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How to decide? Simply toss a coin ...

We often make random decisions. Does it help? Did you make poor random decisions?
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≪ Probability Theory 101 ≫



Probability Theory: Basics

Probability theory formalizes the counting of random experimental outcomes
Probability theory is an incredibly powerful tool for analysis, and it is a bridge between
discrete math and calculus

Definition (Elements of Probability Theory)
Sample Space Ω: A finite (or infinite) set of outcomes in a certain experiment
Probability Measure P : Ω 7→ [0, 1]: A real-valued function that maps each element in
sample space to a real number in [0, 1], such that

I P(ω) ∈ [0, 1] for all ω ∈ Ω
I

∑
ω∈Ω P(ω) = 1

Event E ⊆ Ω: A subset of outcomes, and define P(E) ,
∑

x∈E P(ω)
Random Variable X : Ω 7→ R: A mapping from an outcome to a real-valued observable
quantity
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Probability Theory: Example

Example (Rolling a Die Twice)
Consider an experiment of rolling a die twice. The sample space is

Ω = { , , , , , , , , , . . . , }

Let random variable Xsum be the sum of outcomes of two rolls, Xsum(·) : Ω 7→ [2, 12]
I E.g., Xsum( ) = 9

Let event Eeven be the subset of outcomes such that the sum is even:

Eeven = {ω ∈ Ω | Xsum(ω) is even}

The probability of an even sum is P(Eeven) =
1
2

Note that the outcome of one roll is independent from another roll
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Probability Theory: Example

Example (Drawing Two Cards)
Consider an experiment of drawing two cards from a deck. The sample space is

Ω = {A
♦

A
♣,

A
♦

A
♥,

A
♦

A
♠,

A
♣

A
♥,

A
♣

A
♠,

A
♥

A
♠,

A
♦

2
♦,

A
♦

2
♣, . . . ,

K
♥

K
♠}

Let random variable Xpair be the indicator whether the two cards are a pair,
Xpair(·) : Ω 7→ {0, 1}

I E.g., Xpair(
3
♥

3
♠) = 1

Let event Epair be the subset of outcomes of a pair:

Epair = {ω ∈ Ω | Xpair(ω) = 1}

The probability of a pair is P(Epair) =
2·13·6

13·4·(13·4−1)

Note that the outcome of the next draw is dependent on the previous draw
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Independence

This is the most misunderstood concept in probability theory
Intuitively, two events are independent if the likelihood of one occurring does not depend
on the other having happened

I Examples of independent events: tossing a coin twice, winning lottery twice

Definition (Independent Events)
Two events E1, E2 ⊆ Ω are independent, if P(E1 ∩ E2) = P(E1) · P(E2)

I If this condition does not hold, then E1, E2 are dependent or correlated:
F Positively dependent (the likelihood of one event enhances the likelihood of another):

P(E1 ∩ E2) > P(E1) · P(E2)

F Negatively dependent (the likelihood of one event diminishes the likelihood of another):

P(E1 ∩ E2) < P(E1) · P(E2)

⚠�Mutual Exclusion: Two events E1, E2 are mutual exclusive, if E1 ∩ E2 = ∅
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Expectation

Capture the intuition of statistical average of an observable quantity in an experiment
Expectation is a powerful tool, bridging between discrete counting and calculus

Definition (Expectation)
Expectation: Average of a random variable: E[X] ,

∑
ω∈Ω P(ω)X(ω)

Note that we mostly consider Ω as a finite set (e.g. events of a finite object)

Definition (Independent Random Variables)
Two random variables X1, X2 : Ω 7→ R are independent, if E[X1 ·X2] = E[X1] · E[X2]

I Proven by letting E1 = {ω ∈ Ω | X1(ω) = x}, E2 = {ω ∈ Ω | X2(ω) = y}, and the fact that
E1, E2 are independent events for any x, y
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Independence: Example

Example (Drawing Two Cards)
Consider an experiment of drawing two cards from a deck. The sample space is

Ω = {A
♦

A
♣,

A
♦

A
♥,

A
♦

A
♠,

A
♣

A
♥,

A
♣

A
♠,

A
♥

A
♠,

A
♦

2
♦,

A
♦

2
♣, . . . ,

K
♥

K
♠}

Let the following random variables:
I Xsum be the sum of ranks of the two cards,
I Xpair be the indicator whether the two cards are a pair,
I Xcolor be the indicator whether the two cards are of the same color
I E.g., Xsum(

5
♦

K
♥) = 18, Xpair(

5
♦

K
♥) = 0, Xcolor(

5
♦

K
♥) = 1

E[Xpair ·Xcolor] = E[Xpair] · E[Xcolor] and E[Xsum ·Xpair] 6= E[Xsum] · E[Xpair]
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Union Bound & Linearity of Expectation

Lemma (Union Bound)
For any events E1, E2, ..., En ⊆ Ω, we have

P(E1 ∪ E2 ∪ ... ∪ En) ≤ P(E1) + P(E2) + ...+ P(En)

Basic Idea:
|E1 ∪ E2 ∪ ... ∪ En| ≤ |E1|+ |E2|+ ...|En|

Lemma (Linearity of Expectation)
E[X1 +X2 + ...+Xn] = E[X1] + E[X2] + ...+ E[Xn]
⚠�Note that X1, X2, ..., Xn do not need to be independent

Proof:

E
[ n∑

i=1

Xi

]
=

∑
ω∈Ω

P(ω) ·
( n∑

i=1

Xi(ω)
)
=

n∑
i=1

∑
ω∈Ω

P(ω) ·Xi(ω) =

n∑
i=1

E[Xi]
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Linearity of Expectation: Example

Example (Drawing Two Cards)
Consider an experiment of drawing two cards from a deck. The sample space is

Ω = {A
♦

A
♣,

A
♦

A
♥,

A
♦

A
♠,

A
♣

A
♥,

A
♣

A
♠,

A
♥

A
♠,

A
♦

2
♦,

A
♦

2
♣, . . . ,

K
♥

K
♠}

Let random variable X1
rank be the rank of the first card, and X2

rank be the rank of the
second card

I E.g., X1
rank(

J
♦

K
♠) = 11, X2

rank(
J
♦

K
♠) = 13

The expected sum of the ranks of the two cards is

E[Xsum] = E[X1
rank +X2

rank] = E[X1
rank] + E[X2

rank]

Note that the ranks of first card and the second card are dependent random variables
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Why Randomization? 🎲

Amortization: Diversify the best and worst cases, or foil the adversary from inflicting
the worst case scenario on you
Estimation: Sample the outcomes and probe the possible consequences in an unknown
situation for strategizing the next moves
Probabilistic Method: A proof technique for proving certain combinatorial properties
without explicit construction

Definition
Las Vegas Algorithm: A randomized algorithm that always gives correct results, but has
probabilistic running time

I Example: Randomized Quicksort
Monte Carlo Algorithm: A randomized algorithm that has probabilistic accuracy

I Example: Randomized Testing
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Randomized Quicksort

Algorithm Quicksort[I: input sequence, x: pivot]

Compare each item in I with pivot x
Divide I into two groups:

I I<x consisting of items in I that are less than x
I I≥x consisting of items in I that are greater than or

equal to x

Pick y ∈ I<x

I<x ← Quicksort[I<x\{y}, y]
Pick z ∈ I≥x

I≥x ← Quicksort[I≥x\{z}, z]
Output (I<x, x, I≥x)
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Randomized Quicksort

Quicksort is a popular and widely used sorting algorithm
The worst-case input for Quicksort is the case when every pivot chosen is always the
smallest or largest in its group

I E.g., choose pivot x = 1 or 8 from I = {3, 2, 5, 6, 7, 8, 1}
I Then I<x = ∅ or I≥x = ∅
I The worst-case running time is O(n2) – every pair of items will be compared in Quicksort

Randomized Quicksort
I Choose the pivot according to a uniform probability distribution in any group to alleviate the

chance of choosing the the smallest or largest
I Let X be the random number of comparisons performed in randomized Quicksort
I The expected running time of randomized Quicksort is O(E[X])
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Randomized Quicksort

Theorem
The expected running time of randomized Quicksort is O(n log(n))

For simplicity, we assume the set of input numbers is {1, ..., n} in an unsorted sequence
Let Xi,j will be the indicator whether i, j ∈ {1, ..., n} are compared in Quicksort

E[X] = E
[ n∑
j=2

j−1∑
i=1

Xi,j

]
=

n∑
j=2

j−1∑
i=1

E[Xi,j ]

E[Xi,j ] = P
(
(i, j) are ever compared

)
= 2

j−i+1 , because Xi is binary random variable and
I If any pivot is chosen from {1, ..., i− 1, j + 1, ..., n}, it does not affect the fact whether (i, j)

will be compared
I If the first pivot chosen from {i, i+ 1, ..., j − 1, j} is not i nor j, then (i, j) will never be

compared, because they will be separated into two different groups since then
I Since a pivot is chosen according to a uniform probability distribution in any group, the

probability that the first pivot chosen from {i, i+ 1, ..., j − 1, j} is either is i or j is 2
j−i+1
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Randomized Quicksort

Hence, we obtain

E[X] =

n∑
j=2

j−1∑
i=1

E[Xi,j ] =

n∑
j=2

j−1∑
i=1

2

j − i+ 1

= 2

n∑
j=2

j∑
k=2

1

k
(let k = j − i+ 1)

= 2
n∑

k=2

n∑
j=k

1

k
(by interchanging the order of summation)

= 2

n∑
k=2

n− k + 1

k
= 2(n+ 1)

n∑
k=2

1

k
− 2(n− 1) = O(n log(n))

Note that the observed running time of randomized Quicksort is very close to O(n log(n))
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Randomized Testing

Suppose we are given three n×n matrices A, B and C and want to test whether AB ?
= C

I Simply multiplying A by B takes O(n3) running time. Any way better than that?

Algorithm RandomTest
For each of t times, perform the following test

I Choose each xi in challenge x = (x1, ..., xn)
T independently and uniformly at random

I We test whether A(Bx) ?
= Cx

If none of the t tests fails, then we conclude AB = C

Computing A(Bx) takes only O(n2) running time, by two matrix-vector multiplications
Totally, it takes O(t · n2) running time
False Positive: If AB 6= C, but our test concludes AB = C
False Negative: If AB = C, but our test concludes AB 6= C

I Never happens in randomized testing
Sid Chau (ANU) Lec. 5: Probability Theory & Computing October 5, 2022 17 / 40



Randomized Testing

Lemma (Schwartz-Zippel Lemma)
Let F be a finite field of numbers. Choose each coordinate xi in challenge x = (x1, ..., xn)

T

independently and uniformly at random from F . If AB 6= C, then

P
(
A(Bx) = Cx

)
≤ 1

|F|

The probability of a false positive after t tests is less than
(

1
|F|
)t

I Note that each test is independent, because each challenge x is chosen independently and
uniformly at random

This trick is known as probability amplification to improve the probability of the
correctness of randomized test to be very close to 1
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Randomized Testing: Applications

Third-party computation scenarios
I Outsourcing computation in cloud computing, high-performance computers
I Use blockchain as a public verification platform for processing confidential data
I Problem: Unreliable/untrustworthy computation providers – How do we ensure that

third-party computation is performed correctly?
Verification of third-party computation

I Verification should take much less computational power than the actual computation
I A verifier challenges a prover (e.g. computation provider) who will provide a proof to show

that the output is indeed computed from a given (possibly unrevealed) input according to a
known computation function

Basic idea:
I Map the circuit of a computation function to polynomial A(x), input to polynomial B(x)

and output to polynomial C(x), where x is a random challenge
I Run randomized tests for A(x) ·B(x)

?
= C(x) in an efficient and privacy-preserving manner
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First Moment Method

Lemma (First Moment Principle)
If E[X] ≤ t, then P(X ≤ t) > 0

Theorem (Markov’s Inequality)
For any non-negative random variable X,

P(X ≥ t) ≤ E[X]

t

Proof:
E[X] =

∑
i i · P(X = i)

E[X] ≥
∑

i≥t i · P(X = i) ≥ t · P(X ≥ t)

Markov’s Inequality bounds the tail distribution by expectation
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Probabilistic Method: k-SAT

Definition (k-SAT)
For a Boolean variable x, there are two literals: x and x̄

Conjunctive Normal Form (CNF) is a sequence of clauses joined by “∧” (AND), where
each clause consists of literals joined by “∨” (OR)

I E.g., (x ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z̄) ∧ (x ∨ ȳ ∨ z)

A CNF formula is satisfiable if there is some assignment of values to its variables such
that the entire formula equates to True
An instance of k-SAT is a CNF-formula where every clause has exactly k literals

Theorem
Any instance of k-SAT with fewer than 2k clauses is satisfiable
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Probabilistic Method: k-SAT
Proof:

Consider a random variable assignment
I Setting each variable to be True or False with probability 1

2

For each clause Ci, define random variable Xi:

Xi =

{
0, if Ci is True
1, if Ci is False

Let X be the number of unsatisfied clauses: X =
∑m

i=1Xi

Note that E[Xi] = P(Ci is false) = 1
2k

. Since there are m < 2k clauses,

E[X] =

m∑
i=1

E[Xi] = m · 1
2k

< 1

By First Moment Principle, with positive probability P(X < 1), there must exist at least
one satisfying assignment that the CNF formula is True
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Second Moment Method

Variance: var[Y ] , E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2

var
[∑n

i=1Xi

]
=

∑n
i=1 var[Xi], if (X1, ..., Xn) are independent random variables

Theorem (Chebyschev’s Inequality)
For any non-negative random variable Y , the tail probability is bounded by

P
(
|Y − E[Y ]| ≥ t

)
≤ var[Y ]

t2

Proof:
|Y − E[Y ]| ≥ t ⇔ (Y − E[Y ])2 ≥ t2

Apply Markov’s Inequality
Chebyschev’s Inequality is a concentration inequality

I With high probability, a random variable is “concentrated” close to its expectation
I Expectation is a good estimate of a random variable
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Second Moment Method: Application

Given a set of n integers S, the median of S is defined as:
I bn2 c-th smallest ≤ medium ≤ (bn2 c+ 1)-th smallest

Find the median requires running time O(n logn) using sorting
Can we improve the running time to O(n) (with high probability)?
Basic idea:

I Select two random elements d, u ∈ S, such that d ≤ medium ≤ u
I Determine the order of d, say d is the k-th smallest
I Let C = {x ∈ S | d < x < u}
I Sort C and find (bn2 c − k + 1)-th smallest in C

How to ensure d ≤ medium ≤ u, without knowing medium?
How to ensure that |C| is small enough to be sorted efficiently?
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Second Moment Method: Application

Random Sampling Algorithm for Median Armed

Randomly pick a set R ⊆ S with replacement, such that |R| = n
3
4

Sort R
Let d be the (b12n

3
4 −
√
nc)-th smallest in R

Let u be the (b12n
3
4 +
√
nc)-th smallest in R

Find C = {x ∈ S | d < x < u}
Sort C
Determine the order of d, say d is the k-th smallest
Output the (bn2 c − k + 1)-th smallest in C

Theorem
The running time of Armed is O(n), if |C| = o(n/ logn) to be sorted in O(n)
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Second Moment Method: Application

Theorem
The probability that P(Armed fails) ≤ n− 1

4

Proof:
Let E1 be the event that d > Median and E2 be the event that u < Median
Let E3 be the event that |C| > 4n

3
4 (including the possibility |C| 6= o(n/ logn))

P(Armed fails) ≤ P(E1 ∪ E2 ∪ E3) ≤ P(E1) + P(E2) + P(E3)

We show that P(E1) = P(E2) ≤ 1
4n

− 1
4 and P(E3) ≤ 1

2n
− 1

4

R is a set of n 3
4 random samples with replacement. Let

Xi =

{
1 if the i-th sample ≤ Median
0 otherwise

Note that each Xi is an independent binary random variable as they are picked with

replacement, and E[Xi] =
n−1
2 +1

n since there are (n−1
2 + 1) elements in S ≤ Median
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Second Moment Method: Application

Proof (Cont.):

Let Y =
∑n

3
4

i=1Xi. Then, E[Y ] =
∑n

3
4

i=1 E[Xi] =
∑n

3
4

i=1

n−1
2 +1

n > 1
2n

3
4

Since each Xi is an independent binary random variable (E[X2
i ] = E[Xi]), we have

var(Y ) = n
3
4 var(Xi) = n

3
4 (E[X2

i ]− E[Xi]
2) = n

3
4

( n−1
2 + 1

n
− (

n−1
2 + 1

n
)2
)
<

1

4
(n

3
4 )

Note that d is the (b12n
3
4 −
√
nc)-th smallest in R

P(E1) = P
(
Y <

1

2
n

3
4 −
√
n
)
≤ P

(
Y < E[Y ]−

√
n
)
≤ P

(∣∣Y − E[Y ]
∣∣ > √n)

By Chebyschev’s Inequality, P(E2) = P(E1) ≤ P
(∣∣Y − E[Y ]

∣∣ > √n) ≤ var(Y )
n ≤ 1

4n
− 1

4

It can be shown similarly that P(E3) ≤ 1
2n

− 1
4 by

I At least 2n 3
4 elements of C ≥ Median; or at least 2n 3

4 elements of C ≤ Median
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Coupon Collector’s Problem

Definition (Coupon Collector’s Problem)
There are n different coupons
Goal: Collect all n coupons from a sequence of independent draws

I Each time a random coupon is drawn; each coupon appears with a uniform probability 1
n

I Sometime, a coupon drawn may have appeared before
Let X be the number of draws required to collect all n coupons: X =

∑n
i=1Xi,

where Xi is number of draws to collect the i-th different coupon that has not
been collected before
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Coupon Collector’s Problem

Definition (Geometric Random Variable)
Geometric random variable, Geom(p), is a random number of steps, where each step
continues with probability 1− p, or stops with probability p

P(Geom(p) = k) = (1− p)kp and E[Geom(p)] = 1
p

Each Xi is an independent geometric random variable, Geom(1− i−1
n ) and E[Xi] =

n
n−i+1

The expected number of draws required to collect all n coupons

E[X] =

n∑
i

E[Xi] =

n∑
i

n

n− i+ 1
= n

n∑
i

1

i
= n logn+ nγ

I Define Hn ,
∑n

i
1
i , called the harmonic number

I Hn = logn+ γ, where γ is a constant called Euler’s constant
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Coupon Collector’s Problem

Note that var[Geom(p)] = 1−p
p2
≤ 1

p2

Since
∑∞

i=1

(
1
i

)2
= (π)2

6 , we have

var[X] =

n∑
i=1

var[Xi] ≤
n∑

i=1

( n

n− i+ 1

)2 ≤ n2
n∑

i=1

(1
i

)2 ≤ (πn)2

6

By Chebyshev’s inequality,

P
(
|X − nHn| ≤ nHn

)
≤ (πn)2

6

1

(nHn)2
=

π2

6(Hn)2
= O

( 1

log2 n

)
This tail probability bound is not sharp. In fact, the tail probability is decaying
exponentially fast in n
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≪ The Larger, The Simpler ≫



Probability: Beyond Counting

Random systems can consist of a very large degree of randomness
I Large physical systems (e.g. movement of many gas molecules)
I Large computer systems (e.g. many packets in Internet)
I Large human systems (e.g. stock markets)

The property of averaging-out kicks in: the expected behavior dominates
Concentration of measure: As n→∞, system state Xn → E[Xn]

Paradox: Smaller random systems may be complicated, larger systems may be simpler
Probability theory can provide insights for large systems that cannot be counted
Example of large systems in algorithms: randomized algorithms of large problem n→∞
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Concentration of Measure

Polynomial decay of tail probability in terms of t−k

I Markov Inequality: P(X ≥ t) ≤ E[X]
t

I Chebyschev’s Inequality: P(|Y − E[Y ]| ≥ t) ≤ var[Y ]
t2

I Can be applicable to general random variables
I But insufficient to show decaying probability with a polynomial number P (t) of events:

P (t) · t−k 6→ 0 as t→∞

Exponential decay of tail probability in terms of e−t

I Chernoff bound: P(|Y − E[Y ]| ≥ t) ≤ O(e−ct·E[Y ])
I Sufficient to show decaying probability with a polynomial number P (t) of events:

P (t) · e−t → 0 as t→∞

I But not applicable to general random variables
I There is a sharp decay in the tail probability for specific random variables
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Chernoff Bound

Bernoulli random variable BER(p) (e.g. head of a coin toss):

X =

{
1, with probability p

0, with probability 1− p

Binomial random variable BIN(n, p) is a sum of independent
BER(p) (e.g. the number of heads of n coin tosses),

Sn =

n∑
i=1

Xi

Theorem (Chernoff Bound for Binomial Random Variable)
Let Sn be a Binomial random variable BIN(n, p)
For any t > 0, the tail probability is bounded by

P
(
|Sn − np| ≥ nt

)
≤ 2e−2nt2
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Chernoff Bound
Proof:

Let m = n(p+ t) and h > 0. Consider Sn ≥ m, by Markov’s Inequality,

P(Sn ≥ m) = P(ehSn ≥ ehm) ≤ e−hm · E[ehSn ] = e−hm(1− p+ peh)n

It is because that Sn is a sum of independent binary random variables:

E[ehSn ] = E
[ n∏
i=1

ehXi

]
=

n∏
i=1

E[ehXi ] = (1− p+ peh)n

Note that e−hp(1− p+ peh) ≤ eh
2/8 (for 0 ≤ p ≤ 1 and h > 0). Hence,

P(Sn − np ≥ nt) ≤ e−nht
(
e−hp(1− p+ peh)

)n
≤ e(−ht+h2/8)n

This attains the minimum bound, when h = 4t, namely, e(−ht+h2/8)n = e−2nt2
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Chernoff Bound: Application

Let Sn be the number of heads of n fair coin tosses
By Chernoff Bound, we have

P
(
|Sn −

n

2
| ≥ n

4

)
≤ 2e−2n 1

16 = 2e−
n
8

Chebyschev’s Inequality gives a much weak bound

P
(
|Sn −

n

2
| ≥ n

4

)
≤ 4

n

If we take a number of nk samples of Sn,
I The probability that any one of samples has |Sn − n

2 | ≥
n
4 is lesser than nke−

n
8

I Note that nke−
n
8 → 0 as n→∞

I Meaning that the probability of deviation is rare, when n is large
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Poisson Random Variable

Poisson random variable: Pois(λ)

P(Pois(λ) = r) =
e−λλr

r!
, E[Pois(λ)] = λ, var[Pois(λ)] = λ, E[eh·Pois(λ)] = eλ(e

h−1)

Poisson random variable model a given number of events in a fixed interval, occurring
with a known average rate and independently of the time since the last event

Examples:
I Telephone calls arriving in a system
I Customers arriving at a counter or call center
I Cars arriving at a traffic light

Approximate Binomial random variable:

BIN(n,
λ

n
)→ Pois(λ) when n→∞
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Poisson Random Variable

Theorem (Chernoff Bound for Poisson Random Variable)
Let X be a Poisson random variable Pois(λ)

If x > λ,

P(X ≥ x) ≤ e−λ(eλ)x

xx

If x < λ,

P(X ≤ x) ≤ e−λ(eλ)x

xx

Proof:
We have

P(X ≥ x) = P(ehX ≥ ehx) ≤ E[ehX ]

ehx
= eλ(e

h−1)−hx

Suppose x > λ, then ln(x/λ) > 0

Choose h = ln(x/λ), then we obtain P(X ≥ x) = ex−λ−x ln(x/λ)
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Coupon Collector’s Problem

Theorem
Let X be the number of draws required to collect all n types of coupons. Then, for any
constant c,

lim
n→∞

P(X > n lnn+ cn) = 1− e−e−c

Basic Ideas:
Based on balls-and-bins model: balls = draws, bins = types of coupons
Use Poisson approximation to model the number of balls throwing into bins, such that
each bin has at least one ball, or equivalently no bin is empty

I See the next lecture for balls-and-bins model
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📖 References

Reference Materials

Probability and Computing (Mitzenmacher, Upfal), 2nd ed, Cambridge University Press
I Chapters 1-3: Basics of Probability Theory
I Chapters 4.1-4.2: Chernoff Bounds
I Chapters 6.1-6.2: The Probabilistic Method
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