will trig-
ger before “safe” in the center state, causing a transition to
the failure state. The plan in Figure 2(c) is the same as in
Figure 2(b), but the intervals have been substituted for prob-
ability distribution functions. We will see later that this plan
is acceptable with a failure threshold of 0.05, and an upper
limit on the execution time set to 200 time units.

We use an acceptance sampling algorithm to probabilisti-
cally determine if a plan should be accepted. The samples
used by the algorithm are sample execution paths generated
through discrete event simulation. A plan is acceptable if
the probability of reaching a failure state within some time
limit tmax is below the failure threshold θ. The failure prob-
ability of a plan will typically depend on tmax. For example,
the plan in Figure 2(c) has a zero failure probability if tmax

is less than 120, but the failure probability approaches 1 as
tmax approaches infinity. We assume that a natural time limit
is given by the application.

Generating Sample Execution Paths

A plan π, when executed, represents a stochastic process
{Xπ(t) | t ≥ 0}, where Xπ(t) is the state of the world t
time units after the plan is set in action. We are interested
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in determining whether the probability of visiting a failure
state s ∈ SF within a specified time limit tmax from the
start of the execution of π is below a given threshold θ.

For any one state s, the probability of visiting s before
time tmax is Pr[inf{t | Xπ(t) = s} ≤ tmax]. For a set
of absorbing states, such as the set of failure states SF , at
most one state in the set can be visited during execution.
Furthermore, if Xπ(t) = s for an absorbing state s at time
t, then Xπ(t′) = s for all t′ ≥ t. The failure probability of a
plan after tmax time units is therefore

Pr[inf{t |Xπ(t) ∈ SF } ≤ tmax] =∑
s∈SF

Pr[Xπ(tmax) = s].

Depending on the stochastic characteristics of the process,
an analytical calculation of the failure probability may be
impossible, and the only feasible approach may be to use
sampling techniques that make use of simulation to generate
sample paths (Heidelberger 1995).

Let us define the random variable Yπ(s) as follows:

Yπ(s) =
{

1 if inf{t |Xπ(t) = s} ≤ tmax

0 otherwise

Clearly, Yπ(s) is a binomial variate with parameters 1, ps;
ps being the probability that state s is visited within tmax

time units. Given n samples y1(s) through yn(s) of Yπ(s),
let xn(s) = |{yi(s) | yi(s) = 1}|. This is the number of
samples in which state s is visited within tmax time units. A
point estimate of ps is xn(s)/n. This estimate can be used
as a heuristic to guide the effort of the planner towards the
most likely states (cf. (Atkins et al. 1996)). Note that xn(s)
can be computed as

∑n
i=1 yi(s). Let fn denote the number

of failures observed in n samples. Clearly

fn =
∑
s∈F

n∑
i=1

yi(s). (1)

Each sample yi(s) is generated using discrete event simu-
lation. Algorithm 1 outlines a procedure for generating yi(s)
for each state s ∈ S′ ⊂ S simultaneously (cf. Algorithm
4.17 of (Shedler 1993)).

The sample generation algorithm does not consider the
case of two transitions being triggered simultaneously. If all
distribution functions F are continuous, the probability of
this happening is in fact zero. Yet when implementing the
sampling algorithm on a computer, where real numbers are
represented by finite precision floating-point numbers, the
occurrence of simultaneous transitions becomes an issue we
have to deal with. We can address this by modifying step
4, so that instead of simply letting s′ = τ∗(s), we select s′
with uniform probability from the set of transitions with the
shortest residual lifetime in s.

Acceptance Sampling
A plan π, when executed, can either fail or succeed. We
denote the probability of failure by pF . As alluded to ear-
lier, we can specify a positive threshold θ representing the

Algorithm 1 Procedure for generating yi(s) for all s ∈ S′ ⊂
S simultaneously.

1. Let t = 0 and yi(s) = 0 for all s ∈ S′. Generate an initial
state s in accordance with the probability distribution p0.

2. For each transition τ ∈ E(s), sample a residual lifetime
rs,τ (cf. (Glynn 1989)) according to the distribution func-
tion F (·; τ). This is the amount of time remaining until τ
triggers a transition out of state s.

3. Set yi(s) to 1. Terminate the simulation if s ∈ SF or
E(s) ∩ TA = ∅.

4. Let τ∗ be the transition with the shortest residual lifetime
in s. Terminate the simulation if t+ rs,τ∗ > tmax. Other-
wise, let s′ = τ∗(s).

5. Generate new residual lifetimes for transitions τ ∈ E(s′)
as follows:

• If τ = τ∗ or τ 	∈ E(s), then sample rs′,τ according to
F (·; τ).

• Otherwise, let rs′,τ = rs,τ − rs,τ∗ .

6. Set s to s′ and t to t + rs,τ∗ , and go to step 3.

maximum acceptable failure probability. If pF does not ex-
ceed θ we are willing to accept π, but would reject it oth-
erwise. Deciding whether to accept or reject a plan can be
cast as the problem of testing the hypothesis pF ≤ θ against
the alternative hypothesis pF > θ. This is an important
problem in manufacturing industry and engineering, and has
been studied thoroughly in the field of statistical quality con-
trol (cf. (Chorafas 1960; Montgomery 1991)). The problem
also arises in the area of software certification (Poore et al.
1993).
Risk Tolerance and Hypothesis Testing. We would ide-
ally like to accept only those plans with a failure probability
no larger than θ and reject all other plans. In general, how-
ever, we cannot calculate the failure probability of a plan
analytically, nor can we determine it with absolute certainty
if falling back on sampling techniques. In the latter case
the reason is the potentially infinite sample space. There-
fore we must tolerate a certain risk of rejecting a plan with
true failure probability at most θ, or accepting a plan with
failure probability above θ. In statistical quality control the
former kind of error is referred to as a type I error (reject
when acceptable), and the latter a type II error (accept when
rejectable). We associate a risk level with each type of er-
ror. The risk levels are denoted by α and β respectively, and
these represent the acceptable probability of making an error
of respective type.

Let H0 be the hypothesis that pF ≤ θ (null hypothesis),
and let H1 be the alternative hypothesis that pF > θ. We
would like to test the hypothesis H0 against H1 so that the
probability of accepting H1 when H0 holds is at most α, and
the probability of accepting H0 when H1 holds is at most β.

In order to be able to choose α and β freely, however,
we need to relax the hypotheses somewhat.1 For this pur-

1We would have to choose α = 1 − β without the suggested
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pose we introduce an indifference region of non-zero width
δ. Let pF ≤ θ− δ be H0 and let pF ≥ θ + δ be H1. We use
acceptance sampling to test hypothesis H0 against H1. The
motivation for the indifference region, other than that it al-
lows us to choose the two risk levels independently, is that if
the true failure probability is sufficiently close to the thresh-
old, then we are indifferent to whether the plan is accepted
or rejected.

Sequential Sampling. A sequential test is one where the
number of observations is not predetermined but is depen-
dent on the outcome of the observations (Wald 1945). Wald
(loc. cit.) develops the theory of sequential analysis, and
defines the sequential probability ratio test (see also (Wald
1947)), which is optimal for testing a simple hypothesis
against a simple alternative in the sense that it minimizes
the expected number of samples needed to reach a decision.

Let X be a binary random variable with unknown param-
eter p such that Pr[X = 1] = p. The sequential probability
ratio test is carried out as follows to test the hypothesis H0

that p ≤ θ − δ against the hypothesis H1 that p ≥ θ + δ. At
each stage of the test, calculate the ratio

p1n

p0n
=

∏n
i=1 Pr[X = xi | p = θ + δ]∏n
i=1 Pr[X = xi | p = θ − δ]

,

where xi is the sample of X generated at stage i. Accept H1

if
p1n

p0n
≥ 1 − β

α
.

Accept H0 if
p1n

p0n
≤ β

1 − α
.

Otherwise, generate an additional sample and repeat the ter-
mination test. This test procedure respects the risk levels α
and β.2

Let θ0 = θ− δ and θ1 = θ+ δ. Applied to the problem of
validating a plan, if at stage n we have observed fn failures,
the ratio to compute is

p1n

p0n
=

θfn

1 (1 − θ1)n−fn

θfn

0 (1 − θ0)n−fn

.

For purposes of practical computation we work with log-
arithms, and carry out the test as follows. At the inspection
of the nth sample, compute

log
p1n

p0n
= fn log

θ1

θ0
+ (n− fn) log

1 − θ1

1 − θ0
.

Continue sampling if

log
β

1 − α
< log

p1n

p0n
< log

1 − β

α
.

Terminate by accepting hypothesis H1 if

log
p1n

p0n
≥ log

1 − β

α
.

relaxation, which means if one of the risk levels was low, then the
other would have to be high.

2There is a slight approximation involved in the stopping crite-
ria of the test. See (Wald 1945) for details.

Terminate by accepting H0 if

log
p1n

p0n
≤ log

β

1 − α
.

Alternatively, we can compute an acceptance number an

and a rejection number rn. We accept H0 if fn ≤ an, reject
H0 (accept H1) if fn ≥ rn, and continue sampling other-
wise. Let

u = log
θ1

θ0
and v = log

1 − θ0

1 − θ1
.

The acceptance number at stage n is

an =
log

β

1 − α
+ nv

u + v
, (2)

and the rejection number is

rn =
log

1 − β

α
+ nv

u + v
. (3)

Verification Algorithm
We now have all the pieces needed to specify a plan veri-
fication algorithm. Algorithm 2 describes the steps of the
procedure. The algorithm uses Wald’s sequential probabil-
ity ratio test, and so has input parameters θ, δ, α, and β. In
addition, the parameter tmax needs to be specified for the
sample generation algorithm used by the verification proce-
dure.

Algorithm 2 Procedure for verifying plan π.
1. Let n = 0.

2. Increment n by one and generate samples yn(s) of Yπ(s)
for all s ∈ SF (Algorithm 1).

3. Compute fn (equation (1)).

4. Compute an (equation (2)) and rn (equation (3)).

5. Accept π if fn ≤ an, and reject π if fn ≥ rn. Otherwise
go to step 2.

Figure 3 graphically represents the execution of the verifi-
cation algorithm on the plan in Figure 2(c) using parameters
θ = 0.05, δ = 0.01, α = β = 0.05, and with tmax set to 200
time units. The acceptance and rejection lines correspond to
equations 2 and 3 respectively. The curve starting out be-
tween the two lines represents the number of observed fail-
ures. After generating 201 sample execution paths (of which
3 ended in a failure state), the curve crosses the acceptance
line, which means we accept the plan. Had the curve crossed
the rejection line instead, we would have rejected the plan.
With the given parameters, we are 95% confident that the
true failure probability of the plan is less than 0.06.

The number of samples n that the algorithm needs to in-
spect before a decision is reached does not have a definite
upper bound. Wald (1947) proves that the sequential proba-
bility ratio test terminates with probability 1. Although the
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Figure 3: Result of executing the verification algorithm on
the plan in Figure 2(c).

probability is small that the required sample size will exceed
twice or three times the expected number of required sam-
ples, it may be desirable to set an upper bound nmax in some
cases. If an upper bound is provided and the test does not ter-
minate for n ≤ nmax, Wald (loc. cit.) suggests that the null
hypothesis be rejected if fnmax ≥ (anmax +rnmax)/2 and ac-
cepted otherwise. If the upper bound is set sufficiently high
(e.g. three times the expected value of n), then truncating the
process has negligible effect on the strength of the test.

Performance

The performance of our verification algorithm depends on
several factors. We can separate these factors into two
groups—domain dependent and domain independent.

The domain dependent factors affect the performance of
Algorithm 1, used for generating the samples yi(s). The
main factors of this kind are the time period considered
(tmax) and the mean values of the distribution functions F .
If the mean values are small relative to tmax, the number of
transitions triggering before the simulation terminates will
be high, hence increasing the time needed to generate each
set of samples. Note, however, that the size of the state space
plays a minimal role. Only once, in the initialization step,
do we need to perform work at most linear in |S|. This work
amounts to clearing all the yi(s)’s, which can be done quite
efficiently using a bit-vector to represent each set of samples.

As a domain independent factor we view the number of
samples, n, needed to be generated before the verification
algorithm terminates. We will show below how this num-
ber depends on the true failure probability pF . Although
arguably dependent on the domain and the current plan π,
because this ultimately determines pF , we can estimate the
sample size needed independently of any particular domain
or plan, hence motivating the label “domain independent”.
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Figure 4: Average number of samples for δ = 0.01 and (1)
α = β = 0.05 and (2) α = β = 0.10, and for δ = 0.02 with
(3) α = β = 0.05 and (4) α = β = 0.10 (θ = 0.05 in all
cases).

Sample Size

We can expect to need fewer samples the further the true
failure probability is from the indifference region. If pF is
significantly less than θ0, we can expect to satisfy the ac-
ceptance criterion at an early stage. Conversely, if pF is
much above θ1, the number of failures observed will tend to
quickly exceed the rejection number. The number of sam-
ples, n, required by the verification algorithm is a random
variable since it depends on the outcome of the observations.
The expected value of n, often called the average sample
number, depends on pF .

Wald (1945) provides an approximation formula for the
expected sample size. Let Ep[n] denote the expected number
of samples required given pF = p. An approximate value
for this expectation is

Ẽp[n] =
L(p) log

β

1 − α
+ (1 − L(p)) log

1 − β

α

p log
θ1

θ0
+ (1 − p) log

1 − θ1

1 − θ0

, (4)

where L(p) is the probability that the sequential test termi-
nates with acceptance if pF = p.

Figure 4 plots the average sample number in a region
close to θ (for θ = 0.05) and with different choices of δ, α,
and β. We can see that by raising the risk levels or widening
the indifference region, we will need fewer runs on average
to reach a decision. This gives us an opportunity to trade
quality for performance.
Truncated Test. As mentioned earlier, we may want to set
an upper limit nmax on the number of samples generated.
Equation (4) can help us choose this upper bound. The av-
erage sample number is at a maximum at, or close to, the
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common slope s of the acceptance and rejection lines:

s =
log

1 − θ0

1 − θ1

log
θ1

θ0
− log

1 − θ1

1 − θ0

The average sample number at this point is approximately

Ẽs(n) =
log

β

1 − α
log

1 − β

α

log
θ1

θ0
log

1 − θ1

1 − θ0

.

With nmax = 3Ẽs(n), the probability that the sequential
test has terminated before n reaches nmax is nearly 1, and
the truncation has a negligible effect on the strength of the
test.

Related Work
BURIDAN uses a notion of plan failure similar to ours,
where a threshold is given representing the maximum ac-
ceptable failure probability (Kushmerick et al. 1995).
BURIDAN implements several methods for plan assess-
ment, computing a guaranteed upper bound on the failure
probability. The cost of obtaining a guaranteed bound is that
the efficiency of these methods vary significantly between
domains. In our approach, we can trade efficiency for accu-
racy by adjusting the risk levels. A further difference is that
our world model allows for external events, while in BURI-
DAN only actions can be represented, and there is only a
limited notion of time, where each performed action rep-
resents a discrete time step. The same holds for planners
adopting a model based on Markov decision processes.

The work by Dean & Kanazawa (1989) is more closely
related to ours. They use what they call probabilistic pro-
jection to reason about persistence of propositions, but their
model is Markovian. They construct a belief network in or-
der to compute probabilistic predictions. Blythe (1994) uses
a similar approach for computing the failure probability of a
plan subject to external events. Probabilistic inference in be-
lief networks is known to be NP-hard (Cooper 1990), how-
ever, and current exact algorithms have worst-case exponen-
tial behavior. Both Blythe and Dean & Kanazawa consider
approximate algorithms, but they do not provide any guar-
anteed error bounds, and the convergence is often slow.

Atkins, Durfee, & Shin (1996) consider a probabilistic ex-
tension of CIRCA similar to ours. Their approach is analyt-
ical, and they present an iterative algorithm for state prob-
ability estimation. Their state probability calculations are
based on heuristic approximations of transition times, but
no quantitative error bounds are provided by the algorithm.
Furthermore, they do not propagate probabilities around cy-
cles in the state space, which can lead to serious underesti-
mation (although this problem is addressed in later work (Li
et al. 2000)).

Alur, Courcoubetis, & Dill (1991) describe an algo-
rithm for verifying formulas specified in a language called
TCTL, with an underlying GSMP world model. TCTL is
a branching-time temporal logic for expressing real-time

properties, but lacks support for expressing quantitative
bounds on probabilities. Aziz et al. (1996) present CSL
(continuous stochastic logic), which is a formalism in which
quantitative probability bounds can be expressed, and they
show that the problem of verifying CSL formulas is decid-
able. Baier, Katoen, & Hermanns (1999) describe an imple-
mentation of a model checker using an analogous formal-
ism. The underlying model for this work is continuous-time
Markov chains, however, and not GSMPs. The difference is
that in the former model only exponential probability distri-
bution functions are permitted.

Conclusions
We have presented a probabilistic extension to CIRCA. The
extended world model can be viewed as a generalized semi-
Markov process. We use discrete event simulation to gener-
ate sample paths in a world model, and use acceptance sam-
pling theory to minimize the expected number of samples
needed to determine if the failure probability is sufficiently
low. Our work differs from other probabilistic planners in
that our world model is more expressive. Yet, we are able to
bound the fraction of erroneous classifications that our plan
verifier makes. Using sequential acceptance sampling, we
often need very few samples to reach a decision with suffi-
cient confidence, but the user (or a higher-level deliberation
scheduling module) can easily trade efficiency for accuracy
by varying the parameters δ, α, and β.

For future work, we would like to combine importance
sampling (Heidelberger 1995) with acceptance sampling.
Doing so could improve performance of our verification al-
gorithm when the failure threshold is close to zero, or when
the indifference region is narrow. We are also interested in
developing techniques for ananlyzing how sensitive the fail-
ure probability of a plan is to variations in the time limit
tmax. In addition, more work on how to use probabilistic
information in guiding plan generation is needed. We have
mentioned how to obtain point estimates of state probabil-
ities from sample execution paths, and that these could be
used to guide the planning effort towards more likely states,
effectively pruning the least likely states from the search
space if limited resources are given to the planner. We would
like to investigate the effectiveness of such pruning tech-
niques in the future.
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