
ICAPS 2012 Tutorial

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAAAAAAAAAAA

Scott Sanner

Discrete and Continuous Planning

Domain Modeling in RDDL

http://users.rsise.anu.edu.au/~ssanner/

Observation

• Planning languages direct 5+ years of research
– PDDL and variants

– PPDDL

• Why?
– Domain design is time-consuming

• So everyone uses the existing benchmarks

– Need for comparison
• Relatively little planner code is released

• Only means of comparison is on competition benchmarks

• Implication:
– We should choose our languages & problems well…

Current Stochastic Domain Language

• PPDDL
– more expressive than PSTRIPS

– for example, probabilistic universal
and conditional effects:

(:action put-all-blue-blocks-on-table
 :parameters ()
 :precondition ()
 :effect (probabilistic 0.9
 (forall (?b)
 (when (Blue ?b)
 (not (OnTable ?b)))))

• But wait, not just BlocksWorld…
– Colored BlocksWorld

– Exploding BlocksWorld

– Moving-stacks BlocksWorld

• Difficult problems but where to apply solutions???

• Compact relational PPDDL Description:

 (:action load-box-on-truck-in-city
 :parameters (?b - box ?t - truck ?c – city)
 :precondition (and (BIn ?b ?c) (TIn ?t ?c))
 :effect (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin Moscow Logistics:

More Realistic: Logistics

• But wait… only one truck can move at a time???

• No concurrency, no time: will FedEx care?

• Can instantiate problems for any domain objects

- 3 trucks: 2 planes: 3 boxes:

What stochastic problems

should we care about?

Mars Rovers

• Continuous
– Time, robot position / pose, sun angle, …

• Partially observable
– Even worse: high-dimensional partially observable

Mealeau, Benazera,

Brafman, Hansen,

Mausam. JAIR-09.

Elevator Control

• Concurrent Actions
– Elevator: up/down/stay

– 6 elevators: 3^6 actions

• Exogenous / Non-boolean:
– Random integer arrivals

(e.g., Poisson)

• Complex Objective:
– Minimize sum of wait times

– Could even be nonlinear function
(squared wait times)

• Policy Constraints:
– People might get annoyed

if elevator reverses direction

http://www.melsa.com.sa/images/Elevators at Kingdom Centre, Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Traffic Control

• Concurrent
– Multiple lights

• Indep. Exogenous Events
– Multiple vehicles

• Continuous Variables
– Nonlinear dynamics

• Partially observable
– Only observe stoplines

Can PPDDL model

these problems?

No? What happened?

A Brief History of (ICAPS) Time

STRIPS (1971)

Fikes & Nilsson

Relational

ADL (1987)

Pednault

Cond. Effects

Open World

PDDL 1.2 (1998)

McDermott et al

Univ. Effects

PDDL 2.1, + (2003)

Fox & Long

Numerical fluents,

Conc., Exogenous

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddlResources

PDDL 2.2 (2004)

Edelkamp & Hoffmann

Derived Pred, Temporal

PDDL 3.0 (2004)

Gerevini & Long

Traj. Constraints,

Preferences

PPDDL (2004)

Younes & Littmann

Prob. Effects

Big

Bang

ICAPS 3.2

PDDL Evolved, but

PPDDL didn’t 

Also effects+prob+

concurrency difficult

http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources

What would it take to model

more realistic problems?

Let’s take a deeper look at

traffic control…

Birth of RDDL: Solving Traffic Control

Need a way to resolve conflicting effects…

solution will be a Relational DBN

What’s missing in PPDDL, Part I

• Need Unrestricted Concurrency:
– In PPDDL, would have to enumerate joint actions

– In PDDL 2.1: restricted concurrency
• conflicting actions not executable

• when effects probabilistic, some chance most effects conflict

– really need unrestricted concurrency in probabilistic setting

• Multiple Independent Exogenous Events:
– PPDDL only allows 1 independent event to affect fluent

• E.g, what if cars in a queue change lanes, brake randomly?

PRIMARY

REASON FOR

DEPARTURE

FROM PPDDL

What’s missing in PPDDL, Part II

• Expressive transition
distributions:
– (Nonlinear) stochastic

difference equations
• Gaussian noise

• Partial observability:
– In practice, only

observe stopline

Could be

added to

PPDDL as

well

What’s missing in PPDDL, Part III

• Distinguish fluents from nonfluents:
– E.g., topology of traffic network

– Lifted planners must know this to be efficient!

• Expressive rewards & probabilities:
– E.g., state and action dependent sums / products over domain

objects (+1 for each computer running)

• Global state-action constraints:
– Concurrent domains need global action preconditions

• E.g., two traffic lights cannot go into a given state

– In logistics, vehicles cannot be in two different locations

• Regression planners need state constraints!

Could be

added to

PPDDL as

well

Is there any hope?

Yes, but we need to borrow from

factored MDP / POMDP community…

A Brief History of (ICAPS) Time

STRIPS (1971)

Fikes & Nilsson

Relational

ADL (1987)

Pednault

Cond. Effects

Open World

PDDL 1.2 (1998)

McDermott et al

Univ. Effects

PDDL 2.1, + (2003)

Fox & Long

Numerical fluents,

Conc., Exogenous

PDDL 2.2 (2004)

Edelkamp & Hoffmann

Derived Pred, Temporal

PDDL 3.0 (2004)

Gerevini & Long

Traj. Constraints,

Preferences

PPDDL (2004)

Littmann & Younes

Prob. Effects

RDDL (2010)

Sanner

PDDL 2.2  DBN++

Dynamic Bayes Nets (1989)

Dean and Kanazawa

Factored Stochastic Processes

Big

Bang

SPUDD, Sym. Perseus (1999,

2004) Hoey, Boutilier, Poupart

DBN + Utility: Fact. (PO)MDP

ICAPS

UAI

3.2

Relational!

What is RDDL?

• Relational Dynamic

Influence Diagram

Language

– Relational

[DBN + Influence Diagram]

• Think of it as

Relational SPUDD /

Symbolic Perseus

– But lifted

 t t+1

a

x1

x2

r

x1’

x2’

o1 o2

Key task: how

to specify lifted

distributions &

reward?

RDDL Grammar

Let’s examine BNF
grammar in infinite tedium!

OK, maybe not.
(Grammar online if you want it.)

http://code.google.com/p/rddlsim/source/browse/

RDDL Examples

Easiest to understand

RDDL in use…

How to Represent Factored MDP?

P(p’|p,r)

RDDL Equivalent

Can think of

transition

distributions

as “sampling

instructions”

A Discrete-Continuous POMDP?

Integer

Multi-

valued

Real

A Discrete-Continuous POMDP, Part I

A Discrete-Continuous POMDP, Part II

Integer

Multi-

valued

Real

Variance comes from other

previously sampled variables

Mixture of

Normals

RDDL so far…

• Mainly SPUDD / Symbolic Perseus with a
different syntax 
– A few enhancements

• concurrency

• constraints

• integer / continuous variables

• Real problems (e.g., traffic) need lifting
– An intersection model

– A vehicle model
• Specify each intersection / vehicle model once!

Lifting: Conway’s Game of Life
(simpler than traffic)

• Cells born, live, die based on neighbors
– < 2 or > 3

neighbors:
cell dies

– 2 or 3
neighbors:
cell lives

– 3 neighbors
 cell birth!

– Make into MDP

• Probabilities

• Actions to turn
on cells

• Maximize number
of cells on

• Compact RDDL specification for any grid size? Lifting.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Lifted

MDP:

Game

of Life

Concurrency

as factored

action variables

How many

possible joint

actions here?

A Lifted MDP
Intermediate variable: like derived predicate

Using counts to

decide next state

Additive reward!

State constraints,

preconditions

Nonfluent and Instance Defintion

Objects that don’t

change b/w instances

Topologies over

these objects
Numerical constant

nonfluent

Import a topology

Initial state as usual

Concurrency

Power of Lifting

non-fluents game3x3 {

 domain = game_of_life;

 objects {

 x_pos : {x1,x2,x3};

 y_pos : {y1,y2,y3};

 };

 non-fluents {

 NEIGHBOR(x1,y1,x1,y2);

 NEIGHBOR(x1,y1,x2,y1);

 NEIGHBOR(x1,y1,x2,y2);

 NEIGHBOR(x1,y2,x1,y1);

 NEIGHBOR(x1,y2,x2,y1);

 NEIGHBOR(x1,y2,x2,y2);

 NEIGHBOR(x1,y2,x2,y3);

 NEIGHBOR(x1,y2,x1,y3);

 NEIGHBOR(x1,y3,x1,y2);

 NEIGHBOR(x1,y3,x2,y2);

 NEIGHBOR(x1,y3,x2,y3);

 NEIGHBOR(x2,y1,x1,y1);

 NEIGHBOR(x2,y1,x1,y2);

 NEIGHBOR(x2,y1,x2,y2);

 NEIGHBOR(x2,y1,x3,y2);

 NEIGHBOR(x2,y1,x3,y1);

 NEIGHBOR(x2,y2,x1,y1);

 NEIGHBOR(x2,y2,x1,y2);

 NEIGHBOR(x2,y2,x1,y3);

 NEIGHBOR(x2,y2,x2,y1);

 NEIGHBOR(x2,y2,x2,y3);

 NEIGHBOR(x2,y2,x3,y1);

 NEIGHBOR(x2,y2,x3,y2);

 NEIGHBOR(x2,y2,x3,y3);

 NEIGHBOR(x2,y3,x1,y3);

 NEIGHBOR(x2,y3,x1,y2);

 NEIGHBOR(x2,y3,x2,y2);

 NEIGHBOR(x2,y3,x3,y2);

 NEIGHBOR(x2,y3,x3,y3);

 NEIGHBOR(x3,y1,x2,y1);

 NEIGHBOR(x3,y1,x2,y2);

 NEIGHBOR(x3,y1,x3,y2);

 NEIGHBOR(x3,y2,x3,y1);

 NEIGHBOR(x3,y2,x2,y1);

 NEIGHBOR(x3,y2,x2,y2);

 NEIGHBOR(x3,y2,x2,y3);

 NEIGHBOR(x3,y2,x3,y3);

 NEIGHBOR(x3,y3,x2,y3);

 NEIGHBOR(x3,y3,x2,y2);

 NEIGHBOR(x3,y3,x3,y2);

 };

}

non-fluents game2x2 {

 domain = game_of_life;

 objects {

 x_pos : {x1,x2};

 y_pos : {y1,y2};

 };

 non-fluents {

 PROB_REGENERATE = 0.9;

 NEIGHBOR(x1,y1,x1,y2);

 NEIGHBOR(x1,y1,x2,y1);

 NEIGHBOR(x1,y1,x2,y2);

 NEIGHBOR(x1,y2,x1,y1);

 NEIGHBOR(x1,y2,x2,y1);

 NEIGHBOR(x1,y2,x2,y2);

 NEIGHBOR(x2,y1,x1,y1);

 NEIGHBOR(x2,y1,x1,y2);

 NEIGHBOR(x2,y1,x2,y2);

 NEIGHBOR(x2,y2,x1,y1);

 NEIGHBOR(x2,y2,x1,y2);

 NEIGHBOR(x2,y2,x2,y1);

 };

}

Simple domains

can generate

complex DBNs!

32

Complex Lifted Transitions: SysAdmin
SysAdmin (Guestrin et al, 2001)

• Have n computers C = {c1, …, cn} in a network

• State: each computer ci is either “up” or “down”

• Transition: computer is “up” proportional to its

state and # upstream connections that are “up”

• Action: manually reboot one computer

• Reward: +1 for every “up” computer

c1

c2

c4

c3

Complex Lifted Transitions
SysAdmin (Guestrin et al, 2001)

Probability of a

computer running

depends on ratio of

connected

computers running!

Lifted Continuous MDP in

RDDL:

Simple Mars Rover

x

y

Picture

Point 1

Picture

Point 3

Picture

Point 2

Simple Mars Rover: Part I
 types { picture-point : object; };

 pvariables {

 PICT_XPOS(picture-point) : { non-fluent, real, default = 0.0 };

 PICT_YPOS(picture-point) : { non-fluent, real, default = 0.0 };

 PICT_VALUE(picture-point) : { non-fluent, real, default = 1.0 };

 PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 };

 xPos : { state-fluent, real, default = 0.0 };

 yPos : { state-fluent, real, default = 0.0 };

 time : { state-fluent, real, default = 0.0 };

 xMove : { action-fluent, real, default = 0.0 };

 yMove : { action-fluent, real, default = 0.0 };

 snapPicture : { action-fluent, bool, default = false };

 };

Constant

picture

points,

bounding box

Rover position

(only one

rover)

and time

Rover

actions

Question, how

to make multi-

rover?

Simple Mars Rover: Part II

 cpfs {

 // Noisy movement update

 xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE_MULT*xMove);

 yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE_MULT*yMove);

 // Time update

 time' = if (snapPicture)

 then DiracDelta(time + 0.25)

 else DiracDelta(time +

 [if (xMove > 0) then xMove else -xMove] +

 [if (yMove > 0) then yMove else -yMove]);

 };

Fixed time for picture

Time proportional to

distance moved

White noise, variance

proportional to distance moved

Simple Mars Rover: Part III

 // We get a reward for any picture taken within picture box error bounds

 // and the time limit.

 reward = if (snapPicture ^ (time <= MAX_TIME))

 then sum_{?p : picture-point} [

 if ((xPos >= PICT_XPOS(?p) - PICT_ERROR_ALLOW(?p))

 ^ (xPos <= PICT_XPOS(?p) + PICT_ERROR_ALLOW(?p))

 ^ (yPos >= PICT_YPOS(?p) - PICT_ERROR_ALLOW(?p))

 ^ (yPos <= PICT_YPOS(?p) + PICT_ERROR_ALLOW(?p)))

 then PICT_VALUE(?p)

 else 0.0]

 else 0.0;

 state-action-constraints {

 // Cannot snap a picture and move at the same time

 snapPicture => ((xMove == 0.0) ^ (yMove == 0.0));

 };

Reward for all pictures taken

within bounding box!

Cannot move and take

picture at same time.

How to Think About Distributions

• Transition distribution is stochastic program
– Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer)

– Leaves of programs are distributions
• Think of SPUDD / Sym. Perseus decision diagrams

as having Bernoulli leaves

• Procedural specification of sampling process
– Use intermediate DBN variables for storage

– E.g., drawing a distance measurement in robotics
• boolean Noise := sample from Bernoulli (.1)

• real Measurement := If (Noise == true)
– Then sample from Uniform(0, 10)

– Else sample from Normal(true-distance, 2)

0 10

true-distance
Convenient way to write

complex mixture models and

conditional distributions that

occur in practice!

RDDL Recap I

• Everything is a fluent (parameterized variable)
– State fluents

– Observation fluents

• for partially observed domains

– Action fluents

• supports factored concurrency

– Intermediate fluents

• derived predicates, correlated effects, …

– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents

– Multi-valued (enumerated) fluents

– Integer and continuous fluents (from PDDL 2.1)

RDDL Recap II

• Semantics is ground DBN / Influence Diagram

– Unambiguous specification of transition semantics

• Supports unrestricted concurrency

– Naturally supports independent exogenous events

• General expressions in transition / reward

– Logical expressions (, ,, , , )

– Arithmetic expressions (+,−,*, /, x,x)

– In/dis/equality comparison expressions (=,, <,>,, )

– Conditional expressions (if-then-else, switch)

– Basic probability distributions

• Bernoulli, Discrete, Normal, Poisson

Logical expr. {0,1}

so can use in

arithmetic expr.

x,x aggregators over

domain objects extremely

powerful

RDDL Recap III

• Goal + General (PO)MDP objectives
– Arbitrary reward

• goals, numerical preferences (c.f., PDDL 3.0)

– Finite horizon

– Discounted or undiscounted

• State/action constraints
– Encode legal actions

• (concurrent) action preconditions

– Assert state invariants
• e.g., a package cannot be in two locations

RDDL Software

Open source & online at

http://code.google.com/p/rddlsim/

http://code.google.com/p/rddlsim/

Java Software Overview

• BNF grammar and parser

• Simulator

• Automatic translations
– LISP-like format (easier to parse)

– SPUDD & Symbolic Perseus (boolean subset)

– Ground PPDDL (boolean subset)

• Client / Server
– Evaluation scripts for log files

• Visualization
– DBN Visualization

– Domain Visualization – see how your planner is doing

Visualization of Boolean Traffic

Visualization of Boolean Elevators

RDDL Domains

• Boolean track

– 8 domains (including traffic & elevators)

– 10 instances per domain from IPPC

– Generators for any size instance!

• General track (bool, integer, continuous)

– Range of problems (Mars Rover, concurrent)

– Where I hope future IPPC focuses…

Ideas for other RDDL Domains

• UAVs with partial observability

• (Hybrid) Control
– Linear-quadratic control (Kalman filtering with control)

– Discrete and continuous actions – avoided by planning

– Nonlinear control

• Dynamical Systems from other fields
– Population dynamics

– Chemical / biological systems

– Physical systems
• Pinball!

– Environmental / climate systems

• Bayesian Modeling
– Continuous Fluents can represent parameters

• Beta / Bernoulli / Dirichlet / Multinomial / Gaussian

– Then progression is a Bayesian update!
• Bayesian reinforcement learning

Submit your own

Domains in RDDL!

Field only makes true progress

working on realistic problems

Future RDDL Extensions?
• Elementary functions

– sin, cos, log, exp, sqrt

• Effects-based specification?
– Easier to write than current fluent-centered approach

– But how to resolve conflicting effects in unrestricted concurrency

• Binomial / Multinomial
– Need a vector fluent type when sampling vectors of counts

• Object fluents
– Much harder than PDDL 3

– Distribrutions over indefinite number of objects
• Perhaps can borrow ideas from BLOG (Milch et al)

• Timed processes?
– Continuous time – stochastic differential equations

– Asynchronous concurrency + time quite difficult

Enjoy RDDL!

(no lack of difficult

problems to solve!)

Questions?

