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Abstract

Many applications, such as video-based or transaction-based ones, are latency-critical.
Any additional latency may greatly degrade the user experience, inflicting significant
financial loss on the vendor. Recently, an increasing number of these applications are
written in managed languages, such as C♯, Java, JavaScript, and PHP, for productivity
and reliability. Garbage collection (GC) provides automatic memory management to
managed languages. However, GC can also induce pauses in the application, greatly
affecting the user experience. This thesis explores the challenges of minimizing GC
pauses.

Concurrent GC reduces pauses by working concurrently with the application (the
mutator). Copying GC improves the mutator locality and reduces the heap fragmen-
tation. Concurrent copying GC achieves both, but requires heavyweight synchroniza-
tion to ensure that the concurrently executing mutator has a consistent view of the
heap while the collector changes it. Existing implementations of concurrent copying
GC use read barriers or page protections to prevent the mutator from using stale refer-
ences. Unfortunately, these synchronization mechanisms introduce high overhead to
the mutator.

My thesis is that, by using hardware transactional memory (HTM), mutators can execute
transactionally during concurrent copying, achieving a consistent view of the heap, but with

lower overhead than read barriers or page protection.

The contributions of this thesis are twofold. (1) I implement and evaluate a novel
algorithm of using HTM to reduce the mutator overhead of concurrent copying GC.
(2) I conduct a detailed analysis of HTM capacity, filling a significant gap in the liter-
ature, and informing the design of our HTM-based algorithm. I then use the insights
on HTM capacity to implement several optimizations to improve the algorithm.

Using the Intel Transactional Synchronization Extension (TSX) as a case study,
I measure the transaction capacity on this popular HTM implementation, and cross-
validate the results with the literature and fill a gap in the literature, resolving osten-
sibly contradictory results. I have also explored different factors that may affect the
effective capacity of transactions, which have not yet been reported in the literature
(to the best of my knowledge). I implement the algorithm in MMTk, a framework for
the design and implementation of GC. The implementation is evaluated on Intel TSX
using several test programs. The results suggest that performing concurrent copying
GC using HTM is viable.

This work deepens the understanding of HTM, its strengths and weaknesses, in
the research community. Strategies using this work to fully exploit the capabilities of
HTM can be generalized and applied to other applications of HTM. Finally, this work
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enables the design and implementation of concurrent copying GCwith lower mutator
overhead with similar hardware support.
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Chapter 1

Introduction

Latency, defined by the time between the start and the completion of an event, is critical
in many applications, including video-based ones and transaction-based ones. These
applications are ubiquitous in modern life, and any additional latency of these appli-
cations can greatly affect the user experience. For example, search companies and
e-commerce companies have measured the financial impact of latencies in their ser-
vices [Linden, 2006]. However, decreasing the latency of these applications is no easy
task, often requiring optimizations across the stack, from the design of programming
languages to custom hardware chips.

Historically, many latency-critical applications are written in unmanaged program-
ming languages, such as C and C++. These languages are notorious for causing nu-
merous memory-related vulnerabilities, and the reliability of software suffers. Re-
cently, an increasing number of these applications are instead written in managed
languages, such as C♯, Java, JavaScript, and PHP. An important feature of managed
languages is automatic memorymanagement, also known as garbage collection (GC).
GC frees programmers from manually allocating and reclaiming memory resources,
increasing both the productivity of programmers and the reliability of software. How-
ever, GC often needs to pause application activities during a collection cycle, for ex-
ample, to scan references on the application stacks. The pause time contributes to the
latency of any application written in managed languages. Even worse, the pause time
is often proportional to the heap size, which is unacceptable in modern applications,
especially when running with several hundred GBs or even TBs of heap. Therefore,
it is crucial that we reduce the pause time of GC to meet the latency requirements of
latency-critical applications.

One important technique to reduce the pause time of GC is to run GC concur-
rently with application activities (mutator activities). This is known as concurrent
GC. One class of concurrent GC algorithms is concurrent copying GC, where GC relo-
cates objects to reclaim memory. Concurrent copying GC is widely used, for its ability
to both reduce the pause time and reduce the heap fragmentation. The challenge of
implementing concurrent copying GC is to make sure that the update of all pointers
to moved objects is logically atomic, and stale references are not used by mutators.

Currently, read barriers andpage protections are often used to provide the required
atomicity for concurrent copying GC. These mechanisms, however, introduce large
overhead to mutator activities. For example, read barriers mediate all mutator heap
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4 Introduction

reads, which happen very frequently.

1.1 Problem Statement

Concurrent copying GC reduces GC induced pauses in applications written in man-
aged languages, which help latency-critical applications written in these languages
meet the latency requirements. However, currently used synchronizationmechanisms,
read barriers and page protection, achieve heap consistency by introducing large over-
head to the mutator activities. The challenge is how we can implement concurrent
copying GC with lower mutator overhead.

1.2 Contributions

The contributions of this thesis have two parts.
In the first part of the thesis, I consolidate and contrast findings in the literature

regarding HTM capacity. I then design and carry out experiments to explore factors
that might affect HTM capacity, resolving apparent contradictions in the literature.

In the second part of the thesis, I implement and evaluate a novel concurrent copy-
ing GC algorithm that uses hardware transactional memory (HTM), co-developed
with Bond and Blackburn. Then, armed with the insights of HTM capacity described
in the first part, I devise optimizations for the algorithm, improving its practicality.
Finally, I demonstrate the viability of the algorithm through a suite of test programs.

1.3 Thesis Structure

The goal of my honours project is to investigate a novel concurrent copying GC algo-
rithm that uses HTM to reduce the mutator overhead compared with read barriers
and page protection. While implementing the algorithm, I discovered that that prac-
ticality of the algorithm is predicated on the understanding of HTM capacity, which
is now detailed in the first part of the thesis. The second part of the thesis is about
the algorithm, its design, implementation and evaluation. In particular, I concretely
demonstrate how the insights of HTM capacity can be used to guide the optimization
of the algorithm.



Part II

Understanding HTM Capacity

5





Chapter 2

Background

Parallel programming is becoming more and more necessary. Historically, the clock
rate, and hence the performance, of CPUs kept increasing while utilizing the same
power budget by scaling down the feature size of transistors. This observation of scal-
ing is known as Dennard scaling [Dennard et al., 1974]. Dennard scaling brought “free
lunch” to software development, as the performance of software improved due to the
advancement in the CPU performance rather than active optimization. Unfortunately,
Dennard scaling came to an end in the early 2000s [Agarwal et al., 2000], and clock
rates of CPU essentially stopped increasing. The total processing power (measured in
total FLOPS) of CPUs is still increasing, however, in the form of massive parallelism.
Common forms of this parallelism are CPUs with multiple cores, also known as multi-
processors. Multiprocessors are ubiquitous in the modern computing landscape, and
they can be found everywhere from smart watches to supercomputers. Despite this
ubiquity, automatically parallelizing serial code remains an active area of compilers
research. For now, to fully utilize the available parallelism, explicit parallel program-
ming is required.

However, parallel programming is difficult. It is up to the programmers to identify
parts of the program amenable to parallelism. Except for tasks that are embarrassingly
parallel, careful division of tasks and synchronization are often required to ensure
the performance and correctness of parallel programs. Good parallel programming
paradigms can aid programmers in expressing the parallelism.

While general-purpose parallel programming paradigms exist (e.g., OpenMP and
MPI), programmers still resort to low-level primitives (e.g., compare-and-swap (CAS)
andmutexes) to implement concurrent data structures. These low-level primitives are
especially prevalent in the implementation of the runtimes of programming languages,
where the use of concurrent data structures is frequent and performance critical. How-
ever, these low level primitives are notoriously error-prone, not productive to program,
and hard to debug.

Transactionalmemory (TM) provides an alternative paradigmof parallel program-
ming [Herlihy and Moss, 1993]. The idea stems from transactions found in database
systems (see Section 2.1). First, Section 2.2 introduces the semantics of TM and its
two incarnations, software transactional memory (STM) and hardware transactional
memory (HTM). Then, Section 2.3 discusses Intel Transactional Synchronization Ex-
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8 Background

tension (TSX), the only available implementation of HTM on commodity hardware
as of writing. Intel TSX is used as a case study in this work. Finally, Section 2.4 cov-
ers important principles of cache in modern CPUs, which help in understanding the
behaviour of HTM.

2.1 Transactions

To understand TM,we first need to understand transactions. Transactions are common
in the business context. For example, when processing a bank transaction, it is crucial
that the changes to the account balances occur atomically.

Transactions are also no stranger to the computing world, especially in the case
of database transactions [Bernstein, 1990; Gray and Reuter, 1992; Ramakrishnan and
Gehrke, 2000]. The semantics of transactions can be captured using the notion of lin-
earizability [Herlihy and Wing, 1990]. That is, each completed transaction appears to
take effect instantaneously in some sequential order. We call a transaction succeeding
committing. A transaction might also fail, and we say that the transaction aborts.

The four important properties of database transactions are known as ACID: atom-
icity, consistency, isolation, and durability. Atomicity focuses on the operations within
a transaction; either all or none happen. For example, a transaction that transfers $100
from account A to account Bmust ensure that the balance of A is decremented by $100
if and only if the balance of B is incremented by $100. Consistency, however, depends
on the data structures used and their invariant. For example, a transaction that adds
a node to a linked list must make sure that if a node is successfully added, the length
of the list is consistent with the total number of nodes. Isolation requires that transac-
tions do not seem to affect each other, even though they might be executed in parallel.
Durability requires that when a transaction commits, its effect is visible from the point
of committing.

In Section 2.2, wewill discuss transactionalmemory and towhat extent ACIDprop-
erties apply.

2.2 Transactional Memory

Lomet [1977] observed that transactions can be used as a synchronization mechanism
for general purpose programming. However, no implementation detail was provided.
Later, Herlihy and Moss coined the term transactional memory (TM) and proposed a
hardware implementation in their seminal work [Herlihy and Moss, 1993]. Around
the same time, Stone et al. [1993] proposed Oklahoma Update, which is similar to CAS,
except that it can operate on multiple words.

The basic semantics of TM is very similar to database transactions (see Section 2.1),
except that the durability is often ignored, as the data will not survive a power cycle
due to DRAM being volatile.

It is worth noting that TM does not magically solve all parallel programming prob-
lems. It is still up to programmers to identify parts of the program amenable to paral-
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lelism. If a critical section is broken into multiple transactions, TM cannot ensure cor-
rectness. Conversely, if a transaction includes extra work that can be executed safely
without synchronization, unnecessary overhead will still incur.

2.2.1 Design Space

TM systems can differ in many ways, but two main mechanisms that any TM imple-
mentation must provide are work tracking and conflict detection [Harris et al., 2010].

Work tracking concerns speculative writes of an uncommitted transaction. In ea-
ger versioning, a TM system writes directly to the memory and records values it has
overwritten. In case of a transactional abort, the TM system can undo or rollback
the changes to the memory. In lazy versioning, a TM system instead holds specula-
tive writes in a buffer, and only overwrites the memory when transactions commit. In
either case, we call the maximum amount of work that can be tracked in a transaction
the transactional capacity.

Conflict detection ensures isolation between transactions. TM can identify conflicts
when transactions are running, known as eager conflict detection. TM can also identify
conflicts only when transactions are attempting to commit, known as lazy conflict detec-
tion.

Apart from the twomainmechanisms, TM systems can also differ in their program-
ming models.

A TM system can be implicit or explicit in identifying transactionalmemory access.
In explicitly transactional TM, all transactionally accessed memory locations have to be
specified, such as in the case of the original TMproposal [Herlihy andMoss, 1993]. An
implicitly transactional TM, however, only requires the programmer to mark the bound-
ary of transactions, within which all memory accesses are treated as transactional.

A TM system can provide strong isolation or weak isolation for transactions. Strong
isolation protects a transaction from both other transactions and non-transactional ac-
cess. In contrast, weak isolation only guarantees transactional semantics among trans-
actions.

2.2.2 Software Transactional Memory

Despite being proposed in 1993, TM did not materialize on hardware until the Rock
processor from Sun in 2009. Meanwhile, the research community explored software
transactional memory (STM), first proposed by Shavit and Touitou [1995].

To achieve work tracking and conflict detection, STMs rely on software instrumen-
tation of memory operations (at object- or word-granularity). Unfortunately, this
instrumentation introduces both space and time overheads. To achieve good perfor-
mance, the instrumentation often needs to be integratedwith the runtime system, such
as JIT compilers or GC [Harris et al., 2010], making STMs a poor choice for languages
like C and C++ or for implementing the runtime itself. In addition, STMs do not pro-
vide strong isolation (see Section 2.2.1), making it hard to compose with third-party
code, often in the form of shared libraries.
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STMsdo have the benefit of not being subject to hardware limitations, such as cache
sizes. Compared with HTM, where the transactional capacity is often small, STM ca-
pacity is theoretically only bounded by the size of the memory.

Diegues et al. [2014] investigated some state-of-the-art STMs, in chronological or-
der: TL2 [Dice et al., 2006], TinySTM [Felber et al., 2008], SwissTM [Dragojević et al.,
2009], andNOrec [Dalessandro et al., 2010]. They showed that these STMs can provide
practical, and sometimes competitive, performance. However, the energy efficiency of
STMs is generally poor. Their work also showed that STMs are better than HTMs if
the workload leads to heavy contention on limited hardware resources.

2.2.3 Hardware Transactional Memory

In recent years, hardware transactionalmemory (HTM) has beenmorewidely studied
and implemented byvarious vendors. They include theRockprocessor fromSun [Chaudhry
et al., 2009], Azul [Click, 2010], andvarious IBMprocessors like the BlueGene/Q [Wang
et al., 2012]. The Advanced Synchronization Facility (ASF) from AMD [Christie et al.,
2010] is still at the proposal stage as of writing, leaving the Intel Transactional Syn-
chronization Extensions (TSX) [Intel Corporation, 2020d] the only commodity HTM
implementation.

For work tracking, HTM implementations often reuse and enhance existing hard-
ware structures, such as caches or store buffers1. This has the advantage of minimal
space and time overhead. However, the transaction capacity is subsequently bounded
by the cache size which is several orders of magnitude more than the memory size.

For conflict detection, HTM can again reuse existing hardware features, such as
cache coherency protocols. Cache coherence protocols are used to ensure each core of
a multiprocessor has a coherent view of the memory. For example, the protocols can
ensure a core will not read a stale value of a memory location from its cache if other
processors have published writes of the same memory location. This ensures that a
conflict abort of an ongoing transaction is raised when other processors write to a line
that is read from/written to during the transaction.

With the hardware support, HTMs can generally achieve much lower overhead
than STMs, enabling interesting applications, such as high performance game emula-
tion [Yahfz, 2020].

2.3 Intel Transactional Synchronization Extensions

Using the taxonomy introduced in Section 2.2.1, Intel Transactional Synchronization
Extensions (TSX) is a TM system that uses lazy versioning, uses eager conflict detec-
tion, is implicitly transactional, and provides strong isolation.

TSX has two different programming models: Hardware Lock Elision (HLE) and Re-
stricted Transactional Memory (RTM). I focus on RTM in my thesis.

1This implies that work can only be tracked at cache-line granularity, and therefore, false sharing of
cache lines can lead to false transactional conflicts.
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HLE is a backward-compatible extensionproviding two instructionprefixes: XACQUIRE
and XRELEASE. These two prefixes can be used onmemory operations that acquire or re-
lease locks protecting critical sections, and thus identifies the transactional boundary.
On hardware that does not support TSX, or if the transactional execution of the critical
section fails, the CPU will execute the critical section non-transactionally, where the
lock operations are not elided.

RTM, however, provides three new instructions. XBEGIN and XEND are used to mark
the transactional boundary, while XABORT explicitly aborts a transactionwith a supplied
status code. XBEGIN specifies the address of an abort handler. In the event of an abort,
all changes to the memory and architectural registers are reversed, and the control
flow is transferred to the abort handler. The abort handler can examine the value of
the eax register and find out the cause of the abort.

Under both models, the XTEST instruction can show whether it is executed in an
ongoing transaction.

It is worth noting that, likemany other TM implementations, TSX is only best-effort
and there is no progress guarantee. Aborts can happen for many reasons other than
conflicts, including the following reasons [Intel Corporation, 2020d, Volume 1: Chap-
ter 16.3.5, 16.3.8]:

• Explicitly aborted via XABORT.

• Internal buffer overflowed.

• Synchronous exception events, such as a debug breakpoint.

• Asynchronous events, such as a timer interrupt.

• Unfriendly instructions, such as the ones causing privilege level transition (e.g.
SYSCALL).

• Page faults.

Therefore, it requires careful construction of transactional code paths to avoid frequent
aborts.

It is worth mentioning that since the inception of Intel TSX, it has suffered from
many bugs across multiple generations of CPUs. Various microcode updates were is-
sued, that either reduces the functionalities of TSX or even entirely renders TSX unus-
able. In 2014, TSXwas disabled onHaswell and early Broadwell processors for causing
“unpredictable system behavior” “[u]nder a complex set of internal timing conditions
and system events” [Intel Corporation, 2020b, HSD136]. In 2019, a microarchitectural
data sampling (MDS) vulnerability known as ZombieLoad 2 [Schwarz et al., 2019] tar-
geted TSX. During an asynchronous abort of a transaction, such as a buffer overflow
or conflict, microarchitectural side effects are not reversed, and the results of specula-
tive read can be inferred later. Again in 2019, an erratum [Intel Corporation, 2020a,
SKL179] was issued for Skylake and later processors. When RTM is enabled, PMU
general purposes counter 3 “may contain unexpected values”. A microcode update
provides an option known as TSX Force Abort. A flag is provided to allow switching
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between disabling counter 3 or disabling TSX entirely. It has been reported [RPCS3,
2020] that the microcode update results in increased transactional abort rates.

Readers should keep in mind that the changes to Intel TSX make the reproduction
of results published in prior work much more difficult. Moreover, when conducting
experiments, there can be unexpected results because of the changes.

2.4 Cache

As discussed in Section 2.2.3, conflict detection in HTM is often piggybacked on the
memory hierarchy. Therefore, it is important to understand some basic principles of
how a cache works.

Caches operate on blocks of memory, and the smallest unit of operations is called a
cache line. A cache line can be either entirely in or not in a cache. Cache lines are placed
and moved between different levels of cache. The placement and the movement are
controlled by placement policies and replacement policies, are discussed below.

These policies can affect HTM capacity.

2.4.1 Placement

Cache placement policies refer to where to place cache lines in a cache. Below are
multiple strategies, listed in the descending order of the level of associativity.

Fully associative: A cache line can be placed anywhere in the cache.

Set associative: A set associative cache is divided into multiple sets. A cache line is
first mapped onto a set (usually using the modulo operation), and then the line
can be placed anywhere in the cache.

Direct mapped: A cache line can only be placed at a fixed location in the cache.

For caches that are not fully associative, memory access patterns can affect the ef-
fective cache size. For example, if we access memory addresses in a certain stride, so
that all the addresses map onto the same cache set, only a fraction of the total cache
size is used in this case.

2.4.2 Replacement

When a cache line can be found in a cache, we call it a cache hit. Conversely, when a
cache line cannot be found in a cache, we call it a cachemiss. Since thememoryhierarchy
is built to reduce the latency of memory operations, we want to minimize the number
of cache misses. When a cache miss occurs, the cache line in question will be placed
into the cache. Cache replacement policies refer to when the above happens, which
existing cache line is to be replaced.

It is trivial in the case of a direct mapped cache, as each cache line maps to a fixed
location in the cache, so there is no choice to bemade. However, in the case of fully asso-
ciative or set associative cache, replacement is optimized so that future cachemisses are
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minimized. The cache replacement policies on commodityCPUs have been guarded as
trade secrets, although there have been efforts in reverse engineering the policies [Abel
and Reineke, 2014, 2020].

Two common cache replacement policies are as follows. For a cache that uses first
in, first out (FIFO), the oldest cache line is replaced. For a cache that uses least recently
used (LRU), the least recently used cache line is replaced. Note that it is difficult to
keep track exactly when cache lines are accessed, especially given the limited silicon
estate. Often, pseudo-LRU is used, such as the quad-age LRU (QLRU) algorithm used
in Intel Ivy Bridge processors [Jahagirdar et al., 2012]. Pseudo-LRU only offers an
approximation, and it is possible that a cache line, which is not the least recently used
one, gets replaced.

2.4.3 Cache and HTM Capacity

As discussed in Section 2.2.3, conflict detection of HTM is often built on top of the
memory hierarchy, and the transactional abort can occur when a cache is evicted.

Since memory access patterns can affect the effective cache size (see Section 2.4.1),
it is reasonable to deduce thatmemory access patterns can also affect the effectiveHTM
capacity for transactions. In fact, this relationship has been shown by Hasenplaugh
et al. [2015].

We will discuss how the cache status and cache replacement policies can affect the
effective transaction capacity in Chapter 5.
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Chapter 3

Related Work

In this chapter, I will survey related work on the HTM capacity on Intel TSX. By con-
trasting the results, I will point out the apparent contradiction, with different work
citing different sizes for maximum HTM capacity. I will also compare the methodolo-
gies used in prior work for measuring HTM capacity which I will attempt to resolve in
Chapter 5.

3.1 Contradictory Reported HTM Capacity

In this section, I will list the HTM capacity of Intel TSX reported in the literature I have
surveyed in chronological order. All CPUs used in the literature have 32KB L1 data
cache and 256KB L2 cache per core.

• On Core i7-4770 (Haswell), Ritson and Barnes [2013] found that only transac-
tions of sizes smaller than 16KB can consistently commit, and reported that no
transactions with sizes larger than 26KB can commit. They speculate that the
transactional work tracking is done in the L1 data cache.

• On a Haswell CPU, Yoo et al. [2013] from Intel stated that Haswell uses L1 data
cache to track transactional states. However, the eviction of cache lines in the
read-set does not cause an abort. Instead, they are moved to a secondary struc-
ture for tracking. In contrast, the eviction of cache lines in the write-set always
causes an abort.

• On Xeon E3-1275 v3 (Haswell), Diegues et al. [2014] reported that the perfor-
mance of transactional memory benchmarks is strongly dependent on the access
patterns to L1 cache.

• On Core i7-4770 (Haswell), Goel et al. [2014] reported that the abort rate satu-
rates at 128K cache lines (the size of L3 cache) for read-only transactions, and
512 cache lines (the size of L1 cache) for write-only transactions.

• On a Xeon E3-1200 v3 family CPU (Haswell), Pereira et al. [2014] found that the
speedup of transactional data processing dropped dramatically at 256KB, which
is the size of the L2 cache.
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• On Core i7-4770 (Haswell), Wang et al. [2014] found that the biggest read-only
transaction is 4MB (half the size of L3 cache) and the biggest write-only transac-
tion is 31KB.

• On Core i7-4770 (Haswell), Dice et al. [2015] stated that the CPU tracks the read-
set in all levels of caches, but the write-set is tracked in L1 cache. The size of the
largest read-only transaction seen committing is 7.5MB, which is slightly smaller
than 8 MB—the size of the L3 cache.

• On Core i7-4770 (Haswell), Hasenplaugh et al. [2015] found that the maximum
size for read-only transactions is 75K cache lines (slightly more than half of the
L3 cache size), and the maximum size of write-only transactions is 400 cache
lines (slightly smaller than the L1 cache size).

• On Core i7-4770 (Haswell), Nakaike et al. [2015], found that the maximum sizes
for read-only transactions and write-only transactions are 4MB and 22KB respec-
tively.

• On Core i7-6600U (Skylake), Gruss et al. [2017] found that no read-only transac-
tion exceeded the capacity of the L3 cache. Similarly, they found that the write-
set size is constrained by the size of L1 data cache. They speculate that the read-
set tracking is done using a probabilistic structure, such as a Bloom filter.

I observe that there does not seem to be a definitive answer of the capacity of In-
tel TSX. The reported write-set capacities range from 22KB [Nakaike et al., 2015] to
31KB [Wang et al., 2014]. The only thing that all work agrees on is that the write-set
capacity is bounded by the L1 data cache size. The reported read-set capacities range
from 22KB [Nakaike et al., 2015] to 7.5MB[Dice et al., 2015].

3.2 Mixed Methodologies

In Section 3.1, I enumerated the read-set capacities and the write-set capacities of Intel
TSX reported in the literature. The write-set capacities range mildly but there is a
huge discrepancy in the reported read-set capacities, ranging from 22KB to 7.5MB.
The difference here might be due to how the capacities are measured. However, the
methodologies used in the literature are mixed and sometimes unclear.

Some prior work [Dice et al., 2015] focuses on the HTM application, and therefore,
it is understandable that the details of the experimental designwere omitted. However,
a performance-focused work Goel et al. [2014] does not include any detail either.

Somepriorwork evaluates the performance of TMsystemsusing benchmark suites.
For example, Diegues et al. [2014] used the STAMP suite [Chí et al., 2008] and Pereira
et al. [2014] used Eigenbench [Hong et al., 2010]. Unfortunately, these benchmarks
mix reads and writes in the same transaction. Although good to represent more real-
istic workload, these benchmarks are unhelpful in determining the read-set capacity
and the write-set capacity separately. In addition, Eigenbench assumes an explicit TM
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system, where all transactional memory accesses are explicitly identified, referred to
as “transaction length”. This characterisation of the workload is inapplicable in the
context of an implicit TM system, such as Intel TSX.

Amajority of the prior work reuse the samememory region for testing transactions
of different sizes [Wang et al., 2014;Hasenplaugh et al., 2015;Nakaike et al., 2015; Gruss
et al., 2017]. However, Ritson and Barnes [2013] explicitly chose distinct memory ar-
eas (aligned to a cache line boundary) for different transactions, aiming to minimize
the effects of L2 and L3 processor caches.
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Chapter 4

Methodology

Empirical evaluation is fundamental to this part of the thesis, and the following sec-
tions document the software and hardware setup used in the evaluation. I will also
discuss the metric used by prior work to describe HTM capacity, and why the metric
is problematic. Finally, I will discuss the methodology used in my experiments.

4.1 Software Platform

All machines used in the evaluation are running the identical image. The Linux distri-
bution used is Ubuntu 18.04.5 with 5.4.0-47-generic kernel. GCC version 7.5.0 is used
to compile C programs with flag -O2. Apart from the programs being benchmarked,
the system is otherwise idle, with as many background daemon turned off as possible.

4.2 Hardware Platform

The machines used in the evaluation are listed in Table 4.1. I choose a diverse set of
microarchitectures in the evaluation, since the implementation of TSX is likely to im-
prove over time. All machines used have simultaneous multithreading (SMT) turned
on but with frequency scaling turned off in my evaluations. Since all processors used
are Intel x86 processors, the above implies that Intel® Hyper-Threading Technology is
turned on but Intel® Turbo Boost Technology is turned off.

4.3 Success Rate Curves

In Section 3.2, I contrasted the methodologies used in prior work. A common way
to describe the HTM capacity in the literature is by using success rate curves [Ritson
and Barnes, 2013; Goel et al., 2014; Wang et al., 2014; Hasenplaugh et al., 2015; Gruss
et al., 2017]. The success rate is the number of transactions committed divided by the
number of transactions attempted. Note that all the attempted transactions have the
same characteristics other than the size, including the memory access pattern. The
curve shows how the success rate varies with the sizes of the transactions.
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Table 4.1: Machines used in the evaluation.

Architecture Haswell Broadwell Skylake Coffee Lake

Model Core i7-4770 Xeon D-1540 Core i7-6700K Core i9-9900K
Technology 22nm 14nm 14nm 14nm

Clock 3.4GHz 2.0GHz 4.0GHz 3.6GHz
Cores × SMT 4 × 2 8 × 2 4 × 2 8 × 2

L1 Data Cache 32KB × 4 32KB × 8 32KB × 4 32KB × 8
L2 Cache 256KB × 4 256KB × 8 256KB × 4 256KB × 8
L3 Cache 8MB 12MB 8MB 16MB

Memory Size 16GB 16GB 16GB 32GB
Memory Type DDR3-1600 DDR4-2133 DDR3-1600 DDR4-2133

I contend that the success rate curve is a problematic way to describe a TM system
for the following two reasons.

Firstly, the success rate is misleading and cannot be meaningfully compared with-
out extra information. When people see “success rate”, they think that if they attempt a
transaction of certain parameters, the success rate describes the likelihood/probability
that the transaction will commit. However, from statistics knowledge, the law of large
numbers tells us that we can only estimate the probability of events by repeated trials
if the events satisfy certain conditions. For example, to estimate the probability that
rolling a die produces six, we can roll the die for a large number of times and the ratio
of results in which six appears should be close to the probability. The assumption that
each outcome of rolling a dice is independent and follows the same distribution (i.i.d)
is critical here. However, the outcome of a transaction depends on the previous transac-
tion due to the nature of the hardware-based TSX implementation. Therefore, multiple
attempts of the transaction of the same parameters are not i.i.d.

Secondly, in real workload, we will stop retrying a transaction once it successfully
commits. Therefore, a more meaningful metric will be how many retries it takes for a
transaction with certain parameters to commit.

4.4 Measuring HTM Capacities

Themethodology Iwill adopt in this thesis is largely based on the rtm-bench benchmark
due to Ritson and Barnes [2013]. The benchmark has the following advantages.

(1) The benchmark is publicly available on GitHub1.

(2) The benchmark sets the affinity of each of OS threads it spawns, preventing an
OS thread from being migrated to a different hardware thread.

1https://github.com/perlfu/rtm-bench

https://github.com/perlfu/rtm-bench
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(3) The results on Core i7-4770were published [Ritson and Barnes, 2013], which can
act as a sanity check on my setup.

(4) By default, distinct memory areas (aligned to a cache line boundary) are used
for different transactions to minimize the effect of caches. This enables me to
perform experiments on how the cache status affects the HTM capacity.

Although the benchmark reports the experimental results using success rate curves,
which I argue is not ideal (Section 4.3), devising a better metric is beyond the scope of
this work. However, one needs to be mindful when interpreting the results.
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Chapter 5

Experiments and Results

In the previous section, I discussed the relevant work and pointed out the apparent
contradiction regarding the capacities of read-only andwrite-only transactions. In this
section, I will present experimental designs and results that attempt to resolve the con-
tradiction. Note that I will use Intel TSX (see Section 2.3) as a case study in this sec-
tion. The techniques and methodologies discussed, however, should be generalizable
to other similar HTM systems.

5.1 Baseline

First, I attempt to reproduce the results of rtm-bench on Haswell. As shown in Fig. 5.1,
the success rates of both read transactions and write transactions drop significantly
around 16KB. The largest read transaction is about 22KB, and the largest write trans-
action is about 25KB. The results are very close to what was reported by Ritson and
Barnes [2013].

In addition, I also perform the same experiment on newer platforms, including
Broadwell, Skylake, and Coffee Lake (in chronological order), since the newer mi-
croarchitectures are expected to have an improved second-level structure that tracks
evicted read-set addresses [Intel Corporation, 2020c, Chapter 16.2.4.2]. The results for
the above three microarchitectures are shown in Fig. 5.2, Fig. 5.3, and Fig. 5.4 respec-
tively.

As shown in the plots, newer platforms do have larger read-only capacity. How-
ever, the write-only capacity is consistently around 20-25, which does not differ much
from the prior work. In addition, the size of largest successfully read-only transac-
tions is nowhere close to the size of the L3 cache, which is shown to be possible on
prior work.

5.2 Reusing Memory Areas

As discussed in Section 3.2, amajority of the prior work reuse the samememory region
for testing transactions of different sizes. In this section, I modify the baseline so that
transactions of the same size use the same memory area. The results are shown in
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(d) Transactional 64-bit read

Figure 5.1: Success rate curves on Haswell.



§5.2 Reusing Memory Areas 25

0 5000 10000 15000 20000 25000 30000
bytes/op

0

20

40

60

80

100

%

 x_read32
success
unknown
overflow

(a) Transactional 32-bit read

0 5000 10000 15000 20000 25000 30000
bytes/op

0

20

40

60

80

100

%

 x_read64

success
unknown
conflict-retry
overflow

(b) Transactional 64-bit read

102 103 104 105 106 107

bytes/op

0

20

40

60

80

100

%

 x_read32
success
unknown
overflow

(c) Transactional 32-bit read in log scale

102 103 104 105 106 107

bytes/op

0

20

40

60

80

100

%
 x_read64

success
unknown
overflow

(d) Transactional 64-bit read in log scale
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(f) Transactional 64-bit write

Figure 5.2: Success rate curves on Broadwell.
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(d) Transactional 64-bit write

Figure 5.3: Success rate curves on Skylake.
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Figure 5.4: Success rate curves on Coffee Lake.
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Fig. 5.5, Fig. 5.6, Fig. 5.7, and Fig. 5.8 for Haswell, Broadwell, Skylake and Coffee Lake
respectively.
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Figure 5.5: Success rate curves on Haswell when reusing memory.
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Figure 5.6: Success rate curves on Broadwell when reusing memory.

As shown in the plots, for each platform, reusing the memory area consistently
increases the capacity of read-only transactions. Another interesting trend is thatwhen
transactions are performed using 64-bit reads instead of 32-bit reads, the capacity of
read-only transactions is consistently larger across platforms.

I suspect thatwhen a transaction is attempted, it can affect the cache content regard-
less whether the transaction commits or not. Thus, when a series of transactions are
working on the same memory area, they are more likely to commit because of the in-
teraction between HTM and the cache hierarchy. This could explain the contradiction
in prior work.
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Figure 5.7: Success rate curves on Skylake when reusing memory.
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Figure 5.8: Success rate curves on Coffee Lake when reusing memory.



30 Experiments and Results

5.3 Invalidating and Warming Up Cache

As discussed in Section 2.4.3, cache placement policies can affect the effective HTM
capacity. Based on the results in Section 5.2, I suspect that the content of the cache can
also affect the effective HTM capacity. Therefore, I perform the following experiments.
I only performed the experiments on Coffee Lake due to time constraint.

I investigate the following scenarios.

1. No-op: This amounts to the baseline.

2. Invalidation: Before each transaction, the wbinvd instruction1 is used to invalidate
all levels of cache.

3. Warmup: Before each transaction, the memory area that will be read in the trans-
action is read outside the transaction five times. On an otherwise idle system, the
repeated read should warm up the cache for the upcoming transaction.

The results for the first scenario can be found in Section 5.1. The results for the
latter two scenarios are shown in Fig. 5.9 and Fig. 5.10 respectively.
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Figure 5.9: Success rate curves on Coffee Lake when invalidating caches.

As we can see from the plots, the largest transaction obtained in both scenarios
on Coffee Lake is larger than the baseline on the same CPU (see Fig. 5.4). In ad-
dition, it is larger than the largest transaction obtained through reusing memory ar-
eas (see Fig. 5.8). In fact, it is a lot closer to the largest read-only transactions reported
in prior work Section 3.1.

Normally, when caches are invalidated, the performance of programs will suffer,
since all memory operations will result in cache misses. However, when caches are
warmed up, the performance of programs will benefit from it, since more memory
operations will result in cache hits. Therefore, the results here are interesting that both
invalidating and warming up caches help large transactions commit.

1The wbinvd is privileged, and therefore this Linux kernel module is used. https://github.com/batmac/
wbinvd

https://github.com/batmac/wbinvd
https://github.com/batmac/wbinvd
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Figure 5.10: Success rate curves on Coffee Lake when warming up caches.

My hypothesis is that the results can be explained by the pseudo-LRU cache re-
placement policy (see Section 2.4.2). Under perfect LRU, cache lines accessed in a
transaction, that is smaller than the cache size, should not be evicted by definition.
However, under pseudo-LRU, when a cache set is full, a cache line read in the trans-
action might still get evicted despite having been recently used. When we invalidate
the cache, all lines in a cache are invalid, and therefore, can accommodate cache lines
of the transaction without invoking the displacement algorithm. Similarly, when the
cache is warmed up, most lines used in the transaction are already in the cache, and
the displacement algorithm will not be invoked if a memory operation hits the cache.

5.4 Summary

In this chapter, I explored how different factors can affect the capacity of transactions.
In particular, reusing the memory area, invalidating the cache, and warming up the
cache can all improve the read capacity of transactions across all platforms tested.
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Part III

HTMGC
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Chapter 6

Background

In the parlance of the garbage collection literature, the application is referred to as the
mutator and the GC is referred to as the collector. Mutators are responsible for execut-
ing the application code, which mutates the heap in the process. Collectors provide
automaticmemorymanagement, also known as garbage collection (GC), to facilitate the
execution of mutators.

In this chapter, we survey the design space of GC algorithms, and look at how
different design decisions lead to different performance characteristics of these algo-
rithms. First, Section 6.1 introduces three fundamental elements of garbage collection
algorithms: allocation, identification, and reclamation. Section 6.2 introduces tracing,
which is the most widely used identification strategy. Next, Section 6.3 and Section 6.4
cover the two fundamental strategies for reclamation, non-copying GC and copying
GC respectively. Copying GC leads to better locality and lower heap fragmentation.
Then, Section 6.6 discusses concurrent GC, in which identification, reclamation, or
both are executed concurrently with the mutators. Concurrent copying GC achieves
the advantages of copying GC and concurrent GC, but requires heavyweight synchro-
nization to ensure that the concurrently executingmutator has a consistent view of the
heapwhile the collector changes it. Pursuing a concurrent copying GC algorithmwith
lower mutator overhead is at the heart of this work.

Also in this chapter, Section 6.5 and Section 6.7 introduce barriers and yieldpoints
respectively. Both mechanisms play important roles in this work.

6.1 Organization of Garbage Collection Algorithms

Dynamic memory allocations in managed languages happen in a region of memory
called the heap, which is managed by the GC. Different GC algorithms may divide the
heap differently and impose different policies on different parts of the heap. These
algorithms may also differ in how objects are placed, or in what actions to take upon
the allocation of objects, etc. For many decades, many published GC algorithms con-
flate the above when describing how these algorithms work. Blackburn andMcKinley
[2008] introduced a taxonomy of GC algorithms, where an algorithm is defined by its
heap organization and its heap operations. The heap organization prescribes how ob-
jects aremapped into different parts of the heap. The heap operations, however, can be
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further divided into three parts, that were also identified by Jones et al. [2011]: (1) al-
location: allocate new objects, (2) identification: identify garbage, naming the object to
reclaim, and (3) reclamation: make memory occupied by garbage available for future
allocation. This is worth noting that these three parts are not always independent. In
particular, how space is reclaimed often affects how space is allocated.

To show how the taxonomy works, we can apply it on the classic semispace GC al-
gorithm [Fenichel and Yochelson, 1969; Cheney, 1970]. The heap organization of semis-
pace is that the heap is divided into two equally sized spaces, with only one space
designated for allocation at any given time, called the tospace. The other space is called
the fromspace. When a GC is triggered, the roles of the tospace and the fromspace
are swapped, and the then-fromspace now-tospace is used for all allocation, including
the relocation of objects. The three parts of the heap operations of semispace are as
follows. Firstly,allocation into a semispace is via bump-pointer allocation. That is, a cur-
sor is maintained for the tospace, and when allocating an object at the given size, the
cursor is incremented by that size plus padding if any address alignment is required.
Secondly, the identification of semispace is tracing (see Section 6.2). Finally, the recla-
mation of semispace is by copying (see Section 6.4), where all reachable objects in the
then-tospace now-fromspace are copied into the now-tospace.

6.2 Tracing GC

An important part of GC is the identification of objects to reclaim. One identification
strategy is by using reference counting, where each object has a counter for the number
of references to that object. If an object has a reference count of zero, then it can be
reclaimed.

Another very widely used strategy is called tracing. Tracing is done by performing
a transitive closure of the object graph. During the transitive closure, the reachability
of objects are recorded, and garbage is indirectly identified as all the unreachable ob-
jects. Transitive closures start from a root set or simply roots. Roots are references that
mutators can use without going through another object, which includes references on
the stack or in registers. The idea is that for an object to be reachable by mutators,
and therefore, should not be reclaimed, the object must be transitively reachable from
roots.

6.3 Non-copying GC

In this section, we will discuss a class of GC algorithms that does not perform copy-
ing for reclamation. For these algorithms, the reclamation of unreachable objects is
achieved by returning the block of memory occupied by such objects to a pool for
future allocation, and thus increasing the total free space. The reachable objects, how-
ever, are left in place. As discussed in Section 6.1, the reclamation strategy often affects
the allocation strategy. In the case of non-copying GC, free-list allocators are often
used. These allocators fulfill an allocation request by choosing an available block of
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memory no smaller than the requested size from a pool of memory, often arranged as
lists of different sizes. If no suitable block can be found, the allocator requests more
memory to replenish the pool. Two of the problems that arise from using non-copying
GC are as follows.

Fragmentation It can be the case the heap still has free space through the blocks in
the pool for allocation. However, there is no block of memory big enough available
for an allocation, either through reusing one the blocks or requesting more memory.
This phenomenon is known as fragmentation and it is common in long-running applica-
tions using a non-copying GC. As a result of fragmentation, GCs might be frequently
triggered, despite the fact that the heap still has free space. Sometimes, more catas-
trophically, the mutator can be terminated with an out-of-memory error, when a large
allocation cannot be satisfied even afterGC. Fragmentation decreases the effective heap
size when GC algorithms choose such reclamation strategy [Robson, 1971, 1974]. It’s
worth noting that in the case of severe fragmentation, GC can trigger an expensive in-
place compaction of the heap [Printezis, 2001; Soman et al., 2004], where all reachable
objects are moved towards one end of the heap1.

Poor Locality Non-copying GC can also suffer from poor locality. It stems from the
fact that reusing thememory blocks from the pool is themain form of allocation. How-
ever, the pool is not necessarily organized according to vicinity. Often, it is organized
by the temporal order of when the memory blocks are returned to the pool. As a con-
sequence, consecutive allocations requests might be satisfied with memory locations
that are not adjacent. This can lead to bad cache locality [Blackburn et al., 2004a].

6.4 Copying GC

In Section 6.3, we discussed non-copying GCs and the problems they have. In this sec-
tion, we will discuss a class of GC algorithms that relocate reachable objects during
reclamation. Again, as discussed in Section 6.1, the reclamation strategy often affects
the allocation strategy, and copying GC is often accompanied by bump-pointer alloca-
tion.

These algorithms work as follows. All reachable objects in one section of the heap,
where GC is operating on, are copied into some other parts of the heap. All unreach-
able objects in that section are not copied, so that the section is freed en masse, and
thus regains more usable memory. It is important to note that when we relocate an
object, all references to that object need to be fixed to point to the new version of the
object. Not only do we need to fix all references within the heap, we also need to fix
from the roots (see Section 6.2), since they are also used by mutators.

Contrasting with their non-copying counterparts, copying GC has the following
benefits.

1The relative positions of objects in the heapmay ormay not be preserved depending on the algorithm,
and mutator’s locality can be affected.
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Defragmentation When relocating objects, the new versions of reachable objects are
placed consecutively towards one end of the heap. This defragments the heap by re-
ducing the number of small chunks of free memory that cannot be used to fulfill large
allocation requests.

Good Locality Due to the nature of bump-pointer allocation, consecutive allocation
made bymutatorswill be adjacent. Moreover, the relocation of objects not only reduces
the fragmentation, but also places objects closer together, increasing the spatial locality.

6.5 Barriers

Barriers are code fragments that mediate heap access of mutators to facilitate the GC.
They are used to make many GC algorithms efficient, including generational GC and
concurrent GC. Different barriers can be triggered under different conditions. Read
barriers are executed during a read of the heap, andwrite barriers are executed during
a write of the heap. Reference barriers are executed for read/write of a reference field,
and primitive barriers are executed for read/write of a primitive field.

An example is the boundary barrier used in a generational GC. A generational GC
with two generations divides the heap into two contiguous partitions, the nursery
space and the mature space. As discussed in Section 6.2, a transitive closure of the
object graph is often needed for identification. However, in the case of a generational
GC, we would like to be able to only perform GC on the nursery space, and avoid
the full heap trace. The boundary barrier is a write barrier that checks all creations
of references, and if a reference from the mature space into the nursery space is cre-
ated (crossing the “boundary”), the location of the reference is recorded. During a
nursery GC, we can simply use the references recorded by the barrier as a basis of trac-
ing on the nursery space, knowing that we will not miss any reference and incorrectly
reclaim objects. The boundary barrier is cheap because checking whether an object is
a nursery object only requires two comparisons, since the nursery space is contiguous.

The costs of different barriers have been extensively studied in [Blackburn and
Hosking, 2004; Yang et al., 2012]. The literature shows that barriers can introduce
significant overhead to mutators due to their prevalence. In particular, frequently ex-
ecuted barriers in performance critical code paths, like read barriers, can have about
10% mutator overhead. In contrast, common write barriers have only about 1% muta-
tor overhead.

In addition, to avoid the cost ofmaking an out-of-line call, barriers are often inlined
with themutator code during compilation. As a consequence, barriers cannot be easily
removed, unless all methods are compiled again.

In this work, barriers are used to record references to objects being moved, making
it easier for the collector to continuously monitor whether any reference update has
been missed.
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6.6 Concurrent GC

Stop-the-worldGC suffers fromhigh latency asmutators are paused until oneGC cycle
has finished. The latency problem can be alleviated by interleaving the execution of
the collectors and the mutators. The concurrency can be applied in different phases of
GC activities, giving rise to concurrent tracing GC and concurrent copying GC.

6.6.1 Concurrent Tracing GC

Concurrent tracing GC performs the identification phase of the GC concurrently with
the execution of mutators. However, performing the transitive closure of the object
graph while mutators can potentially mutate the graph is racy.

A classic race condition is as follows. Let A be an object that is being inspected by
GC. Meanwhile, the mutator sets a field of A to point to object B that has not been
previously traced but only reachable fromA. The collector finishes tracing through all
references from A and moves to another object. Later, that field of A can be set to be
B again, but the collector has finished A. As a result, object B will be missed by the
collector, and thus be deemed unreachable. If the collector then reclaims the space of
B, it will render the reference field of A invalid, which might result in a crash of the
application.

The above example illustrates the importance of synchronization between collec-
tors and mutators for concurrent tracing. The techniques for concurrent tracing are
well understood [Steele, 1975; Dijkstra et al., 1978; Yuasa, 1990]. These techniques gen-
erally usewrite barriers (see Section 6.5), so that different invariants can bemaintained
during the execution of the mutators. For example, Dijkstra et al.’s barrier maintains
the invariant that if an object has beenmarked as scanned andwill not be visited again,
it should not hold any reference to unmarked objects [Dijkstra et al., 1978]. The barrier
works by checking the source object whenever a reference is created. If the creation of
the reference will break the invariant, the referent will be marked by the barrier. Let’s
revisit the previous example. Upon the creation of the reference from A to B, Dijkstra
et al.’s barrier will mark B, and therefore, B will not be reclaimed.

6.6.2 Concurrent Copying GC

In Section 6.6.1, we talked about concurrent tracing GC, where the identification phase
runs concurrently with the mutators. In this section, we will discuss how the reclama-
tion phase of copying GCs can execute concurrently with the mutators. To clarify the
terminologies, we use fromspace objects to refer to objects identified for relocation, and
tospace objects to refer to the corresponding copies of fromspace objects after relocation.

As discussed in Section 6.4, copyingGCneeds to ensure that all references to copied
objects are updated to point to the new versions. In stop-the-world copying GC, fixing
heap references and roots is relatively easy. Performing these updates concurrently,
however, is considerably harder than concurrent tracing, where only liveness is of con-
cern. At the core of concurrent copying algorithms, we need tomake sure that copying
and pointer updates are done in a logically atomic fashionwith respect to themutators.
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If the copying of objects is not done atomically, two important problems will arise.
Firstly, mutators might store values to fromspace objects, resulting in updates being
lost. Secondly, different mutator threads might observe different values when reading
from an objects, depending on whether they read from the fromspace object or the
tospace object. These two problems have to be addressed by any concurrent copying
GC algorithm.

Like concurrent tracing, barriers can be used to implement concurrent copying.
Two classic barriers are Baker’s barrier [Baker, 1978] and Brooks’ barrier [Brooks,
1984].

Baker’s barrier maintains the invariant that mutators only operate on tospace ob-
jects. For each reference read, the barrier checks whether the referent is a fromspace
object, and if so, the barrier performs one the following three actions. If the referent has
been copied, the barrier will return the tospace version. If the referent is being copied
by a collector, the barrier will wait until the copying is finished, and then return the
tospace version. If the referent has not been copied, the barrier copies the object itself,
and then returns the tospace version.

Brooks’ barrier in contrast allows mutators to operate on fromspace objects. How-
ever, upon every reference read, the barrier does an unconditional indirection on the
forwarding pointer in the object header, so that if a tospace version of the object is
available, the tospace version is used instead. It is worth noting that Brooks’ barrier
was originally designed for incremental GC on CPUs with a single hardware thread,
where mutators do not run in parallelwith collectors. Therefore, Brooks’ barrier, as de-
scribed in the original paper, only has a read barrier. If mutators run in parallel with
collectors, the read barrier on its own does not prevent lost updates. A stronger varia-
tion of the Brooks’ barrier is required for concurrent copying GC. There are a number
of ways this could be addressed. For example, in Shenandoah [Flood et al., 2016], a
write barrier is used to forward any fromspace object that is written to.

As discussed in Section 6.5, these read barriers introduce high mutator overhead.
The overhead is incurred not only during GC time, but also when GC is not underway,
because they cannot be easily inserted or removed.

Alternatively, pageprotection can beused to implement concurrent copyingGC [Ap-
pel et al., 1988; Click et al., 2005; Kermany and Petrank, 2006]. The idea is that a page
that potentially contains stale references is protected, and every access to a protected
page will generate a page fault. The trap handler can then fix up the references in
that page. Like read barriers, page protection is also quite expensive, measured to be
around 20% in a state-of-the-art collector [Pizlo et al., 2008] that uses page protection.

The high mutator overhead of these concurrent copying algorithms motivates this
work,which iswhetherwe canperform concurrent copyingwithHTM(see Section 2.2.3)
with lower cost.

Sapphire

Sapphire [Hudson andMoss, 2003] is a concurrent copyingGCalgorithm. Like Brooks’
barrier, Sapphire allows mutators to operate on fromspace objects, but interestingly



§6.7 Yieldpoints 41

achieves so without requiring any read barrier. The key idea is that it uses a write
barrier to mirror all object writes, so that updates are reflected in both fromspace ob-
jects and tospace objects when copying is underway. However, the write barriers used
by Sapphire are expensive, because of the duplication of writes of both reference and
primitive fields, and also the use of compare-and-swap (CAS) for writes. The copying
of objects is also “semantic”; tospace objects point only at tospace of objects. The copy-
ing phase terminates when all objects have been copied, and then the collector “flips”
all global variables and references on the stack to tospace objects at once.

Some related work of concurrent copying GCwith HTM builds upon the Sapphire
collector. Sapphire has the advantage that objects can be copied individually, and
when copying an object, references to that object do not need to be identified. Apply-
ing HTM transactions in this context is a lot easier, that the CAS can be replaced by
transactions.

6.7 Yieldpoints

A yieldpoint is a commonly used mechanism in the runtime system of managed lan-
guages. A yieldpoint allows mutators to be interrupted at well-defined points in its
execution, including loop back edges, method prologues, and method epilogues [Lin
et al., 2015]. Various actions can be taken inside the yieldpoint, such as polling for
pending requests from the GC to suspend the mutator, biased-locking or profiling for
feedback-driven compilation.

In this work, yieldpoints are used to let mutators handshake with collectors, and
enter transactions if necessary (see Section 8.4).
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Chapter 7

Related Work

In this chapter, I will discuss prior work on applying transactional memory (TM) to
GC. In Section 7.1, I will show how TM can be used in parallel GCwhere there are race
conditions among collector threads. In Section 7.2, I will show how TM can be applied
in concurrent copying GC (see Section 6.6.2). For each scenario, I will identify the race
conditions that need to be resolved for the soundness of GC, and then summarize how
each of the algorithms applies TM to address the race conditions.

7.1 Parallel GC

In this section, I will examine relatedwork on using TM in parallel GC, wheremultiple
collector threads execute in parallel, hopefully improving the GC throughput. First,
I will talk about parallel copying GC, where it is important that there does not exist
multiple copies of the same object. Then, I will discuss parallel bitmapmarking, which
is an important identificationmechanism used by some implications of algorithms like
mark-sweep.

7.1.1 Parallel Copying GC

A parallel copying GC algorithm needs to discern the copying state of an object: un-
copied, being copied, and copied. A race condition is that multiple collector threads
try to copy the same object simultaneously, and update the copying state of the object
from uncopied to being copied. This race condition leads to multiple distinct copies of
the same original object being made, which makes the heap inconsistent. Therefore,
it is important that one and only one copy of an object is made when relocating the
object. Traditionally, this is achieved in the following way. When a collector thread
attempts to copy an uncopied object, it atomically sets the state to being copied (e.g.,
using compare-and-swap), informing other collector threads attempting to forward
the same object.

Ritson et al. [2014] identified that transactional memory can be used to eliminate
the intermediate being copied state, and an object changes atomically from uncopied
to copied. A collector thread checks that the copying state of an object is uncopied in
a transaction. In the same transaction, the thread sets the copying state to copied and
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installs the forwarding pointer, and thus attempts to publish the copied object. The
atomicity of transactional memory guarantees that, if any thread commits the transac-
tion of copying an object, any other transaction on the same object will abort due to
transactional conflict, ensuring only one copy of the object is ever made visible. An
optimization is that multiple transactions are combined, amortizing the overhead of
starting transactions.

7.1.2 Parallel Bitmap Marking

Many GC algorithms, such as mark-sweep, use marking in the identification phase of
GC to record the liveness information of objects. Broadly speaking, the bits used for
marking can either be stored in the object header or in bitmaps on the side.

We know that the load and store of machine words can be done atomically in many
architectures. Therefore, when the object header is used formarking bits, the race, that
multiple collectors are marking the same object, is benign.

However, when bitmap is used formarking, themark bits of multiple objects might
be stored in the same machine word. The race condition is that when multiple collect
threads contend for the samemachine word for marking different objects, the marking
might get lost in the process.

Similar to parallel copying GC, the race condition is often resolved by using CAS,
which hinders themarking throughput of collectors. Ritson et al. explored usingHTM
to solve the above problem. When marking is done in transactions, plain loads and
stores can be used, and the atomicity of transactions guarantees that if transactions
commit, no marking is lost.

7.2 Concurrent Copying GC

Previously, I havediscussedpriorwork on applyingTMonparallelGC,wheremultiple
collector threads run in parallel. In this section, I will discuss attempts in using TM for
concurrent copying GC, which is at the core of this work. Recall that two important
problems in concurrent copying GC is the lost update problem and the atomicity of
the movement of objects with respect to mutators (see Section 6.6.2).

I will discuss four different algorithms. For each of the algorithms, I will point out
its shortcomings, motivating the novel algorithm I am introducing in Chapter 8.

7.2.1 STM Sapphire

McGachey et al. [2008] applied software transactional memory (STM) on Sapphire,
referred to as STM Sapphire here. To the best of my knowledge, STM Sapphire is the
first GC algorithm that uses TM. The STM Sapphire algorithm differs from the original
Sapphire algorithm (see Section 6.6.2) in the following aspects.

The core idea of the original Sapphire algorithm is to allow mutators to operate
on both fromspace objects and tospace objects, through the use of a write barrier that
mirrors all writes to objects being copied. The STM Sapphire algorithm uses a strong
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invariant, only allowing mutators to operate on the tospace objects. This is achieved
by installing forwarding pointers in the object headers, and redirecting mutator reads
and writes on copied objects through read and writer barriers.

The TM system used in STM Sapphire relies on version numbers in object headers
for conflict detection. The version numbers are also cleverly used by the collectors
for avoiding the overhead of starting full transactions for object copying. Instead, a
collector stores the version numbers of all objects it copies, and compares the version
numbers in the end. If any of the version numbers of copied objects has changed, some
updates have been lost and the copying operation is aborted. It is worth noting that
because the transactional metadata is recorded in object-granularity, only one object
can be copied in one transaction.

The main problem for STM Sapphire is that read and write barriers are required
just to provide weak isolation (see Section 2.2.1) for transactions due to how the STM
system works. Even though GC barriers can piggyback on transactional barriers, sav-
ing the cost of following forwarding pointers again, the combined barriers still impose
a big overhead on mutators. In addition, in order to provide strong isolation (of trans-
actions from non-transactional code), the write barrier puts an object into exclusive
mode before writing into it, further limiting the efficacy of the algorithm.

7.2.2 HTM Sapphire

Hardware transactional memory (HTM) has also been applied on Sapphire [Ritson
et al., 2014; Ugawa et al., 2018], referred to as HTM Sapphire here.

In contrast to STMSapphire, HTMSapphire is closer to the original Sapphire collec-
tor. HTM Sapphire uses the same write barrier to replicate mutators writes, allowing
mutators to operate on fromspace object. However, HTM Sapphire optimizes over the
original Sapphire collector by replacing CAS in object copying with transactions.

HTM Sapphire addresses many of the disadvantages of STM Sapphire. With the
work tracking done in the hardware at the address level instead of in per-object meta-
data, HTM Sapphire can copy multiple objects in a single transaction, amortizing the
overhead [Ritson and Barnes, 2013] of starting a transaction. More importantly, the
HTM implementation—Intel TSX—used in HTM Sapphire provides strong isolation
for free. This removes the use of a read barrier and “places no restrictions on muta-
tors”, eliminating a major source of overhead.

However, HTM Sapphire still has the same overhead of duplicating mutator writes
as the original Sapphire collector.

7.2.3 Collie

To the best of my knowledge, Collie is the first GC algorithm that uses HTM [Iyen-
gar et al., 2012]. The core idea of the algorithm is the notion of “individually trans-
plantable” objects.

Individually transplantable objects can be copied by collectors optimistically with-
out using any transaction. Collectors only use transactions to publish the copying,
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making sure that all references to a copied object (the referrer set) are updated atomi-
cally. This greatly reduces the amount of memory operations in transactions, decreas-
ing the chance of aborts due to exceeding the capacity limit. However, individually
transplantable objects need to satisfy two conditions. First, they are not written to dur-
ing copying. Otherwise, updates to these objects can get lost. Second, the referrer set
of the objects has to be stable so that no new reference to these objects can be created.
Otherwise, collectors might not update all references to these objects, resulting in an
inconsistent heap.

Any object that does not satisfy the above two conditions are marked as “non-
individually transplantable” objects. Non-individually transplantable objects are not
copied by collector transactions. Instead, these objects are virtually “copied” by creat-
ing a tospace virtual memory mapping of the fromspace pages. The reference update
is then done through the use of a read barrier that fixes fromspace references to point
to tospace objects. The read barrier also prevents more fromspace references from be-
ing created1. On Azul hardware, the read barrier is implemented in the hardware as
a special reference load instruction.

Non-individually transplantable objects can be identified in three different ways.
First, awrite barriermarks any object beingwritten to as non-individually transplantable.
Second, non-individually transplantable objects can be implicitly identified when the
read barrier operates. Since the read barrier fixes fromspace references, the barrier has
to write to the referrer sets of some objects, which causes aborts of collector transac-
tions operating on the same referrer sets. An aborted collector transaction can then
mark objects as being non-individually transplantable. Third, in the pre-compaction
checkpoint, all objects directly reachable from stack roots and registers are marked as
non-individually transplantable, avoiding the complicated scenarios of updating ref-
erences in registers and stacks.

The problems with Collie are twofold. Firstly, it still requires the use of a read bar-
rier. Without proprietary hardware, the read barrier will be costly to implement on
commodity hardware as discussed in Section 6.5. Secondly, the algorithm effectively
pins all non-individually transplantable objects, reducing the efficacy of heap defrag-
mentation.

7.2.4 Chihuahua

Chihuahua [Anderson et al., 2015] is a concurrent copying GC that uses HTM. The
algorithm uses the semispace collector (see Section 6.1) as a starting point. However,
the overall algorithmic structure is much closer to STM Sapphire (see Section 7.2.1)
than semispace.

Unlike other Sapphire-based collectors, which rely on the replication of writes to
allow mutators operate on fromspace objects, Chihuahua is similar to Collie (see Sec-
tion 7.2.3) that it requires a read barrier and a write barrier to ensure that mutators op-
erate on tospace objects. Collectors copy objects transactionally, which solves the lost

1References can only be obtained through allocation or existing references. If no fromspace references
can be read, then no fromspace references can be created.
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update problem. The object copying transaction simply copies an object and installs a
forwarding pointer in the object header. Note that other than the barriers, Chihuahua
does not place other constraints on mutators, since the strong isolation provided by
the HTM system protects the object copying transactions from non-transactional mu-
tators.

The problem with Chihuahua is that it still relies on a read barrier, which involves
high mutator overhead. In addition, Chihuahua uses one copying transaction per ob-
ject, incurring the high overhead of starting transactions [Ritson and Barnes, 2013].
Chihuahua also does not implement necessary compiler intrinsics for HTM. Instead,
it has to perform calls to C functions using the syscalls interface in JikesRVM for HTM
operations, which is much slower than executing generated instructions directly.
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Chapter 8

Design

In Section 7.2, I surveyed related work on using transactional memory (TM) on con-
current copying GC. These algorithms, despite using TM, still require the use of read
barriers (or expensive write barriers in the case of HTM Sapphire), which result in
high mutator overhead. In this chapter, I will introduce the novel concurrent copying
GC algorithm co-developed with Bond and Blackburn. The algorithm only requires
a cheap write barrier, and it achieves soundness by briefly running mutators transac-
tionally when the collector is moving objects.

Recall that the two most fundamental problems in designing a concurrent copying
GC algorithm are the lost update problem and the atomic movement of objects (copy-
ing and reference updates) with respect to the mutators. Instead of introducing the
algorithm as a whole, I will show step-by-step how the algorithm can be built from
some very basic mechanisms, addressing the above two problems. The techniques in-
troduced in this chapter only require a HTM system that provides strong isolation.
However, in the pseudocode, I assume the programming model of RTM introduced
in Section 2.3.

8.1 Setup

To beginwith, we just need a simple stop-the-world copying GC algorithm, such as the
classic semispace algorithm. Such an algorithm collects the entire heap during each
GC cycle. As discussed in Section 2.2.3, hardware transactional memory (HTM) only
has limited capacity due to hardware limitations. Therefore, it is critical that we are
able to collect a small subset of the heap individually, so that the transaction capac-
ity is big enough for transactions that the collector might perform. However, picking
arbitrary objects to form the subset makes the membership test of the subset very ex-
pensive. Therefore, we often require the subset to be a contiguous section of the heap,
in terms of virtual address ranges. I refer to such sections of the heap as regions in the
following section. The goal is to move all reachable objects in the region identified for
collection (the fromspace) to another region (the tospace).

Being able to perform copying GC on a region individually implies that we need to
be able to determine all references from outside the region into the region (inter-region
references). This is required both for identification, so that reachable objects are not
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reclaimed, but also for reclamation, so that all references to copied objects are updated.
Of course, one can find all such references by performing a full heap trace. However,
the time taken to perform a full heap trace is proportional to the heap size, which can be
very big in some applications. In addition, in the case of concurrent copyingGC, the set
of inter-region references might change while the mutators are running concurrently
with the collector. Thus, it would be beneficial to be able to dynamically maintain the
set of incoming inter-region references for a region, also known as its remembered set.

The above can be achieved by using a reference write barrier (see Section 6.5),
which is shown in Algorithm 1. This is the only barrier used in this algorithm. When-
ever mutators create a reference from outside the region into the region, the memory
location containing the reference (the slot) is added to the remembered set of the re-
gion1.

Algorithm 1 The write barrier

1 void objectReferenceWrite(ObjectReference src, Address slot, ObjectReference tgt) {
2 if (isInSpace(fromSpace, tgt)) {
3 if (!isInSpace(fromSpace, src)) {
4 remset.insert(slot);
5 }
6 }
7 }

8.2 Avoiding lost updates

In Section 8.1, I introduced the barrier. The barrier dynamically maintains remem-
bered sets while mutators are executing. Then, remembered sets can be used by the
collector to update all inter-region references when collecting a region. This allows the
collector to collect the region individually without performing a full heap trace.

However, we still need to solve the lost update problem when the collector moves
objects concurrently with mutator writes. The transactional memory solution (see Al-
gorithm 2) is simple: objects are copied inside a transaction, and all references to these
objects (found in the remembered set) are updated in the same transaction. When a
transaction commits, all objects are atomically moved with respect to the mutators: no
update to objects are lost during copying, and all fromspace references are updated.

8.3 The Problematic Gap

In Section 8.2, I introduced a collector transaction for atomically copying reachable
fromspace objects into tospace and updating all fromspace references within the heap.

However, the transaction has a critical flaw. Remember that references not only
reside within the heap, they can also be on the stacks of mutators. The reference write

1For readers that are familiar with GC algorithms, the write barrier is similar to the barrier used in a
generational GC, or the barrier used in a region-based GC.
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Algorithm 2 The collector transaction

1 void copyRegion() {
2 for (ObjectReference object: fromSpace) {
3 newObject = copy(object);
4 // Set forwarding pointer
5 forwardingAddress(object).store(newObject);
6 }
7 for (Address slot: remset) {
8 // Update fromspace reference
9 object = slot.load();

10 if (isInSpace(fromSpace, object)) {
11 // extract forwarding pointer
12 newObject = forwardingAddress(object).load();
13 slot.store(newObject);
14 }
15 }
16 }

barrier used in this algorithm does not mediate stack operations2. Otherwise, it will
be prohibitively expensive, since stack operations are very frequent. Therefore, the
collector will not be able to update stack references by using the remembered set.

The collector cannot scan the stacks of threads inside the transaction either. To scan
the references on the stack, the collector looks up the reference map, which encodes
the locations in a stack frame that are references, for a given method at a particular
point of execution. Therefore, the collector has to be able to unwind the stack of each
mutator, and extract the execution status (such as the saved instruction pointer) from
each of the stack frames. This is impossible to do without stopping the mutator.

It is also impossible for the collector to notify mutators via shared memory in a
transaction, which will abort the transaction due to conflicts.

As a result, there exists a problematic gap between the time that the collector pub-
lishes the copying results by committing the transaction and that the mutators are in-
formed that the stacks need to be fixed. During this gap, albeit small, mutators might
use fromspace references on the stack, resulting in the read of stale values or values
written get lost. Therefore, the above algorithm is not a sound concurrent copying GC
algorithm.

8.4 Covering the Gap

In Section 8.3, I pointed out a gap between the completion of the collector transaction
and the mutator acknowledging that. During the gap, mutators might use fromspace
references on the stack, which makes the concurrent copying algorithm unsound.

Before discussing how the gap is covered in the algorithm, I will first discuss two
non-solutions to the gap. One option is to stop the mutator at the start of the collector

2It is possible to implement barriers that mediate stack operations. However, such barriers will be
prohibitively expensive.
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transaction. However, this amounts to stop-the-world GC, thus unhelpful. Another
option is to add a barrier conditioned on whether a collector transaction has commit-
ted, so that mutators have the opportunity to update their stacks before using a stale
reference. However, the barrier has to be on all object uses, which directly contradicts
with the goal of this work of reducing the mutator overhead for concurrent copying
GC.

The following parts introduce the novelty of this algorithm, that the gap can be
covered by running mutators briefly in transactions.

Signal anOccurredGap To identify whether a gap has occurred, a global monotonic
counter CollectorCopyingState is added to indicate the copying state of the collector.
The collector protocol, which is shown in Algorithm 3, ensures that the counter is odd
before the collector starts a transaction (line 2). The counter is only even by increment-
ing an odd counter, either when a transaction commits (line 6), or after a transaction
aborts (line 9). The gap between the completion of the collector transaction and the
mutator acknowledging the completion now becomes the gap between the collector
setting the counter to even and the mutator seeing the new counter value. To summa-
rize, the counter changing fromodd to even signals tomutators that a gaphas possibly3

occurred during the mutator execution.

Algorithm 3 The collector protocol

1 void collector() {
2 CollectorCopyingState++;
3 collectorHandshake();
4 if (XBEGIN() != aborted) {
5 copyRegion();
6 CollectorCopyingState++;
7 XEND();
8 } else {
9 CollectorCopyingState++;

10 }
11 }

HandshakingBetween theCollector andMutators When the collector sets the counter
to odd (Algorithm 3, line 2), it requests (Algorithm 4, line 2) mutators to take yield-
points (see Section 6.7) to acknowledge the new counter. Before starting the collector
transaction, the collector waits (Algorithm 4, line 5) until all mutators acknowledge
the new counter value and follow the mutator protocol to avoid unsound execution.

When the mutators take the yieldpoint (see Algorithm 5), they acknowledge the
handshake by setting a thread local snapshot of the counter value (line 9). In addition,
if one or more collector transactions might have completed since last time the counter
was read (line 5), themutators update their own stack, fixing any fromspace references
if found. It is worth noting that when the collector transaction aborts, the counter is

3The counter changing from odd to even can also be due to the collector aborting a transaction.
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Algorithm 4 The collector handshake

1 void collectorHandshake() {
2 for (Thread t: mutatorThreads) {
3 t.takeYieldPoint = true;
4 }
5 for (Thread t: mutatorThreads) {
6 while (t.copyingState == CollectorCopyingState) {
7 }
8 }
9 }

still updated, but no visible change has been made to the heap, which is benign. In
this case, the mutators still need to walk the stacks, which is unnecessary.

Algorithm 5 The mutator handshake

1 void mutatorHandshake() {
2 int csSnapshot = CollectorCopyingState;
3 if (csSnapshot > t.copyingState) {
4 // (t.copyingState, csSnapshot] contains even number
5 if (interval(t.copyingState, csSnapshot).hasEven()) {
6 // one or more collector transactions have completed
7 fixStack();
8 }
9 t.copyingState = csSnapshot;

10 }
11 }

UndoExecutionDuring theGap Finally, Iwill introduce themutator protocol, which
makes mutators execute in a series of transactions if the collector is attempting a col-
lection. As shown in Algorithm 5, mutators are notified in the yieldpoints that the
collector is attempting a collection. Recall that the execution of the application code is
interrupted in yieldpoints, and therefore, the handshaking happens before any poten-
tially erroneous execution of the application code.

The mutator protocol, shown in Algorithm 6, is that when mutators read an odd
counter value, the application code is executed in a transaction until the next yield-
point. In addition, prior to committing the transaction, the current counter value is
compared with the last value read by the mutator.

The correctness can be demonstrated using a case-by-case analysis.

(1) The collector transaction finishes between line 2 and line 4. In this case, the ap-
plication code is running entirely within the gap. However, the check at line 6
will explicitly abort the transaction.

(2) The collection transaction finishes after line 4 but before line 11. In this case, the
application code is partially running during the gap. However, there will be a
transactional abort due to the read at line 6.



54 Design

Algorithm 6 The mutator protocol

1 void mutator(Thread t) {
2 mutatorHandshake();
3 if (t.copyingState.isOdd()) {
4 if (XBEGIN() != aborted) {
5 runUntilNextYieldpoint();
6 if (CollectorCopyingState > t.copyingState) {
7 // copying state has changed since last we knew
8 // execution may be wrong
9 XABORT();

10 }
11 XEND();
12 } else {
13 mutatorHandshake();
14 }
15 }
16 }

(3) Themutator transaction commits. In this case, the semantics of HTM guarantees
that no application code is executed during the gap.

To summarize, when covering a mutator’s execution with a transaction, the trans-
action will abort, either explicitly or due to transactional conflict, if the collector pub-
lishes the results of copying. This achieves the effect of a barrier, conditioned on that
collector publishing copying, but without paying any of instrumentation cost.

8.5 Summary

I introduced the novel concurrent copying GC algorithm using HTM in previous sec-
tions. I started with adding a write barrier to a simple stop-the-world copying GC to
dynamically maintain the remembered set. This allows a region to be collected indi-
vidually without requiring a full heap trace. Then, I identified the problematic gap
between the completion of the collector transaction and the mutators acknowledging
the completion. Mutators executing during the gap can potentially use the fromspace
references on the stack, resulting in erroneous execution. Next, I described how the
collector and mutators can coordinate around a monotonic counter. By running mu-
tators inside transactions, any execution during the gap will result in the abort of the
mutator transaction, ensuring all incorrect execution is rolled back. Compared with
read barriers, which cannot be easily disabled and incurs overhead for each read, our
algorithm only incurs the overheadwhen starting a transaction, andmutators are only
running in transactions if the collector is attempting a collection.

In the next sections, I will describe some optimizations that I have devised and
implemented based on the insights of HTM described in the first part of the thesis.
Note that the mutator transaction described in Algorithm 6 almost entirely consists of
the execution of the application code, and therefore, there is not much room for any
optimization. As a result, I will focus on optimizing the collector transactions.
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8.6 Optimization: Optimistic Copying

The first optimization is optimistic copying. The goal of the optimization is to reduce
the amount of transactional writes in the collector transaction, since the transactional
write capacity is much lower than the transactional read capacity as seen in Chapter 5.
We observe that the copying of objects inside a transactionwill generate a large amount
of transactional writes. The idea is to optimistically perform the actual copying of
objects outside the collector transaction, eliminating the main source of transactional
writes.

This is achieved using an intermediate copying stage in a shadow region. For each
object O identified for copying in fromspace, a word-by-word duplicate Os is created
in a shadow region, acting as a snapshot of O. Then, Os is used as a surrogate for O to
create the target copyO′ in tospace. Finally,O andOs are compared in a transaction. If
O andOs match, no write toO has been lost during the copying, andO′ is correct. IfO
and Os do not match, the copying is wrong, and the transaction is aborted. A further
optimization is that we can repair O′ by copying from O wherever O and Os do not
agree.

This method turns a large amount of transactional writes (copying O into O′ di-
rectly) inside the collector transaction into transactional reads (comparingO andOs),
decreasing the chance of aborts due to exceeding the capacity of HTM.

8.7 Optimization: Cache Warmup

The second optimization is the cache warmup. In Section 5.3, I showed that the trans-
actional read capacity depends on the cache status. In particular, if the cache is largely
occupied by valid but unneeded cache lines, the cache lines from transactional work
might be evicted despite being recently accessed due to the pseudo LRU replacement
policy, causing superfluous capacity aborts.

As discussed previously, both invalidating the cache using wbinvd or warming up
the cache can improve the chance of transactions successfully committing. However,
the wbinvd instruction invalidates both data and instruction caches at all levels, causing
the slowdown of all running threads. Therefore, it is preferable to use cache warmups.
Prior to starting the collector transaction, the body of the transaction, especially the
comparisons of shadow objects, is executed but the results are discarded. When exe-
cuted multiple times, the majority of cache lines accessed in the transaction are likely
in the cache, reducing the chance of getting evicted due to pseudo LRU.
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Chapter 9

Implementation and Evaluation

Implementing a concurrent copying GC is no easy task, and often requires an enor-
mous amount of engineering to make the GC stable enough to run real-world work-
loads, and to tune the GC to obtain optimal performance. This is unfortunately out-
side the scope of this thesis due to time constraint. In this section, I will focus on
demonstrating that the algorithm described in Chapter 8 is viable. In particular, I will
describe some handcrafted test programs I wrote to demonstrate that the important
mechanisms of the algorithm are working.

9.1 Setup

The algorithm is implemented in MMTk [Blackburn et al., 2004a,b].
The implementation tries to follow the algorithm as faithfully as possible, but it

has more pragmatic shortcuts in certain places. I start with the simplest region based
collector implemented in MMTk [Zhao and Blackburn, 2020]. However, only one re-
gion can be eligible for concurrent copying collection at a time. This simplifies the
implementation of the barrier (see Section 8.1).

I also simplify how concurrent GC is triggered. Instead of triggering a concurrent
GC when the region is full or almost full, I changed the System.gc() handler so that a
concurrent GC can be manually triggered.

From the application point of view, only objects, whose class has a special annota-
tion, can be allocated into the concurrently collected region. Thismakes the debugging
significantly easier, since I can control exactly which objects should be inside the con-
currently collected region, and then check whether they have been correctly copied.

To verify whether an object has been correctly collected, I check that all references
to the object have been updated to point to the copied version, and the fields of the
object are preserved. The former can be done by using compiler intrinsics (known as
vmmagic), and the latter can be done through normal Java code.
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9.2 Test Programs

All test programs are around linked lists, and the canonical node definition of a singly
linked list is used as shown in Algorithm 7. Note the special annotation added to the
Node class.

Algorithm 7 A linked list node.

1 @ConcurrentCollection
2 class Node {
3 public volatile int value;
4 public volatile Node next;
5 }

The first program (see Algorithm 8) tests whether stack references are updated
correctly. This requires the update of stack references by the owning mutator in a
yieldpoint.

Algorithm 8 Read from an object directly reachable from the stack roots.

1 public static void main(String[] args) {
2 Node a = new Node();
3 a.value = 42;
4 VM.sysWriteln(ObjectReference.fromObject(a).toAddress());
5 VM.sysWriteln(ObjectReference.fromObject(a.next).toAddress());
6

7 System.gc();
8

9 // wait for the concurrent GC to finish
10 int wait = 1 << Integer.parseInt(args[0]);
11 for (int i = 0; i < wait; i++) {
12 }
13

14 VM.sysWriteln(ObjectReference.fromObject(a).toAddress());
15 VM.sysWriteln(ObjectReference.fromObject(a.next).toAddress());
16 assert a.value == 42;
17 }

The second program is similar to the first one, but it also tests whether any concur-
rent update is lost. This requires that the collector’s copying of objects is atomic with
respect to the mutators.

Finally, the third program checks whether objects not directly reachable from stack
roots are correctly collected. This requires that all objects are correctly traced, and heap
references are correctly updated in the collector transaction.

Although not comprehensive, the test programs shown here demonstrate that the
most fundamental mechanisms of the algorithm are working.
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Algorithm 9 Concurrently write to an object directly reachable from the stack roots.

1 public static void main(String[] args) {
2 Node a = new Node();
3 a.value = 42;
4 VM.sysWriteln(ObjectReference.fromObject(a).toAddress());
5 VM.sysWriteln(ObjectReference.fromObject(a.next).toAddress());
6

7 System.gc();
8

9 // write to the object when the GC is running
10 int wait = 1 << Integer.parseInt(args[0]);
11 int add = 0;
12 for (int i = 0; i < count; i++) {
13 if (i % 100 == 0) {
14 add += 1;
15 a.value += 1;
16 }
17 }
18

19 VM.sysWriteln(ObjectReference.fromObject(a).toAddress());
20 VM.sysWriteln(ObjectReference.fromObject(a.next).toAddress());
21 assert a.value == 42;
22 }

Algorithm 10 Read from objects only transitively reachable from the stack roots.

1 public static void main(String[] args) {
2 Node head = new Node();
3 head.value = 0;
4 Node tail = head;
5

6 for (int i = 1; i <= 128; i++) {
7 Node n = new Node();
8 n.value = i;
9 tail.next = n;

10 VM.sysWriteln(ObjectReference.fromObject(tail).toAddress());
11 VM.sysWriteln(ObjectReference.fromObject(tail.next).toAddress());
12 tail = n;
13 }
14

15 System.gc();
16

17 Node n = head;
18 int i = 0;
19 while (n.next != null) {
20 VM.sysWriteln(ObjectReference.fromObject(n).toAddress());
21 VM.sysWriteln(ObjectReference.fromObject(n.next).toAddress());
22 assert n.value == i;
23 i++;
24 }
25 }
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Chapter 10

Conclusion

The goal of this thesis is to design a concurrent copying GC algorithm that has lower
mutator overhead comparedwith using read barriers or pageprotections. By analysing
existing work on using HTM to facilitate GC under the same framework, this thesis
crisply identified how different HTM GC algorithms relate to each other, how they
differ, and their mutator overhead characteristics. Then, the thesis introduced a novel
concurrent copying GC algorithm, and shows stepwise how the algorithm can be con-
structed using simple primitives. Finally, a set of test programs were used to test that
the fundamental mechanisms of the algorithm are working, and that the algorithm is
viable.

The practicality of the algorithm is predicated on successfully exploiting the capac-
ity of HTM transactions. To achieve this, this thesis deepened the understanding of
factors that affect the HTM capacity. In particular, this thesis explored how the cache
status affects the HTM capacity, and how both warming up the cache and invalidating
the cache—two seemingly opposite operations—can help large read-only transactions
commit. The results resolved the apparent contradiction in the capacity numbers cited
by prior work.

10.1 Future Work

The following sections point out future research directions following this work.

10.1.1 Performance Evaluation of Optimizations

Section 8.6 and Section 8.7 presented two optimizations of the algorithm introduced in
Chapter 8. Both optimizations have been implemented, and have been shown to work
in informal tests. Future work can quantitatively measure how these optimizations
affect the maximum number of objects that can be collected in a single transaction.

10.1.2 Improving the Implementation

As discussed in Section 9.1, the current implementation of the algorithm has some
compromises for practicality reasons. However, to truly demonstrate the efficacy of
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the algorithm, the implementation has to be improved and tuned, so thatmore realistic
benchmarks can run with desired performance.

10.1.3 Concurrent Stack Processing

Finally, I discussed how the techniques introduced in this work can be applied to an-
other area of GC.

With the prevalence of multiprocessors, GC can now take advantage of the avail-
able processing power to increase the collector throughput. However, applications
written in managed languages start to utilize the hardware parallelism as well, often
in the form of spawning many threads. As discussed in Section 6.2, tracing GC often
needs to process roots, including roots on the stack of mutator threads. Stack roots
gathering often requires the suspension of mutator threads, of which the pause time
is proportional to the number of mutator threads. This poses a scalability problem.

Just like concurrent tracingGC(see Section 6.6.1) and concurrent copyingGC(see Sec-
tion 6.6.2), we could address the above problem by allowing concurrent stack process-
ing. The synchronization problems need to be addressed in concurrent stack process-
ing are twofold. Firstly, mutators may modify a stack frame that collectors are process-
ing. Secondly, mutators may be executing on a stack frame containing stale references,
in the case that collectors have relocated objects but have not had a chance to update
the references on the stack.

We observe that the synchronization problems of concurrent stack scanning are
very similar to what transactions described in Chapter 8 try to address. To solve the
first problem, we can have collectors running in transactions when processing stack
frames, and if a stack frame is changed during processing, the transactions will abort
to transactional conflict. To solve the secondproblem,we can havemutators running in
a series of transactions when concurrent stack processing is underway. A counter can
be used to indicate stack status, and collectors can update the counter when references
on the stack may become invalid. Before a mutator can use a stack frame, it reads the
corresponding counter, and the transactions will abort if the counter has been updated
by the collector.

Osẗerlund [2020] proposed a very similar idea, the stack watermark barrier. There
are watermarks associated with each stack to indicate the current processing status.
When collectors finish processing stack frames, it adjusts the watermark. When a mu-
tator thread tries to use a stack frame, it checks the corresponding watermark to see
whether the frame has been processed, and if not, the thread enters the slow path to
fix the references. The invocation of the barrier, in other words, the check against the
watermark, piggybacks on the yieldpoint. Since yieldpoints are inserted into opera-
tions that may pop a stack frame, such as returning from a function, they are natural
places to perform such checks.
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