

Monocular 3D Pose Estimation

Srimal Jayawardena Australian National University

srimal(dot)jayawardena(at)anu(dot)edu(dot)au http://users.cecs.anu.edu.au/ srimalj/

27th October 2011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

• Input: Photo of a known object and 3D CAD Model

THE 1 1

- Input: Photo of a known object and 3D CAD Model
- ullet Output: Pose parameters $m{ heta}$ that register the model on the photos

- Input: Photo of a known object and 3D CAD Model
- Output: Pose parameters heta that register the model on the photos
- Pose Position/orientation of 3D object w.r.t. camera

• Use as a ground truth for detailed image analysis

- Use as a ground truth for detailed image analysis
- Augmented reality applications

- Use as a ground truth for detailed image analysis
- Augmented reality applications
- Process control work

- Use as a ground truth for detailed image analysis
- Augmented reality applications
- Process control work
- CV applications needing a non-articulated full monocular 3D pose

• Use only a single, static image limited to a single view

- Use only a single, static image limited to a single view
- Works in an uncontrolled environment

- Use only a single, static image limited to a single view
- Works in an uncontrolled environment
- Work under varying and unknown lighting conditions

- Use only a single, static image limited to a single view
- Works in an uncontrolled environment
- Work under varying and unknown lighting conditions
- Avoid user interaction

- Use only a single, static image limited to a single view
- Works in an uncontrolled environment
- Work under varying and unknown lighting conditions
- Avoid user interaction
- Avoid training/learning [Arie-Nachimson and Basri, 2009]

- Use only a single, static image limited to a single view
- Works in an uncontrolled environment
- Work under varying and unknown lighting conditions
- Avoid user interaction
- Avoid training/learning [Arie-Nachimson and Basri, 2009]
- Estimate the full 3D pose of the object (Not a set of finite Poses [Ozuysal et al., 2009] or XY position and angle on ground plane [Sun et al., 2011])

Approach - Minimise a loss function

High loss value at wrong pose

Approach - Minimise a loss function

Minimal loss at the correct pose

Srimal Jayawardena Australian National University Monocular 3D Pose Estimation 27th October 2011 6 / 41

Approach - Minimise a loss function

 μ_x and μ_y are 2 of the 7 pose parameters estimated (explained later)

Phong reflection model

Based on the Phong reflection model [Foley, 1996]

Phong reflection model

Based on the Phong reflection model [Foley, 1996]

Phong reflection model

Based on the Phong reflection model [Foley, 1996]

Approximation: Consider only (Ambient) + (Diffuse) terms

Phong reflection model - linear relation

Phong reflection model - linear relation

Intensity at pixel location p (neglecting specular terms)

$$I(p) \equiv \underbrace{\begin{bmatrix} I_a & I_d \mathbf{L} \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} I_a \\ I_d \phi(\mathbf{p}) \end{bmatrix}}_{\mathbf{M}_{\theta}(p)} + b$$

Phong reflection model - linear relation

Intensity at pixel location p (neglecting specular terms)

$$I(p) \equiv \underbrace{\begin{bmatrix} I_a & I_d \mathbf{L} \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} I_a \\ I_d \phi(\mathbf{p}) \end{bmatrix}}_{\mathbf{M}_{\theta}(p)} + b$$

$$I(p) \equiv \mathbf{A} \cdot \mathbf{M}_{\theta}(p) + b \tag{1}$$

Loss at pose θ

$$L(\theta) := \mathbf{E}[||I(p) - F(p)||^2]$$

-

Loss at pose θ

$$L(\theta) := \mathbf{E}[||I(p) - F(p)||^2] = \mathbf{E}[||A \cdot M_{\theta}(p) + b - F(p)||^2]$$
(2)

-

Loss at pose θ

$$L(\theta) := \mathbf{E}[||I(p) - F(p)||^2] = \mathbf{E}[||A \cdot M_{\theta}(p) + b - F(p)||^2]$$
(2)

At correct illumination [Jayawardena et al., 2011]

$$\operatorname{Loss}(\theta) := \min_{A \in \mathbb{R}^{m \times n}} \min_{b \in \mathbb{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - F||^2]$$
(3)

Loss at pose θ

$$L(\theta) := \mathbf{E}[||I(p) - F(p)||^2] = \mathbf{E}[||A \cdot M_{\theta}(p) + b - F(p)||^2]$$
(2)

At correct illumination [Jayawardena et al., 2011]

$$\operatorname{Loss}(\theta) := \min_{A \in \mathbb{R}^{m \times n}} \min_{b \in \mathbb{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - F||^2]$$
(3)

As the expression is quadratic A_{min} and b_{min} can be found analytically.

$$\mathsf{Loss}(\theta) := \min_{A \in \mathbf{R}^{m \times n}} \min_{b \in \mathbf{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - Y||^2]$$

• Invariant under regular (non-singular) linear transformation of $M_{ heta}$ and Y

$$\mathsf{Loss}(\theta) := \min_{A \in \mathbf{R}^{m \times n}} \min_{b \in \mathbf{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - Y||^2]$$

- Invariant under regular (non-singular) linear transformation of $M_{ heta}$ and Y
- Loss(θ) is the same for any $M_{\theta} \leftarrow A'M_{\theta} + b'$ for all b' and all non-singular A'

$$\mathsf{Loss}(\theta) := \min_{A \in \mathbf{R}^{m \times n}} \min_{b \in \mathbf{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - Y||^2]$$

- Invariant under regular (non-singular) linear transformation of $M_{ heta}$ and Y
- Loss(θ) is the same for any $M_{\theta} \leftarrow A'M_{\theta} + b'$ for all b' and all non-singular A'
- Simillarly for linear transformations of Y

$$\mathsf{Loss}(\theta) := \min_{A \in \mathbf{R}^{m \times n}} \min_{b \in \mathbf{R}^m} \mathbf{E}[||A \cdot M_{\theta} + b - Y||^2]$$

- Invariant under regular (non-singular) linear transformation of $M_{ heta}$ and Y
- Loss(θ) is the same for any $M_{\theta} \leftarrow A'M_{\theta} + b'$ for all b' and all non-singular A'
- Simillarly for linear transformations of Y
- Independent of lighting A

Pose representation

Orthographic projection (6 d.f)

• Rotation (3)

э

-

Orthographic projection (6 d.f)

- Rotation (3)
- Shift (2)

э

-

Orthographic projection (6 d.f)

- Rotation (3)
- Shift (2)
- Scale (1)

э

Orthographic projection (6 d.f)

- Rotation (3)
- Shift (2)
- Scale (1)

э

Orthographic projection (6 d.f)

- Rotation (3)
- Shift (2)
- Scale (1)

For vechilce pose:

Perspective projection (7 d.f)

(a) Large f

- N

3. 3

Perspective projection (7 d.f)

★ ∃ >

3. 3

Loss landscapes

Loss landscapes

 Several ways to obtain an initial (rough) pose: [Arie-Nachimson and Basri, 2009] [Ozuysal et al., 2009] [Sun et al., 2011]

- Several ways to obtain an initial (rough) pose: [Arie-Nachimson and Basri, 2009] [Ozuysal et al., 2009] [Sun et al., 2011]
- We use: Wheel match method [Hutter and Brewer, 2009]

- Several ways to obtain an initial (rough) pose: [Arie-Nachimson and Basri, 2009] [Ozuysal et al., 2009] [Sun et al., 2011]
- We use: *Wheel match method* [Hutter and Brewer, 2009] Motivation:

- Several ways to obtain an initial (rough) pose: [Arie-Nachimson and Basri, 2009] [Ozuysal et al., 2009] [Sun et al., 2011]
- We use: *Wheel match method* [Hutter and Brewer, 2009] Motivation:

The optimiser

• Downhill Simplex Method [Nelder and Mead, 1965]

The optimiser

- Downhill Simplex Method [Nelder and Mead, 1965]
- Direct Search Method Derivative information not required

The optimiser

- Downhill Simplex Method [Nelder and Mead, 1965]
- Direct Search Method Derivative information not required
- A 2D example:

X1

Reliability tests on loss based pose estimation

Reliability tests of pose estimation (initial rough pose with increasing deviations)

Reliability tests on loss based pose estimation

Reliability tests of pose estimation (initial rough pose with increasing deviations)

Background removal using GrabCut [Rother et al., 2004]

Srimal Jayawardena

Results - Scanned 3D CAD (Mazda Astina)

(a) Initial rough pose

Results - Scanned 3D CAD (Mazda Astina)

(a) Initial rough pose

(b) Final pose

(a) Initial

(b) Initial

∃ → (∃ →

э

(b) Initial

(d) Final

(c) Final

Australian National University Monocular 3D Pose Estimation 27th October 2011 21 / 41

(a) Initial

(b) Initial

• • = • • = •

э

(b) Initial

(a) Initial

(d) Final

(日) (周) (三) (三)

3

(c) Final

Srimal Jayawardena

Computation times

Table: Rendering and loss calculation times.

Approach	Loss calc.	Render
MATLAB	0.16 s	2.28 s
C/OpenGL	0.04 s	0.17 s

Approx 2 minutes to optimise 800x600 image

Conclusion and outlook

Conclusion:

- The loss function works successfully on real photos
- Downhill-simplex optimiser is effective with simplex re-initialisations Outlook:
 - A planned application automatic damage detection in vehicles

Reflections and Damage

(a) Gradient

Reflections and Damage

(a) Gradient

(b) Original

1 1

A B A A B A

(Ozuysal et al. CVPR 2009)

Srimal Jayawardena

Australian National University Monocular 3D Pose Estimation 27th October 2011 26 / 41

→ ∃ →

Proposed approach

Two view consensus

(a) View 1

3

Two view consensus

(a) View 1

(b) View 2

A B A A B A

э

Two view consensus

Consider pixels seen in both views only

Feature space - Features 1 and 2

Features based on difference in 2 views

(a) RGB Space

Feature space - Features 1 and 2

Features based on difference in 2 views

(a) RGB Space

(b) AB in LAB Space

Consider pixels seen in both views only

Srimal Jayawardena

29 / 41

Specular highlight feature based on Tan et al. PAMI 2005

(a) View 1

Specular highlight feature based on Tan et al. PAMI 2005

(a) View 1

(b) Specular free

Specular highlight feature based on Tan et al. PAMI 2005

Consider pixels seen in both views only

Feature based on deviation from average color in LAB space

(a) View 1

ラト

Feature based on deviation from average color in LAB space

(a) View 1

(b) Deviation

Consider pixels seen in both views only

Srimal Jayawardena Australian National University Monocular 3D Pose Estimation 27th October 2011 31 / 41

Preliminary results of classifier only (MRF's unary potentials only)

Preliminary results of classifier only (MRF's unary potentials only)

3

B ▶ < B ▶

(c) Predicted

(f) Ground Truth

くほと くほと くほと

3

(e) Predicted

Srimal Jayawardena Australian National University Monocular 3D Pose Estimation 27th October 2011 33 / 41

(a) View 1

(a) View 1

(b) Transformed View 2

· · · · · · · · ·

(c) Prediction

(e) Prediction

(f) Ground Truth

< /₽ > < E > <

1 1

PR Curves

Challenges and discussion

Conclusion:

• Defining reflection in this context

Challenges and discussion

Conclusion:

- Defining reflection in this context
- Detecting damage

Challenges and discussion

Conclusion:

- Defining reflection in this context
- Detecting damage
- Finding a large data set

Thank you!

2

References I

Arie-Nachimson, M. and Basri, R. (2009).

Constructing implicit 3d shape models for pose estimation. In ICCV.

Foley, J. (1996).

Computer graphics: principles and practice. Addison-Wesley Professional.

- Hutter, M. and Brewer, N. (2009).

Matching 2-D Ellipses to 3-D Circles with Application to Vehicle Pose Identification.

In Image and Vision Computing New Zealand, 2009. IVCNZ'09. 24th International Conference, pages 153–158.

References II

- Jayawardena, S., Hutter, M., and Brewer, N. (2011).
 - A novel illumination-invariant loss for monocular 3d pose estimation.
 - In (To appear) DICTA 2011, Digital Image Computing: Techniques and Applications.
- Nelder, J. and Mead, R. (1965).
 - A simplex method for function minimization. *The computer journal*, 7(4):308.
- Ozuysal, M., Lepetit, V., and P.Fua (2009).
 Pose estimation for category specific multiview object localization.
 In Conference on Computer Vision and Pattern Recognition, Miami, FL.
- Rother, C., Kolmogorov, V., and Blake, A. (2004).
 Grabcut: Interactive foreground extraction using iterated graph cuts.
 ACM Transactions on Graphics (TOG), 23(3):309–314.

References III

Sun, M., Kumar, S. S., Bradski, G., and Savarese, S. (2011). Toward automatic 3d generic object modeling from one single image. In *3DIMPVT*, Hangzhou, China.