
Bidirectional Online Probabilistic Planning

Aswin Nadamuni Raghavan and Saket Joshi and Alan Fern and Prasad Tadepalli

School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, OR 97331

We present Bidirectional Online Probabilistic Planner
(BOPP)1, a novel planner that combines elements of Deci-
sion Theoretic Planning(DTP) and forward search. In partic-
ular, BOPP uses a combination of SPUDD and Upper Con-
fidence Trees(UCT). We present our approach and some ex-
perimental results on the domains presented in the boolean
fluents MDP track of the International Probabilistic Plan-
ning Competition(IPPC) 2011.

Decision Theoretic Planning (DTP) (Boutilier, Dean, and
Hanks 1999) is a well established method for solving proba-
bilistic planning domains by casting them as Markov De-
cision Processes (MDP) and generating a policy. Classi-
cal solutions to DTP (Bellman 1957; Howard 1960) require
the entire state space to be enumerated. This approach is
usually infeasible for solving planning problems of inter-
est. Recent advances in DTP have mitigated this effect by
providing solution algorithms for factored (Boutilier, Dear-
den, and Goldszmidt 1999) and relational (Boutilier, Reiter,
and Price 2001) MDPs. These solutions are abstract and re-
quire enumeration only of the relevant conditions that create
a partition of the state space into equivalence classes (based
on the policy or value), instead of enumerating the entire
state space. One factored MDP solver in particular, SPUDD
(Hoey et al. 1999), has been very successful at solving plan-
ning problems and has spawned numerous variants over the
last decade. SPUDD employs Algebraic Decision Diagrams
to represent and solve the underlying MDP using value it-
eration. However, experiments have shown that SPUDD
proves to be inefficient for many of the planning problems
presented in the recent IPPC.

Forward Search has been another classic approach for AI
planning. Brute force search is typically infeasible for large
state spaces because the size of the search tree is exponential
in the depth (length of the plan). Planners based on heuristic
search, however, have shown success at the recent planning
competitions (Bonet and Geffner 2001; Yoon, Fern, and Gi-
van 2007; Teichteil-Koenigsbuch, Infantes, and Kuter 2008).
The heuristic values of states or state-action pairs are typ-
ically derived automatically by solving a relaxation to the
probabilistic planning problem. More recently, search al-
gorithms for probabilistic planning based on simulation and

1BOPP is a work in progress. The results presented here are
after post competition analysis and corrections.

sampling have been introduced (Kearns, Mansour, and Ng
1999). The UCT algorithm (Kocsis and Szepesvari 2006),
in particular, is an extension of sparse sampling. UCT is a
Monte-Carlo value estimation technique where action selec-
tion in simulated trials is dependent on the upper confidence
bound of the action value estimate. UCT has shown success
in planning to play the game of GO (Gelly and Wang 2006;
Gelly and Silver 2007) and real time strategy games (Balla
and Fern 2009).

Combining forward search with abstract backward rea-
soning or goal regression is attractive for a number of rea-
sons. It provides the forward search with goal-relevant focus
and heuristic guidance derived from the backward reason-
ing. It reduces the effective search depth for the forward
search in cases where the backward reasoning could make
signficant progress by computing the description of states
which are some steps away from the goal. In harder do-
mains where backward reasoning is not so effective, forward
search could still make some incremental progress towards
the goal.

Our Approach
BOPP combines Upper Confidence Trees(UCT) with
SPUDD. A sequential approximation of the original prob-
lem is constructed by ignoring concurrent actions in the
domain. It is this problem that SPUDD solves. SPUDD
represents the value function as an algebraic decision dia-
gram. The leaf nodes in the decision diagram contain the
value of the state and a path in the diagram corresponds to
a state and its value. The value functionV i at every iter-
ation i of value iteration is cached. Note thatV i can be
used as a heuristic to evaluate a state at a depthh − i in
the search tree constructed by UCT, whereh is the hori-
zon. We compute the range of values of states inV i,
∆V i = |maxsV

i(s) −minsV
i(s)|. In the absence of do-

main knowledge, we use∆V i to make intelligent guesses
about problem-specific parameters. Firstly, we prune the de-
cision diagram using all pair pruning. The pruning size is set
to 10% of∆V i, V i ← prune(V i, all pair, 0.1∆V i). Note
that setting this parameter to more than 50% of∆V i would
cause the decision diagram to collapse into one leaf node.

In parallel, the original problem is solved in the forward
direction using UCT. UCT is parameterized by the default
policy, the exploration constantC > 0 and theforward hori-



zon0 ≤ fh ≤ h, whereh is the horizon of the problem.
In the bandit phase, action values are computed as a sum
of two terms corresponding to exploration and exploitation.
The relative weight of the exploration term is controlled by
C. In practice, this constant has to be tuned for a given do-
main. As a rule of thumb,C can be set to the difference
between the maximum and minimum expected reward per
episode. LetCi denote the value ofC at a depthi in the
search tree. We setCi = ∆V i. When an unexplored state is
encountered, the default policy is followed until the forward
horizon. The resulting state is evaluated using the corre-
sponding value function.Vtree(s, d) = evaluate(s, V h−d).
If V h−d is unknown, the most recent value function is used
instead. Thus SPUDD provides UCT with a much needed
fringe heuristic, especially in domains with sparse rewards.
It also allows us to fix the number of decisions taken us-
ing the default policy. The parameterfh can be considered
as controlling the bias-variance tradeoff. A large value of
fh ∼ h would lead to high variance trajectories while fol-
lowing the base policy. A low value offh introduces bias
towards the SPUDD value function. Given the time con-
traints of the IPPCfh also needs to be tuned such that a suf-
ficiently wide search tree can be built quickly. In domains
with exogenous events such as SysAdmin it might even be
reasonable to restrict the length of default trajectories.

Experimental results
The IPPC 2011 consists of eight domains with ten problem
instances per domain. The instances are ordered by diffi-
culty in terms of number of objects and/or the degree of
randomness. For example, in the SysAdmin domain prob-
lems are ordered by the number of computers and the failure
probability of each computer. A total time of 24 hours is
divided uniformly among the domains. BOPP is parame-
terized by the default policyπdefault and forward horizon
fh (Other parameters are set as defined in the preceding sec-
tion). We would likefh to be a function of the problem hori-
zon and some measure of progress in SPUDD. This might
not be practical as the horizon can be arbitrarily large(even
unknown in some cases).

We first show the usefulness of truncated default trajec-
tories. Figure 1 shows the average reward obtained in the
domain of traffic MDP using UCT(πRANDOM ,fh = 10)
and UCT(πRANDOM , fh = h), whereh is the horizon.
The effect of truncating the rollouts seems to be beneficial.
Simulations are time consuming in this domain and the in-
stances are such that a lookahead of more than ten is not
necessary. Figure 2 shows the average reward in the skill
teaching domain presented in IPPC 2011 with parameters
BOPP(πRANDOM , fh = 1). We can see the scalability of
BOPP as compared to SPUDD. In this domain, the perfor-
mance comes mainly from UCT. Figure 3 shows the average
reward for the SysAdmin domain. In this domain SPUDD
seems to be the driving force.

In general, UCT and SPUDD exhibit different strengths
and weaknesses, and their combination seems like a promis-
ing approach to improve upon both of them. We found that
BOPP works better than either approach in all the domains
of IPPC. More experiments are needed to evaluate BOPP

Figure 1: Effect of truncated trajectories

Figure 2: Scalability of BOPP as compared to SPUDD

further and improve its performance especially in domains
where both UCT and SPUDD perform poorly.

References
Balla, R., and Fern, A. 2009. UCT for tactical assault plan-
ning in real-time strategy games. InProceedings of the Inter-
national Joint Conference of Artificial Intelligence, 40–45.
Bellman, R. 1957.Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1-2):5–33.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage.Journal of Artificial Intelligence Research
11:1–94.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1999.
Stochastic dynamic programming with factored representa-
tions. Artificial Intelligence121(1-2):49–107.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for First-Order MDPs. InProceed-



Figure 3: Comparison of UCT and BOPP

ings of the International Joint Conference of Artificial Intel-
ligence, 690–700.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. InProceedings of the International
Conference on Machine Learning, 273–280.
Gelly, S., and Wang, Y. 2006. Exploration exploitation in
Go: UCT for monte-carlo Go. InNIPS Workshop for On-
line trading of Exploration and Exploitation.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of Uncertainty in Artificial Intelligence, 279–
288.
Howard, R. 1960. Dynamic Programming and Markov
Processes. MIT Press.
Kearns, M.; Mansour, Y.; and Ng, A. 1999. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes. InProceedings of the International Joint
Conference of Artificial Intelligence, 1324–1331.
Kocsis, L., and Szepesvari, C. 2006. Bandit based monte-
carlo planning. InProceedings of the European Conference
on Machine Learning, 282–293.
Teichteil-Koenigsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A robust FF-based mdp planning algorithm for gener-
ating policies with low probability of failure. InProceedings
of the Sixth IPC at ICAPS.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A base-
line for probabilistic planning. InProceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, 352.


