
Lecture 9: Online Algorithms for Metrical Task Systems
& Dating Problems
Advanced Algorithms

Sid Chi-Kin Chau

Australian National University
�����sid.chau@anu.edu.au

October 6, 2022

What is Love?

One day, Plato asked Socrates, his teacher and mentor, “What is love?”

Socrates replied, “Plato, take a walk through the wheat field nearby. Without

turning back, walk forward, and pick the most magnificent stalk of wheat you

can find. However, you are allowed to pick only one.”

Plato followed Socrates’ instructions, confident that he would find the best
stalk of wheat in the field. Before long though, he returned empty-handed.

Socrates asked, “Why have you picked nothing?”

Plato replied, “I had found the most magnificent stalk of wheat as soon as

I walked into the field, but since I was only allowed one pick, and I could

not turn back, I thought I could find a better one further ahead. However, I

could not find a better one as I kept searching, so I returned with none.”

“And that is love,” said Socrates.

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 2 / 35

≪ Tightrope Walking influenced by Adversary ≫

Caching Problem

von Neumann computer model:
I CPU needs to load the data blocks to cache before execution
I Direct execution from memory will be very slow

Definition (Caching Problem (aka Paging Problem))

Consider a memory with N data blocks (or called pages)
There is a cache with space for only K(� N) blocks

I Some blocks are pre-loaded to the cache to speed up the access time
I When the cache is full, we have to discard some loaded blocks
I When a block is not missing in the cache when it is requested, a cache

miss will occur
Goal: Online algorithm to minimize the number of cache misses
without knowing the future requested blocks

I Decide which loaded blocks to be discarded when loading a new block

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 4 / 35

Online Caching Algorithm

There are many online caching algorithms:
I FIFO (first-in-first-out) removes the oldest block in cache
I LIFO (last-in-first-out) removes the newest block in cache
I FWF (flush-when-full) completely empties the cache when the cache is full and

there is a cache miss
I LFD (longest-forwarded-distance) removes the block that will be requested the

latest by guessing the future requests
I LFU (last-frequently used) removes the block that was requested least of them
I LRU (least-recently used) removes the block requested least recently

Which online caching algorithm is the best?
Offline optimal solution:

I Discard the block whose next request is farthest in the future

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 5 / 35

Online Caching Algorithm

Online Algorithm: ALRU (Least Recently Update)
If cache is full, then discard the least recently requested block
ALRU may incur a cache miss every time

I E.g., consider K = 3 and request sequence (1,2,3,4,1,2,3,4,1,2,3,4, ...)
But offline optimal incurs a cache miss every K items
The competitive ratio of ALRU is K

Lemma
No deterministic online algorithm can have a competitive ratio lower than K

Proof:
Suppose N = K + 1. Adversary can observe which blocks discarded by online algorithm
Adversary always requests the one block not in cache ⇒ A cache miss on every request
Opt has only one cache miss every K requests – discard the next (K +1)-th request block

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 6 / 35

Online Caching Algorithm

Randomized Online Algorithm Arcache

Start with all blocks unmarked, K arbitrary blocks in cache
When a block is requested

I If it is in cache already, then mark it
I If it is not and cache is full,

F Discard a random unmarked block
F Load the requested block into the cache, and mark it

If all blocks in cache are marked, unmark everything first

Oblivious Adversary knows the online algorithm, but does not know what the random
decisions are made by the online algorithm

I We assume that oblivious Adversary prepares all the input in advance without knowing which
random blocks will be discarded from the cache by the online algorithm

I Oblivious Adversary is sufficient to model the adversarial nature in practice

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 7 / 35

Online Caching Algorithm

Theorem
The expected competitive ratio of Arcache is O(logK)

Proof:

Suppose the total number of blocks is N = K + 1

Consider an iteration with a request sequence of K + 1
different blocks

I Ignore the blocks in the requests that are requested for the
second or more times, as they will not have cache miss

Opt has at least one cache miss in the iteration

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 8 / 35

Online Caching Algorithm

Proof (Cont.):
In Arcache, the block not in cache must be a random unmarked block
When a block is requested, if it was already marked, then there is no cache miss
If it is not marked, then the probability P(cache miss) = 1

i , where i is the number of
unmarked blocks
By linearity of expectation, the expected total number of cache misses in the iteration is

E[num. of cache miss] =
N∑
i=1

P(cache miss) = 1

K + 1
+

1

K
+ ...+

1

2
+ 1 = O(logK)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 9 / 35

k-Server Problem

Definition (k-Server Problem)

Let M be a metric space with a distance function d(·, ·)
I d(x, y) is a function to measure the distance between x, y ∈ M
I E.g., Euclidean space is a metric space

There are k servers {s1, ..., sk}
R is a sequence of n requests (r1, r2, ..., rn), such that rt ∈ M,
which must be served by one of the k servers

I If a new request rt is not occupied by a server, we move a server,
say sj originally located at r ∈ M, to rt at a cost of d(r, rt)

Goal: Online algorithm to minimize the total travel distance by
the servers, without knowing the future requests

I Decide which server to be moved to the new request’s location

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 10 / 35

k-Server Problem

Special cases of k-server problem
I Caching problem

F M = a set of blocks, d(·, ·) =1, locations of k servers = k blocks in cache
I k-Headed disk problem

F M = [0, 1] , d(x, y) = |x− y|

Optimal Offline Algorithm:
I Reduce to minimum-cost flow problem by dynamic programming

Definition (Lazy Algorithm)
A lazy algorithm for k-server problem only moves servers when there is no server at the
location of a request
A lazy algorithm moves one server and only to the location of a request

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 11 / 35

Greedy Algorithm for k-Server Problem

Greedy algorithm:
I Always move the closest server to serve the next request

Consider three locations on a line (a, b, c) with two servers
I Distances: d(a, b) � d(b, c)
I Requests: r1 = a, r2 = c, r3 = b, r4 = a, r5 = b, r6 = a, r7 = b, ...

Greedy algorithm will move the same server to serve locations
a and b, because c is very far away
Offline optimal solution:

I Put two servers at a and b subsequently
The competitive ratio of greedy algorithm → ∞

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 12 / 35

Lower Bound for Deterministic Online Algorithm for k-Server Problem

Theorem
Let (M, d) be a metric space, where |M| ≥ k + 1. There is no deterministic lazy online
algorithm for k-server problem on M with a competitive ratio < k

Proof:
Consider B = {b1, ..., bk+1} ⊆ M, a subset of M with k + 1 locations
We assume that online algorithm A starts with servers at k different locations in B

Algorithm A is lazy and always moves at most one server to each location
The adversary requests R = (r1, ..., rn) with locations in B at which A has no server
We show that the total distance by the servers in A is lowered bounded by

dA(R) ≥
n−1∑
t=1

d(rt, rt+1)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 13 / 35

Lower Bound for Deterministic Online Algorithm for k-Server Problem

Proof (Cont.):
After rt−1, the next rt is requested at the location that was covered
by the server before serving rt−1

Suppose a server is moved from some location pt to serve rt

Note that the cost for servicing d(pt, rt) = d(rt, rt+1) for t ≤ n−1

Next, we show
∑n−1

t=1 d(rt+1, rt) ≥ k · dOpt(R), where Opt is offline
optimal solution for R
Consider k algorithms {At} for t ≤ k defined as follows:

I Initially, all {At} starts by placing servers at B\{bk+1}
I To service r1 = bk+1, algorithm At moves the server from bt to bk+1

I Observe that there exists exactly one location that is covered by all
{At}, i.e., bk+1

I Each algorithm At is lazy and behaves so as to move a server between
locations bt and bk+1 only

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 14 / 35

Lower Bound for Deterministic Online Algorithm for k-Server Problem

Proof (Cont.):
Since we want to maintain that at all times there is exactly one
location in M that is covered by all algorithms {At}, has to move
the server that is presently at location bk+1

Let
∑n−1

t=1 dAt(R) denote the sum of costs of all algorithms {At}.
By induction we have that at each time step j, only one algorithm
in {At} has to move a server and moreover it moves a server that
is at location rj−1. Thus, the total cost of all the At is∑n−1

t=1 d(rt+1, rt)

In particular, there is one of the algorithms achieving a cost below
the average cost, hence dOpt(R) ≤ 1

k

∑n−1
t=1 d(rt+1, rt),

dA(R) ≥
n−1∑
t=1

d(rt+1, rt) ≥ k · dOpt(R)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 15 / 35

Double Covering Algorithm for k-Server Problem on a Line

Double Covering Algorithm (DC)

Consider 1-dimensional setting on a line
If a new request rt is left (or right) of all servers, then move the
leftmost (or right-most) server to rt

Otherwise, move the two servers left and right of rt with the same
velocity towards rt. Stop both servers when one arrives at rt
Note that DC algorithm is not lazy
But it will avoid the oscillation of greedy algorithm: far-away
server will approach closer to the new request

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 16 / 35

Double Covering Algorithm for k-Server Problem on a Line

Theorem
Consider k-server problem on a line, the competitive ratio of double covering (DC) algorithm
is k

Proof:
We will prove that Cost(DC) ≤ k · Cost(Opt) using a potential function
Let p1(t) ≤ ... ≤ pk(t) and p∗1(t) ≤ ... ≤ p∗k(t) be the servers’ locations of DC and Opt
respectively after the request rt
Define a potential function φt (note that φt ≥ 0) for the t-th step:

φt = k

t∑
s=1

|ps(t)−p∗s(t)|+
∑
s′<s

|ps′(t)−ps(t)|

We write φ1
t = k

∑t
s=1 |ps(t)−p∗s(t)| and φ2

t =
∑

s′<s |ps′(t)−ps(t)|
Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 17 / 35

Double Covering Algorithm for k-Server Problem on a Line

Proof (Cont.):
Let ∆tφ = φt − φt−1 be the change in φ at each request rt, ∆tDC
be the cost by DC, and ∆tOpt be the cost by Opt for request rt
To service rt, both DC and Opt must move a server on rt

We evaluate ∆tφ = ∆tφ
1 +∆tφ

2 by thinking of Opt moving first
and DC moving next

Move type ∆tDC ∆tOpt ∆tφ
1 ∆tφ

2

Opt moves 0 ∆tOpt ≤ k∆tOpt 0
DC moves (1 server) ∆tDC 0 −k∆tDC (k − 1)∆tDC
DC moves (2 servers) ∆tDC 0 ≤ 0 −∆tDC

Then Cost(DC) ≤ k · Cost(Opt) because φ0 = 0 and

0 ≤ φn−φ0 =

n∑
t=1

∆tφ ≤ k

n∑
t=1

∆tOpt−
n∑

t=1

∆tDC = k·Cost(Opt)−Cost(DC)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 18 / 35

Double Covering Algorithm for k-Server Problem on a Tree

Let T be a tree embedded in the plane (also called tree metric space)
For nodes x and y on tree T , the distance d(x, y) is the Euclidean distance
of the unique path between x and y

A line can be viewed as a path on a tree and we want to extend the DC
algorithm to a tree
Server s is a neighbor of a request r if there is no other server on the
path from s to r

The servers that are neighbor to the new request move at the same speed
toward the request

1 Exactly one server is a neighbor to the request – only one server is moving
2 Some m ≤ k servers are neighbors to the request – m servers are moving

and k −m servers are not moving
The competitive ratio of DC algorithm is k for k-server problem on a tree

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 19 / 35

Probabilistic Embedding in Tree

Definition (Embedding in Metric Space)
Let (M, d) be a metric space. We say a metric space (M′, d′) with M ≤ M′ dominates
M if d(x, y) ≤ d′(x, y) for x, y ∈ M. We call the ratio maxx,y∈M

d′(x,y)
d(x,y) the stretch in

M′

I E.g., (M, d) is a 2D Euclidean metric space, and (M′, d′) is a tree metric space
Let M be a set of metrics that dominate M, and P a probability distribution over M.
We say that (M, P) is an α-approximation of M, if x, y ∈ M and a random metric
(M′, d′) from M according to probability distribution P :

E[d′(x, y)] ≤ α · d(x, y)

We also say that M is embedded probabilistically in M
Can we find a probabilistic embedding of an Euclidean metric space in tree metric space
with a low stretch?

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 20 / 35

Probabilistic Embedding in Tree

Example (Embedding in Tree)
In the deterministic way there can not be an embedding better than Ω(n)

I E.g., consider a cycle with n nodes. Removing one edge gives a stretch of
n− 1 for the worst case

If we embed in a randomized manner, then the expected stretch will be∑n/2
i=1

1
n · n−i

i + 1
n · n

2 =
∑n/2

i=1
1
i = O(logn)

Theorem (Fakcharoenphola-Rao-Talwar Theorem)
For a metric M with n points, there is a set M of tree metrics that dominate M and
probability distribution P over M, subject to (M, P) is a O(logn)-approximation of M

Probabilistic embedding in a tree metric space allows us to tackle k-server problem by
applying double covering algorithm on a tree

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 21 / 35

Randomized Online Algorithm for k-Server Problem

Theorem
There is a randomized online algorithm for the k-server problem, which has an expected
competitive ratio O(k · logn) for any metric space with n locations

Proof:
By Fakcharoenphola-Rao-Talwar Theorem, there is a probabilistic embedding in a tree
metric space T with expected O(logn)-approximation
Let Cost(·) and CostT (·) be the cost of a solution using metric distance functions d(·, ·)
and dT (·, ·) respectively
Let DCT and OptT be the solution of DC and optimal solution respectively on embedded
tree metric space T :

E[Cost(DCT)] = E[CostT (DCT)] ≤ E[k · CostT (OptT)]
≤ k · E[CostT (Opt)] ≤ k · O(logn) · Cost(Opt)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 22 / 35

Metrical Tasks System Problem

Metrical task systems (MTS) are an abstract model for general online decision problems
MTS captures diverse problems, e.g. caching, k-server, uncertain exploration problems

Definition (Metrical Tasks System (MTS))
MTS is a tuple (M, S,R) where M is a metric space with distance function d(·, ·)
S ⊆ M is a finite set in M, representing a set of possible states
R is a sequence of T requests (r1, r2, ..., rT), and cost function Cost(rt, s) is the
associated cost of processing request rt at state s ∈ S

Denote the current state at the t-th request by st

Goal: Online algorithm to decide the state st for the t-th request, such that it will
minimize the total cost (including the transition cost d(st−1, st) and the processing cost
Cost(rt, st)), without knowing the future requests

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 23 / 35

Metrical Tasks System Problem

Let Wt[s] be a work function (i.e., lowest accumulative cost) at current state s:

Wt[s] = min
s′∈S

(
Wt−1[s

′] + Cost(rt, s′) + d(s′, s)
)

where W0[s] = 0 for all s
Wt[s] can be computed offline by dynamic programming
The cost of offline optimal solution: Cost[Opt] = mins∈S Wn[s]

Let Opt =
(
s∗t

)n
t=1

be an offline optimal solution, which is obtained by back-tracking
1 Find s∗n by

s∗n = arg min
s∈S

Wn[s]

2 Find s∗t = s, given s∗t+1, by finding a suitable s that satisfies

Wt+1[s
∗
t+1] = Wt[s] + Cost(rt+1, s

∗
t+1) + d(s, s∗t+1)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 24 / 35

Work Function Algorithm

Work Function Algorithm (WFA) [Input: (s1,, st−1), rt]
At each request rt, find st−1 such that

st = arg min
s∈S

(
Wt[s] + d(st−1, s)

)
subject to

Wt[st] = Wt−1[st] + Cost(rt, st)

Return st for the current state

Basic idea: WFA finds a state that minimizes the discrepancy with the offline optimal
cost for the current request, subject to the constraint that the state remains unchanged
from the previous request in the least accumulative cost
Note that there always exists s ∈ S that satisfies Wt[s] = Wt−1[s] + Cost(rt, s).
Otherwise, Wt[s] cannot be the lowest accumulative cost

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 25 / 35

Work Function Algorithm

Theorem
If |M| = n, the competitive ratio of work function algorithm is (2n− 1) for MTS

Proof:
Let dmax , maxs,s′∈S d(s, s′)

Define potential function φt = 2
∑

s∈S Wt[s]−Wt[st], given the current selected state st

We show that
I Claim 1: φn ≤ (2n− 1) · Cost[Opt] + (2n− 2)dmax
I Claim 2: φt − φt−1 ≥ Cost[WFAt]− Cost[WFAt−1], where WFAt−1 is the output for the

(t− 1)-th request
By the two claims, we have

(2n− 1) · Cost[Opt] + (2n− 2)dmax ≥ φn =

n∑
t=1

(
φt − φt−1

)
≥ Cost[WFAn]

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 26 / 35

Work Function Algorithm
Proof (Cont.):

To prove Claim 1, note that Wt[s] ≤ mins′∈S Wt[s
′] + dmax for all s ∈ S

φn = Wn[sn] + 2
∑
s 6=sn

Wn[s] ≤ Wn[sn] + 2(n− 1)
(

min
s∈S

Wn[s] + dmax

)
≤ (2n− 1) · min

s∈S
Wn[s] + (2n− 2)dmax = (2n− 1) · Cost[Opt] + (2n− 2)dmax

To prove Claim 2, note that WFA selects st such that

Wt[st] + d(st−1, st) = min
s∈S

(
Wt[s] + d(st−1, s)

)
⇒ Wt[st] + d(st−1, st) ≤ Wt[st−1]

Also, WFA satisfies Wt[st]−Wt−1[st] = Cost(rt, st). Hence,

Wt[st] + d(st−1, st) + Cost(rt, st) ≤ Wt[st−1] +Wt[st]−Wt−1[st]

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 27 / 35

Work Function Algorithm
Proof (Cont.):

To prove Claim 2, we have

Cost[WFAt]− Cost[WFAt−1] = d(st−1, st) + Cost(rt, st) ≤ Wt[st−1]−Wt−1[st]

From the definition of φt

φt − φt−1 = 2
(∑

s∈S
Wt[s]−

∑
s∈S

Wt−1[s]
)
−Wt[st] +Wt−1[st−1]

= 2
(∑

s 6=st∧s6=st−1

Wt[s]−Wt−1[s]
)
+Wt[st−1]−Wt−1[st]

≥ Wt[st−1]−Wt−1[st] ≥ Cost[WFAt]− Cost[WFAt−1]

Because Wt[s]−Wt−1[s] ≥ 0

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 28 / 35

Online Dating Problem�����

Goal: Find your true love by dating a stream of candidates
Suppose you estimate that you will have n dates over the time

I Your true love will be the best person out of the n candidates
Rules:

I You can only date one person at a time (no cheating allowed�������)
I You have to decide whether either you will

F Marry the current candidate
F Or break up with the current candidate to date the next (unknown) candidate

I Broken-up relationship can’t be rekindled (need to move on from past relationships���)
Dating is definitely an “online” decision problem
Also known as secretary problem (for hiring a secretary from a stream of candidates)

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 29 / 35

Online Dating Problem (or Secretary Problem)

Sample-and-Choose Algorithm

Evaluate the first m candidates, and rank them
Reject all the first m candidates
After the first m candidates, choose the one who is at least
as good as the best in the first m candidates, or the last one

Theorem
The probability of choosing the best candidate by sample-and-choose algorithm is maximized
to be 1

e , when m = n
e (also known as the “37-percent rule”)

Proof:
Let the probability of choosing the best candidate by sample-and-choose be Pn(m)

Pn(m) =
∑n

i=m+1 P(i-th candidate is the best ∧ i-th candidate is chosen)
Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 30 / 35

Online Dating Problem (or Secretary Problem)

Proof (Cont.):
If the i-th candidate is chosen, then the best of the previous (i− 1) candidates must be in
the first m candidates. Otherwise, one of the (i− 1−m) candidates will be chosen
Then P(i-th candidate is the best) = 1

n and P(i-th candidate is chosen) = m
i−1 ,

Pn(m) =
1

n
(1 +

m

m+ 1
+

m

m+ 2
+ ...+

m

n− 1
) =

m

n

n−1∑
i=m

1

i
≈ m

n
ln(n

m
)

Note that
d(x ln(1/x))

dx
= −1 + ln(1/x)

The maximum point is x∗ = 1
e

Hence, Pn(m) is maximized, when we set m∗

n = 1
e , and Pn(m

∗) = 1
e

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 31 / 35

Online Dating Problem (or Secretary Problem)

Maximizing the probability of choosing the best candidate may not be the best objective
I Sample-and-choose algorithm either selects the best, or the last appearing candidate
I With constant probability, the rank of the last candidate is Ω(n)

How about maximizing the expected rank of the selected candidate?
I Still an open problem, no known solution (as known as Robbin’s problem of optimal stopping)
I Online dating is an unsolved hard problem�������

Generally, optimal stopping problem:
I Optimal stopping problem aims to choose a time to take a particular action, given a

sequence of input revealed sequentially, in order to maximize an expected reward or minimize
an expected cost

I Applications: operations research, economics, and mathematical finance

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 32 / 35

Prophet Inequality

Consider a sequence of random variables (Xi)
n
i=1 arrive from known distributions Di

When each Xi arrives, the decision-making process must decide whether to accept it and
stop the process, or whether to reject it and go on to the next variable in the sequence

Definition (Prophet Inequality)
A prophet, knowing the whole sequence, can select the largest Xmax , maxn

i=1(Xi), for
any instance of this process, and attain the expected value E[Xmax]

An online threshold strategy: Accept the revealed Xi, if Xi ≥ θ

The prophet inequality states that the expected pay-off of threshold strategy ≥ 1
2E[Xmax],

when setting θ such that P
(
Xmax ≥ θ

)
= 1

2

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 33 / 35

Prophet Inequality
Proof:

Let (X − θ)+ = max(X − θ, 0)

E[Xmax] ≤ θ + E[(Xmax − θ)+] ≤ θ + E
[n∑

i=1

(Xi − θ)+
]

The expected pay-off of online threshold strategy with threshold θ:

E[Pay-off with threshold θ]

≥ θ · P(Xmax ≥ θ) +

n∑
i=1

E[(Xi − θ)+] · P
(

max
j<i

Xj < θ
)

≥ θ · P(Xmax ≥ θ) +
n∑

i=1

E[(Xi − θ)+] · P(Xmax < θ)

Since P(Xmax ≥ θ) = P(Xmax < θ) = 1
2 , E[Pay-off with threshold θ] ≥ 1

2E[Xmax]

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 34 / 35

������ References

Reference Materials
Online Computation and Competitive Analysis (Borodin, El-Yaniv), Cambridge Uni. Press

I Chapters 3, 4, 8, 9, 10

Recommended Materials

Knowing When to Stop (Hill), American Scientist, 2009

Sid Chau (ANU) Lec. 9: Online Algorithms II October 6, 2022 35 / 35

