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The problem

Input: Photo of a known object and 3D CAD Model

Output: Pose parameters θ that register the model on the photos

Pose - Position/orientation of 3D object w.r.t. camera
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Applications

Use as a ground truth for detailed image analysis

Augmented reality applications

Process control work

CV applications needing a non-articulated full monocular 3D pose
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Features of our pose estimation method

Use only a single, static image limited to a single view

Works in an uncontrolled environment

Work under varying and unknown lighting conditions

Avoid user interaction

Avoid training/learning [Arie-Nachimson and Basri, 2009]

Estimate the full 3D pose of the object (Not a set of finite Poses
[Ozuysal et al., 2009] or XY position and angle on ground plane
[Sun et al., 2011])
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Approach - Minimise a loss function
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Approach - Minimise a loss function

µx and µy are 2 of the 7 pose parameters estimated
(explained later)
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Phong reflection model

Based on the Phong reflection model [Foley, 1996]

Approximation: Consider only (Ambient) + (Diffuse) terms
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Phong reflection model - linear relation
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Loss function

Loss at pose θ

L(θ) := E[||I (p)− F (p)||2]

= E[||A·Mθ(p) + b − F (p)||2] (2)

At correct illumination [Jayawardena et al., 2011]

Loss(θ) := min
A∈IRm×n

min
b∈IRm

E[||A·Mθ + b − F ||2] (3)

As the expression is quadratic Amin and bmin can be found analytically.
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Loss Function - Illumination Invariance

Loss(θ) := min
A∈IRm×n

min
b∈IRm

E[||A·Mθ + b − Y ||2]

Invariant under regular (non-singular) linear transformation of Mθ

and Y

Loss(θ) is the same for any Mθ ← A′Mθ + b′ for all b′ and all
non-singular A′

Simillarly for linear transformations of Y

Independent of lighting A
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Pose representation

Orthographic projection (6 d.f)

Rotation (3)

Shift (2)

Scale (1)

For vechilce pose:
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Pose representation

Perspective projection (7 d.f)
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Loss landscapes
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Initial rough pose to initialise the optimiser

Several ways to obtain an initial (rough) pose:
[Arie-Nachimson and Basri, 2009] [Ozuysal et al., 2009]
[Sun et al., 2011]

We use: Wheel match method [Hutter and Brewer, 2009]

Motivation:
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The optimiser

Downhill Simplex Method [Nelder and Mead, 1965]

Direct Search Method - Derivative information not required

A 2D example:

(a) Rosenbrock (2D) (b) The simplex (3 points)
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Reliability tests on loss based pose estimation

Reliability tests of pose estimation (initial rough pose with increasing
deviations)
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(b) Reliability = NoCorrectCases
TotalTestsPerDevnRange

Background removal using GrabCut [Rother et al., 2004]
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Results - Scanned 3D CAD (Mazda Astina)

(a) Initial rough pose

(b) Final pose
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Results - Internet 3D CAD models

(a) Initial (b) Initial

(c) Final (d) Final
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Computation times

Table: Rendering and loss calculation times.

Approach Loss calc. Render
MATLAB 0.16 s 2.28 s
C/OpenGL 0.04 s 0.17 s

Approx 2 minutes to optimise 800x600 image

Srimal Jayawardena Australian National University Monocular 3D Pose Estimation 27th October 2011 23 / 41



Conclusion and outlook

Conclusion:

The loss function works successfully on real photos

Downhill-simplex optimiser is effective with simplex re-initialisations

Outlook:

A planned application - automatic damage detection in vehicles
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Reflections and Damage
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Intuition for reflection detection

(Ozuysal et al. CVPR 2009)
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Proposed approach
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Two view consensus

(a) View 1

(b) View 2 (c) View 2 in View 1

Consider pixels seen in both views only
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Feature space - Features 1 and 2

Features based on difference in 2 views

(a) RGB Space

(b) AB in LAB Space

Consider pixels seen in both views only
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Features based on difference in 2 views

(a) RGB Space (b) AB in LAB Space

Consider pixels seen in both views only

Srimal Jayawardena Australian National University Monocular 3D Pose Estimation 27th October 2011 29 / 41



Feature 3

Specular highlight feature based on Tan et al. PAMI 2005

(a) View 1

(b) Specular free (c) Feature

Consider pixels seen in both views only
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Feature 4

Feature based on deviation from average color in LAB space

(a) View 1

(b) Deviation

Consider pixels seen in both views only
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Feature 4

Feature based on deviation from average color in LAB space

(a) View 1 (b) Deviation

Consider pixels seen in both views only
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Preliminary Results: Synthetic Data

Preliminary results of classifier only (MRF’s unary potentials only)

(a) View 1

(b) Tnf. View 2
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Preliminary Results: Synthetic Data

(c) Predicted

(d) Ground Truth
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Preliminary Results: Synthetic Data

(e) Predicted (f) Ground Truth
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Preliminary Results: Real Data

(a) View 1

(b) Transformed View 2
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Preliminary Results: Real Data

(c) Prediction

(d) Ground Truth
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Preliminary Results: Real Data

(e) Prediction (f) Ground Truth
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PR Curves
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Challenges and discussion

Conclusion:

Defining reflection in this context

Detecting damage

Finding a large data set
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Thank you!
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