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How to decide? Simply toss a coin ...

Tails damn, I just went

& foo— HEDGEYE

“I'm beginning to question your
business decision-making, Perkins.” “All my decisions are well thought out.”

@ We often make random decisions. Does it help? Did you make poor random decisions?
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<K Probability Theory 101 >




Probability Theory: Basics

@ Probability theory formalizes the counting of random experimental outcomes

@ Probability theory is an incredibly powerful tool for analysis, and it is a bridge between
discrete math and calculus

Definition (Elements of Probability Theory)
e Sample Space Q: A finite (or infinite) set of outcomes in a certain experiment

e Probability Measure P: 2 — [0, 1]: A real-valued function that maps each element in
sample space to a real number in [0, 1], such that
P(w) € [0,1] for all w € ©
Zweﬂ P(W) =1
o Event E C : A subset of outcomes, and define P(E) £ Y . P(w)
e Random Variable X : 2 — R: A mapping from an outcome to a real-valued observable
quantity
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Probability Theory: Example

Example (Rolling a Die Twice)

o Consider an experiment of rolling a die twice. The sample space is

Q = {0, O, O, (1, G, GRS, 00, O, O, - - -, @}

Let random variable X¢ym be the sum of outcomes of two rolls, Xg,m(-) : © — [2,12]
E'g'v Xsum(@) =9
@ Let event Eeyen be the subset of outcomes such that the sum is even:

Eeven = {w € Q| Xsum(w) is even}

The probability of an even sum is P(Eeyen) = &

@ Note that the outcome of one roll is independent from another roll
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Probability Theory: Example

Example (Drawing Two Cards)

@ Consider an experiment of drawing two cards from a deck. The sample space is

Q:{ ;7 M ;77@’ ;7 ) ;7"'7}
o Let random variable X,,; be the indicator whether the two cards are a pair,
Xpair(-) : 2= {0, 1}
E.g., Xpair((ola)) =1

o Let event Fp,; be the subset of outcomes of a pair:

Epair = {w =Y/ ‘ Xpai,(w) = 1}

The probability of a pair is P(Epair) = %

Note that the outcome of the next draw is dependent on the previous draw
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Independence

@ This is the most misunderstood concept in probability theory

@ Intuitively, two events are independent if the likelihood of one occurring does not depend
on the other having happened
» Examples of independent events: tossing a coin twice, winning lottery twice

Definition (Independent Events)

e Two events E, By C Q are independent, if P(E) N E2) = P(E,) - P(Es)
If this condition does not hold, then F, F» are dependent or correlated:
Positively dependent (the likelihood of one event enhances the likelihood of another):

P(El N Ez) > P(El) . P(Ez)
Negatively dependent (the likelihood of one event diminishes the likelihood of another):

]P)(E1 n EQ) < P(El) . P(EQ)

° A Mutual Exclusion: Two events E7, E5 are mutual exclusive, if B4 N Ey = @&
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Expectation

o Capture the intuition of statistical average of an observable quantity in an experiment

@ Expectation is a powerful tool, bridging between discrete counting and calculus

Definition (Expectation)
o Expectation: Average of a random variable: E[X] £ Y _ P(w)X (w)

@ Note that we mostly consider (2 as a finite set (e.g. events of a finite object)

Definition (Independent Random Variables)

e Two random variables X7, X5 : Q© — R are independent, if E[X; - Xo] = E[X;] - E[X3]
Proven by letting By = {w € Q| X1 (w) = 2}, Es = {w € Q| Xa(w) = y}, and the fact that
F4, E5 are independent events for any z,y
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Independence: Example

Example (Drawing Two Cards)

@ Consider an experiment of drawing two cards from a deck. The sample space is

Q = {Lolal Fol'c) Fol ol Lal'cl Fala) Fol el EoPel EoPa) - - - Folal}
@ Let the following random variables:

X.um be the sum of ranks of the two cards,
Xpair be the indicator whether the two cards are a pair,
Xeolor be the indicator whether the two cards are of the same color

Eg., Xsum() =18, Xpair() =0, Xcolor() =1
o IEf[)(pair : Xcolor] = IE[‘Xpailr] . IE[4Xcolor] and IEf[‘Xsum : Xpair] 7’é ]E[Xsum] : IE[AXpair]
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Union Bound & Linearity of Expectation

Lemma (Union Bound)
For any events FE1, Fo, ..., E, C ), we have

]P(El UEyU...U En) < P(El) + ]P)(EQ) + ...+ P(En)

Basic Idea:
’El UFEU.. .U En‘ < ‘El‘ + ’EQ‘ + ‘En|

Lemma (Linearity of Expectation)

E[Xl + X9+ ...+ Xn] = E[Xl] + E[XQ] + ...+ E[Xn]
/\ Note that X1, Xs, ..., X,, do not need to be independent

Proof:

n n n n

E[D X =Y Pw) (Do X)) =Y Pw)- Xiw) = Y_ELX)
i=1 weN =1 i=1 we =1
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Linearity of Expectation: Example

Example (Drawing Two Cards)
o Consider an experiment of drawing two cards from a deck. The sample space is

2 = {Lola) Fol'ch Eol el Falcl Eal el Folah EoP ol FoPah - Folal}

. be the rank of the first card, and X2, be the rank of the

@ Let random variable X!
second card
Eg., Xpm(Fola) =11, X2 (FcFal) =13

@ The expected sum of the ranks of the two cards is

ran

E[Xsum] = IE:[‘Xrank + Xrank] IE[‘Xrank] + Il:-ﬂ[)(rank]

@ Note that the ranks of first card and the second card are dependent random variables
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Why Randomization?

@ Amortization: Diversify the best and worst cases, or foil the adversary from inflicting
the worst case scenario on you

o Estimation: Sample the outcomes and probe the possible consequences in an unknown
situation for strategizing the next moves

@ Probabilistic Method: A proof technique for proving certain combinatorial properties
without explicit construction

Definition
o Las Vegas Algorithm: A randomized algorithm that always gives correct results, but has
probabilistic running time
Example: Randomized Quicksort

@ Monte Carlo Algorithm: A randomized algorithm that has probabilistic accuracy
Example: Randomized Testing
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Randomized Quicksort

Algorithm Quicksort[]: input sequence, z: pivot]

@ Compare each item in I with pivot x (s3] ]2]c |18

@ Divide I into two groups: pivot
I, consisting of items in I that are less than x
I, consisting of items in I that are greater than or

equal to x |-3|2|-5|1JE|8|5|9|§|

Pick y € I
g H ] EE
i[5) @ &) B G BEL]

Iy < Quicksort[I.\{y},y]
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Randomized Quicksort

@ Quicksort is a popular and widely used sorting algorithm

@ The worst-case input for Quicksort is the case when every pivot chosen is always the
smallest or largest in its group
» E.g., choose pivot x =1 or 8 from [ = {3,2,5,6,7,8,1}
» Then o, =D or I[>, =0
» The worst-case running time is O(n?) — every pair of items will be compared in Quicksort
o Randomized Quicksort
» Choose the pivot according to a uniform probability distribution in any group to alleviate the
chance of choosing the the smallest or largest
» Let X be the random number of comparisons performed in randomized Quicksort
» The expected running time of randomized Quicksort is O(E[X])
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Randomized Quicksort

Theorem
The expected running time of randomized Quicksort is O(nlog(n))

e For simplicity, we assume the set of input numbers is {1,...,n} in an unsorted sequence
o Let X; ; will be the indicator whether 7,5 € {1,...,n} are compared in Quicksort

E[X] = E[ijixj} - ijj E[X

o E[X; ;] =P((,]) are ever compared) = = z+1’ because X is binary random variable and
» If any pivot is chosen from {1,....,a — 1,5+ 1,...,n}, it does not affect the fact whether (i, j)
will be compared
» If the first pivot chosen from {i,i 4+ 1,...,5 — 1,5} is not ¢ nor j, then (i, 7) will never be
compared, because they will be separated into two different groups since then
» Since a pivot is chosen according to a uniform probability distribution in any group, the
probability that the first pivot chosen from {é,i +1,...,5 — 1,j} is either is i or j is 7= fﬂ
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Randomized Quicksort

@ Hence, we obtain
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(letk=j—i+1)
(by interchanging the order of summation)

= 2(n+1) Z——2n—1 = O(nlog(n))

o Note that the observed running time of randomized Quicksort is very close to O(nlog(n))
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Randomized Testing

”
@ Suppose we are given three n x n matrices A, B and C and want to test whether AB = C
» Simply multiplying A by B takes O(n?) running time. Any way better than that?

Algorithm RandomTest

@ For each of ¢ times, perform the following test
Choose each z; in challenge x = (21, ...,7,)T independently and uniformly at random
We test whether A(Bx) = Cx

If none of the ¢ tests fails, then we conclude AB = C

Computing A(Bx) takes only O(n?) running time, by two matrix-vector multiplications
Totally, it takes O(¢ - n?) running time
False Positive: If AB # C, but our test concludes AB = C

False Negative: If AB = C, but our test concludes AB # C
» Never happens in randomized testing
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Randomized Testing

Lemma (Schwartz-Zippel Lemma)

Let F be a finite field of numbers. Choose each coordinate z; in challenge x = (x1,

)T
independently and uniformly at random from F. If AB £ C, then

so0q B

1
P(A(Bx) = Cx) < il

@ The probability of a false positive after ¢ tests is less than (Wﬂ)t

» Note that each test is independent, because each challenge x is chosen independently and
uniformly at random

@ This trick is known as probability amplification to improve the probability of the
correctness of randomized test to be very close to 1
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Randomized Testing: Applications

@ Third-party computation scenarios

» Outsourcing computation in cloud computing, high-performance computers
» Use blockchain as a public verification platform for processing confidential data
» Problem: Unreliable/untrustworthy computation providers — How do we ensure that
third-party computation is performed correctly?
@ Verification of third-party computation

» Verification should take much less computational power than the actual computation
» A verifier challenges a prover (e.g. computation provider) who will provide a proof to show

that the output is indeed computed from a given (possibly unrevealed) input according to a
known computation function

@ Basic idea:

» Map the circuit of a computation function to polynomial A(x), input to polynomial B(x)
and output to polynomial C(z), where z is a random challenge

» Run randomized tests for A(z) - B(x) L C(z) in an efficient and privacy-preserving manner
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First Moment Method

Lemma (First Moment Principle)
IFE[X] <t then P(X <t)>0

Theorem (Markov's Inequality)

For any non-negative random variable X,

E[X]

P(X >8) < —

Proof:
o E[X]=>",i -P(X =1)
o E[X] > Eizti‘P(X =i)>t-P(X >1)

@ Markov's Inequality bounds the tail distribution by expectation
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Probabilistic Method: k-SAT

Definition (k-SAT) |
@ For a Boolean variable z, there are two literals:  and =

e Conjunctive Normal Form (CNF) is a sequence of clauses joined by “A"” (AND), where
each clause consists of literals joined by “V" (OR)
Eg., (xVyVZIAN@ZVYIVIA(xVGV2)
@ A CNF formula is satisfiable if there is some assignment of values to its variables such
that the entire formula equates to True
@ An instance of k-SAT is a CNF-formula where every clause has exactly k literals

Theorem

Any instance of k-SAT with fewer than 2F clauses is satisfiable
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Probabilistic Method: k-SAT

Proof:

@ Consider a random variable assignment
» Setting each variable to be True or False with probability %

For each clause C;, define random variable X;:
-0, if C; is True
" )1, ifC;is False

@ Let X be the number of unsatisfied clauses: X =>"" X,
o Note that E[X;] = P(C; is false) = 2% Since there are m < 2* clauses,
S 1
E[X] =) E[Xi]=m- o <1
i=1

By First Moment Principle, with positive probability P(X < 1), there must exist at least
one satisfying assignment that the CNF formula is True
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Second Moment Method

e Variance: var[Y] 2 E[(Y — E[Y])?] = E[Y?] — E[Y]?

o var[ >0, X;| = >0 var[Xy], if (X1, ..., X;,) are independent random variables
Theorem (Chebyschev's Inequality)
For any non-negative random variable Y, the tail probability is bounded by

POY—MHHﬂ)gwgq

Proof:
o Y —E[Y]|>t & (Y —E[Y])? >
o Apply Markov's Inequality

@ Chebyschev’s Inequality is a concentration inequality

» With high probability, a random variable is “concentrated” close to its expectation
» Expectation is a good estimate of a random variable
Sid Chau (ANU)
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Second Moment Method: Application

@ Given a set of n integers S, the median of S is defined as:
» |5 J-th smallest < medium < ([ 5] + 1)-th smallest

Find the median requires running time O(nlogn) using sorting

Can we improve the running time to O(n) (with high probability)?

Basic idea:

v

Select two random elements d, u € S, such that d < medium < u
» Determine the order of d, say d is the k-th smallest

> letC={zxeS|d<z<u}

» Sort C' and find (| 5] — &k + 1)-th smallest in C

How to ensure d < medium < u, without knowing medium?

@ How to ensure that |C] is small enough to be sorted efficiently?
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Second Moment Method: Application

Random Sampling Algorithm for Median A, eq

e Randomly pick a set R C S with replacement, such that |R| = ni
e Sort R
Let d be the (|5n4 — y/n])-th smallest in R

Let u be the ([3n7 + \/n])-th smallest in R
FindC={zeS|d<z<u}

Sort C

Determine the order of d, say d is the k-th smallest
Output the ([ 5] — k + 1)-th smallest in C

1 3
snt
3
n4

Theorem
The running time of Aimed is O(n), if |C| = o(n/logn) to be sorted in O(n)
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Second Moment Method: Application

Theorem

The probability that P(Armed fails) <

N

Proof:
@ Let F; be the event that d > Median and E5 be the event that © < Median
Let E3 be the event that |C| > nt (including the possibility |C| # o(n/logn))
0 P(A/meq fails) <P(E; U EyU E3) < P(Ey) + P(Es) + P(E3)
o We show that P(E;) = P(E») < 1 n~1 and P(E3) < in -1
o Ris aset of ni random samples W|th replacement. Let

o {1 if the i-th sample < Median

(]

0 otherwise

@ Note that each Xj; is an independent binary random variable as they are picked with
n—1
1
replacement, and E[X;]| = 2T+ since there are (%5 + 1) elements in S < Median
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Second Moment Method: Application

Proof (Cont.):
—1
+1

3 n-1
o LetY = Z”IX Then, E[Y] = 2”1 E[X,] =" 2= 5 1ps
@ Since each Xj is an independent binary random variable ( [X?] = E[X;]), we have
1 24 1
var(Y) = nivar(X;) = n’ (E[X2] — E[X.]?) = n} ( n+ y 2n+ ?) < d)

— y/n|)-th smallest in R
_ni = Vi) SB(Y <E[Y] - vn) <P(]Y —E[Y]| > V)

o Note that d is the (|3n
P(Ey) = IP’(Y <

l\DI—lea

By Chebyschev's Inequality, P(E2) = P(E1) < P(|Y —E[Y]| > /n) < varly) < %n_i
@ It can be shown similarly that P(E3) < %n_i by

> At least 2ni elements of C > Median; or at least 2ni elements of C < Median
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Coupon Collector’s Problem

A stream of unknown coupons

oOK'4
QP @@ EOE@MOGEGEEEEEG6 DR 4 Collection
O) o X List

(OR"4
Definition (Coupon Collector’s Problem)
@ There are n different coupons

@ Goal: Collect all n coupons from a sequence of independent draws
Each time a random coupon is drawn; each coupon appears with a uniform probability %
Sometime, a coupon drawn may have appeared before

o Let X be the number of draws required to collect all n coupons: X =" | X;,

where X; is number of draws to collect the i-th different coupon that has not
been collected before
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Coupon Collector’s Problem

Definition (Geometric Random Variable)
@ Geometric random variable, Geom(p), is a random number of steps, where each step
continues with probability 1 — p, or stops with probability p

o P(Geom(p) = k) = (1 — p)*p and E[Geom(p)] =

n

e Each X; is an independent geometric random variable, Geom(1 — 1) and E[X;] = T

@ The expected number of draws required to collect all n coupons

EE Z#ﬂ—nz =nlogn + nvy

» Define H, £ """ 1, called the harmonic number
» H, =logn+7, where v is a constant called Euler's constant
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Coupon Collector’s Problem

o Note that var[Geom(p)] = 52 < 1%
e Since Y .7, (%)2 = % we have
var[X] = Zn:var[Xi] < . ( o )2 < nQi (1)2 < (mn)”
P — n—i+t 1 — i 6
@ By Chebyshev's inequality,
(mn)? 1 2

P(‘X — | < ”H") ST6 mH)? G(Zn)Q - O<log12n)

This tail probability bound is not sharp. In fact, the tail probability is decaying
exponentially fast in n
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<K The Larger, The Simpler =>>




Probability: Beyond Counting

Random systems can consist of a very large degree of randomness

» Large physical systems (e.g. movement of many gas molecules)
» Large computer systems (e.g. many packets in Internet)
» Large human systems (e.g. stock markets)

The property of averaging-out kicks in: the expected behavior dominates
Concentration of measure: As n — oo, system state X,, — E[X,,]
Paradox: Smaller random systems may be complicated, larger systems may be simpler

Probability theory can provide insights for large systems that cannot be counted

Example of large systems in algorithms: randomized algorithms of large problem n — oo
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Concentration of Measure

@ Polynomial decay of tail probability in terms of ¢~*
» Markov Inequality: P(X >t) < %

Chebyschev's Inequality: P(|[Y — E[Y]] > t) < ¥21Y]

Can be applicable to general random variables

But insufficient to show decaying probability with a polynomial number P(t) of events:

v

v

v

P(t)-t™% A 0ast— oo

@ Exponential decay of tail probability in terms of e~*
» Chernoff bound: P(|Y —E[Y]| > t) < O(e~t'FY])
» Sufficient to show decaying probability with a polynomial number P(t) of events:

Pt)-e " —=0ast— o0

» But not applicable to general random variables
» There is a sharp decay in the tail probability for specific random variables
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Chernoff Bound

e Bernoulli random variable BER(p) (e.g. head of a coin toss):

1
X=<"
0, with probability 1 —p

with probability p

@ Binomial random variable BIN(n, p) is a sum of independent
BER(p) (e.g. the number of heads of n coin tosses),

n ’ J
Number of Heads in 100 Coin Flips
Sp = E X;
i=1

Theorem (Chernoff Bound for Binomial Random Variable)

Let S, be a Binomial random variable BIN(n, p)
For any t > 0, the tail probability is bounded by

]P’<|Sn —np| > nt) < 9e~2nt*
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Chernoff Bound

Proof:
o Let m =n(p+t) and h > 0. Consider S, > m, by Markov's Inequality,

P(S, > m) =P("5" > ") < e7" B["h] = e (1 — p+ pet)"

@ It is because that .S, is a sum of independent binary random variables:
n
"] = [Hehx} = HE[th"] =(1—p+pe")"
i=1

o Note that e~"(1 — p+ pe") < ¢"*/% (for 0 <p < 1 and h > 0). Hence,
P(S, —np > nt) < e "M (e—hm —pt peh))” < e(-ht+h?/8)n

This attains the minimum bound, when h = 4¢, namely, e(—ht+h?/8)n _ ,—2nt?
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Chernoff Bound: Application

o Let S,, be the number of heads of n fair coin tosses

@ By Chernoff Bound, we have

1

P(]Sn — g\ > %) < 2e 26 = 2e”§
@ Chebyschev's Inequality gives a much weak bound
n n 4
IP( S, — 2 > 7) <=
Sn—gl=g) = n

o If we take a number of n* samples of .Sy,

» The probability that any one of samples has |S,, — §| > % is lesser than nFe %
» Note that n*e™5 — 0 as n — oo
» Meaning that the probability of deviation is rare, when n is large
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Poisson Random Variable

@ Poisson random variable: Pois(\)

AT
P(Pois(\) = 1) = < MA . E[Pois(\)] = A, var[Pois(\)] = A, E[e"PoisV] = Ae"-1)

@ Poisson random variable model a given number of events in a fixed interval, occurring
with a known average rate and independently of the time since the last event

@ Examples:

> Telephone calls arriving in a system /}fl
.. A
» Customers arriving at a counter or call center

» Cars arriving at a traffic light

@ Approximate Binomial random variable:

BIN(n, é) — Pois(\) when n — oo
n
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Poisson Random Variable

Theorem (Chernoff Bound for Poisson Random Variable)

Let X be a Poisson random variable Pois()\)

o Ifx > ), \
“X(p\)®
P(X > z) g#

T

o Ifx < ), \
P(X < z) g%

T

Proof:
@ We have

E
P(X > z) = P(ehX > h7) < le

@ Suppose x > A, then In(z/A\) > 0
@ Choose h = In(z/)\), then we obtain P(X > z) = e# A ~#n(@/})
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Coupon Collector’s Problem

Theorem
o Let X be the number of draws required to collect all n types of coupons. Then, for any
constant c,
lim P(X >nlnn4cn)=1—e¢ "
n—oo
Basic Ideas:

@ Based on balls-and-bins model: balls = draws, bins = types of coupons

@ Use Poisson approximation to model the number of balls throwing into bins, such that
each bin has at least one ball, or equivalently no bin is empty
» See the next lecture for balls-and-bins model
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